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1. INTRODUCTION

Today, major newspapers and TV stations make live and
on-demand audio/video content available, video-on-demand
services are becoming common and even personal media
are frequently uploaded to streaming sites. The discussion
about the best transport protocol for streaming has been
going on for years. Currently, HTTP-streaming is usual al-
though the transport of streaming media data over TCP is
hindered by TCP’s probing behavior, which results in the
rapid reduction and slow recovery of the packet rates. On
the other hand, UDP has been criticized for being unfair
against TCP, and it is therefore often blocked by access net-
work providers.

To exploit benefits of both TCP and UDP, we have imple-
mented a proxy that performs transparent protocol transla-
tion in such a way that the video stream is delivered to
clients in a TCP-compatible and TCP-friendly way, but
with UDP-like smoothness. The translation is related to
multicast-to-unicast translation [3] and to voice-over-IP prox-
ies that translate between UDP and TCP. Furthermore, it is
also similar to the use of proxy caching that ISPs employ to
reduce bandwidth demands. The unique advantage of our
approach is that we avoid full-featured TCP handling on
the proxy server but still achieve live protocol translation at
line-speed in a TCP-compliant, TCP-friendly manner. Al-
though we discard packets just like a sender of non-adaptive
video over TCP, we achieve higher user-perceived quality
because our proxy can avoid receive queue underflows in the
proxy, while also achieving the same average bandwidth as
a TCP connection between proxy and client.

In this demo, we present our prototype implemented on
an Intel IXP2400 network processor. The prototype proxy
does not buffer outgoing packets, yielding data loss in case
of a congested TCP side. Comparing HTTP-streaming from
a web-server and RTP/UDP-streaming from a video server
shows that, in case of some loss, our solution using UDP
from the server and a proxy that translates to TCP delivers
a smoother stream at playout rate while the end-to-end TCP
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Figure 1: System overview

stream oscillates heavily.

2. PROXY

An overview of our scenario with a proxy that performs
transport protocol translation and additional load balancing
is shown in figure 1. The idea is that the client can receive
a video stream using HTTP or RTP/UDP. The server, how-
ever, supports only RTSP for stream control and RTP/UDP
for streaming. For every client that accesses a video with
HTTP, the proxy performs transparent translation of the
stream. The translation adheres to TCP’s flow control mech-
anisms and applies TFRC [1] for rate control. It also offloads
TCP connection management from the server. Additionally,
the proxy transparently directs new sessions to an appropri-
ate server by rewriting packet addresses. In this demon-
stration, we use a round-robin strategy to select the server.
More complex algoritms can be added easily using the im-
plemented monitor functions.

3. NETWORK PROCESSOR

The protocol translation and load balancing ideas are far
from new. However, current implementations are imple-
mented on top of full operating systems in general-purpose
computers. They introduce overheads like data transfers
and copying, interrupts and full protocol stack processing.

To avoid these overheads and offload the proxy machine,
our prototype is implemented on a programmable network
processor using the IXP2400 chipset [2] that is designed
to handle a wide range of access, edge and core applica-
tions. With respect to different processors, an XScale run-
ning Linux is typically used for the control plane (slow path)
while eight µEngines perform general packet processing in
the data plane (fast path). Thus, using such a network pro-
cessor, we have low-level access to each packet. Interrupts
and data copying in the data path are avoided and only a
light-weight packet processing is performed. We can operate
at Gb line-speed without host overhead.
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(a) HTTP and translation results
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(b) HTTP streaming
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(c) Protocol translation

Figure 2: Achieved bandwidth varying drop rate and link latency with 1% loss

4. IMPLEMENTATION

According to the intended use of the different processors,
incoming packets are classified by the µEngine based on their
header. RTSP and HTTP packets are enqueued for pro-
cessing on the XScale core (control path) where the session
is initiated and maintained. The handling of RTP pack-
ets, including protocol translation and address rewriting, is
performed on the µEngines (fast path). Here, the protocol
translation is performed by replacing headers (see figure 3).
The translation reuses the space holding the RTP and UDP
headers for the TCP header. It updates only the checksum
and protocol number in IP before forwarding the packet to
the clients.

Figure 3: RTP/UDP to TCP translation

With respect to the TCP implementation, the prototype
proxy has a minimal TCP implementation to manage re-
transmissions. The content of a retransmitted packet is
empty or refreshed with new data from the server. To deal
with congestion control and fairness, we use TFRC [1], which
is a specification for best effort flows that compete for band-
width, designed to be reasonably fair to TCP flows. TFRC
achieves a slightly lower average data rate than TCP Cubic.
It uses a formula [1], which defines the outgoing bandwidth
threshold and is calculated from the current RTT and packet
loss rate. The rate control is performed on a µEngine using
fixed point arithmetics, and packets in excess of this rate
are dropped. The proxy does not buffer unacknowledged
packets, thus lost video data is never retransmitted. In case
of live and interactive streaming scenarios, delays due to
retransmission may introduce dropped frames and delayed
play out. This can cause video artifacts, depending on the
codec used. However, this problem can easily be reduced by
adding a limited buffer per stream sufficient for one retrans-
mission on the proxy and is left as further work.

5. DEMONSTRATION

In our demo, we demonstrate a proxy that performs trans-
parent transport protocol translation to utilize the strengths
of both the TCP and UDP protocols in a streaming scenario.
The demo system can also balance the load of the servers.

We demonstrate the performance of our proxy that trans-
lates RTP over UDP to HTTP over TCP compared to a
setup that uses end-to-end HTTP-streaming. The proxy is
present in both scenarios, but it forwards TCP packets un-
changed. We have performed experiments under various link
latencies (0 - 200 ms) and packet drop rates (0 - 1 %). In one
configuration, packets are dropped between the server and
the proxy, simulating a proxy installation close to the client
where backbone traffic leads to random packet loss. In the
other configuration, packets are dropped between proxy and
client, simulating a proxy close to the server that could aim
at off-loading a server cluster from TCP processing load.

Figure 2 shows examples of packet dropping between the
server and the proxy. Dropping packets between the proxy
and client has similar results. Figure 2(a) shows the achieved
average throughput for the different combinations of loss
and link delays. Additionally, figures 2(b) and 2(c) show
the respective results for the HTTP and protocol transla-
tion scenarios under a constant loss rate of 1%. Keeping
the link delay constant gives similar results. From the fig-
ures, we see that protocol translation achieves an average
throughput that is hardly affected by link delays. In con-
trast, if using TCP end-to-end, the performance drops with
an increasing loss rate and link delay, and the bandwidth os-
cillates heavily. Additionally, our implementation forwards
packets in the range of microseconds whereas typical exist-
ing systems require several milliseconds. With respect to the
load balancing functionality, our implementation works fine
as a proof of concept. We are also able to take servers off-
line, and the framework enables implementing more complex
policies.

6. CONCLUSION

The experimental results show that our protocol transla-
tion system delivers a smoother stream than HTTP-streaming,
whose the bandwidth oscillates heavily. With respect to
video quality assessment, this is subject to ongoing work.
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