
TCP mechanisms for improving the user experience

for time-dependent thin-stream applications

Andreas Petlund, Kristian Evensen, Carsten Griwodz and Pål Halvorsen
Simula Research Laboratory, Norway

Department of Informatics, University of Oslo, Norway

Email: {apetlund, kristrev, griff, paalh}@simula.no

Abstract—A wide range of Internet-based services that use
reliable transport protocols display what we call thin-stream
properties. This means that the application sends data with
such a low rate that the retransmission mechanisms of the
transport protocol are not fully effective [7]. In time-dependent
scenarios where the user experience depends on the data delivery
latency, packet loss can be devastating for the service quality. In
order to reduce application-layer latency when packets are lost,
we have implemented modifications to the TCP retransmission
mechanisms in the Linux kernel. The changes are only active
when thin-stream properties are detected, thus not affecting TCP
behaviour when the stream is not thin. In this paper, we show the
latency improvements from these thin-stream modifications. We
have tested several thin-stream applications like remote terminals
(SSH) and audio conferencing (Skype), and we evaluate the
user experience with and without the TCP modifications. Our
experimental results show that our modifications allow TCP
to recover earlier from packet loss. Furthermore, user surveys
indicate that the majority of users easily detect improvements in
the perceived quality of the tested applications.

Index Terms—TCP, thin streams, latency reduction, user eval-
uation

I. INTRODUCTION

Reliable transport protocols that are in widespread use

today, like TCP, are primarily designed to support connec-

tions with high throughput efficiently. The aim is to move

lots of data from one place to another as fast as possible

(like HTTP, FTP etc.). However, a wide range of networked

applications do not follow this pattern. Important examples

include interactive applications where small amounts of data

are transmitted sporadically, e.g., multiplayer online games,

audio conferences, and remote terminals. Due to the highly

interactive nature of these applications, they depend on timely

delivery of data. For example, data delivery latency in audio

conferences should stay below 150-200 ms to achieve user

satisfaction [8], and online games require latencies in the

range of 100-1000 ms, depending on the type of game, to

be able to provide a satisfying experience to the players [5].

Furthermore, when dealing with stock exchange systems,

even low delays in delivery may constitute a large potential

economic disadvantage.

To support different requirements for timeliness, distributed

interactive applications have historically been developed for

use either with transport protocols that can provide per-stream

quality of service (QoS) guarantees, or with protocols that

at least allow the sender to determine the timing of the data

transmission. The QoS protocols for the first approach have not

become widely available. The use of UDP (the protocol that

provides for the second approach) has been widely criticized

for its lack of congestion control mechanisms. Consequently,

many distributed interactive applications today are built to

work with TCP, and many applications that use UDP (in spite

of said criticism) fall back to using TCP if, for example, a

firewall is blocking UDP traffic. The disadvantage of using

TCP is that applications that generate what we call “thin

streams”, can experience severe delays when TCP recovers

from loss. A stream is called “thin” if at least one of the

following criteria is fulfilled: a) The packet interarrival time

(IAT) is too high to be able to trigger fast retransmissions. b)

The size of most packets are far below the maximum segment

size (MSS). The occasional high delays for thin streams are

caused by the retransmission mechanisms common for reliable

transport protocols [7].

In this paper, we discuss the performance of a set of time-

dependent thin-stream applications by referring to analysis

of packet traces from sessions using the respective appli-

cations. We have analyzed the traces with respect to inter-

arrival time between packets, packet size and consequently

bandwidth requirement. The transmission characteristics are

then discussed with respect to the shortcomings identified in

standard TCP congestion control mechanisms when dealing

with thin streams. Moreover, we have implemented a set

of modifications to TCP with the goal of reducing the data

delivery latency for thin stream applications when retrans-

missions are necessary. Two representative examples (Skype

using TCP fallback and SSH sessions) are tested with and

without our modifications. First, we analyze the packet (data)

arrival latencies at both the transport- and application layer.

In addition, subjective evaluations are performed by a group

of people in order to provide an indication of whether it

is possible to perceive a difference in performance for the

applications in question. The results from the user surveys are

then compared to the statistical results gleaned from packet

traces of the same applications. In summary, our results show

that the proposed modifications allow TCP to recover from

packet loss more rapidly, and the user surveys indicate that

the majority of users easily detect improvements according to

the earlier data recovery.

payload size (bytes) packet interarrival time (ms) avg. bandwidth
application prot- percentiles requirement
(platform) ocol average min max average median min max 1% 99% (pps) (bps)

Anarchy Online TCP 98 8 1333 632 449 7 17032 83 4195 1.582 2168

BZFlag TCP 30 4 1448 24 0 0 540 0 151 41.667 31370

Casa TCP 175 93 572 7287 307 305 29898 305 29898 0.137 269

Windows remote desktop TCP 111 8 1417 318 159 1 12254 2 3892 3.145 4497

Skype (2 users) UDP 111 11 316 30 24 0 20015 18 44 33.333 37906

Skype (2 users) TCP 236 14 1267 34 40 0 1671 4 80 29.412 69296

SSH text session TCP 48 16 752 323 159 0 76610 32 3616 3.096 2825

TABLE I
EXAMPLES OF THIN STREAM PACKET STATISTICS BASED ON ANALYSIS OF PACKET TRACES.

II. INTERACTIVE THIN STREAMS

A large selection of networked interactive applications dis-

plays traffic patterns that we call thin streams. These applica-

tions generate data in such a way that packets are small and/or

have high packet interarrival time. Popular examples include

multiplayer online games, audio conferences, sensor networks,

remote terminals, control systems, virtual reality systems,

augmented reality systems and stock exchange systems. In

order to understand thin-stream traffic better, we analyzed

packet traces from example applications representing several

scenarios (see some examples in table I). Our results show that

thin-stream applications may have difficulties providing proper

service when they are sent using established reliable transport

protocols (like TCP [7] or SCTP [10]). Below, we take a closer

look at two widely used examples before discussing the TCP

shortcomings in this scenario.

A. Audio Conferencing

Audio conferencing with real-time delivery of voice data

across the network is an example of a class of applications that

uses thin data streams and has a strict timeliness requirement

due to its interactive nature. Nowadays, audio chat is typically

included in virtual environments, and IP telephony is in-

creasingly common. For coding and compression, many VoIP

telephone systems use the G.7xx audio compression formats

recommended by ITU-T where, for example, G.711 and G.729

have a bandwidth requirement of 64 and 8 Kbps, respectively.

The packet size is determined by the packet transmission cycle

(typically in the area of a few tens of ms, resulting in packet

sizes of around 80 to 320 bytes for G.711).

Skype [2] is a well-known conferencing service, with sev-

eral million registered users, that communicates on the (best

effort) Internet. We have analyzed several Skype sessions,

and we see that this application shares the characteristics

of IP telephony. The packets are small and the bandwidth

low. Table I shows two examples of analyzed dumps from

Skype conferencing traffic. Using UDP, the packet payload

size for our trace is very low with a maximum payload of 316

bytes. The IAT between packets averages to 30 ms, which

qualifies it as a thin-stream candidate. The second Skype

example in table I is from a session where UDP has been

firewalled, and TCP is used as a fallback option. We can see

that there is a greater variation in payload size (probably due

to TCP bundling upon retransmission), but still a low average

payload compared to the maximum segment size. The average

interarrival time is approximately the same as for the UDP

dump. The result is that Skype over TCP seems to require

a higher bandwidth than Skype over UDP. The bandwidth

requirement is still low for both transport protocols, though.

To enable satisfactory interaction in audio conferencing

applications, ITU-T defines guidelines for the one-way trans-

mission time. These guidelines indicate that users begin to get

dissatisfied when the delay exceeds 150-200 ms and that the

maximum delay should not exceed 400 ms [8].

B. Remote Terminals

Windows Remote Desktop (using the remote desktop proto-

col (RDP) is an application used by thin client solutions or for

remote control of computers. Analysis of packet traces from an

RDP session indicates that this traffic also qualifies as a thin

stream. If second-long delays occur due to retransmissions,

this will result in visual delay for the user while performing

actions on the remote computer.

Another way of working on a remote computer is the

common protocol of secure shell (SSH). This is used to create

an encrypted connection to a remote computer and control it,

either using text console, or by forwarding graphical content.

The analysed dump presented in table I is from a session

where a text document is edited on the remote computer.

We can observe that this stream also displays the thin-stream

properties. The interarrival times are very similar to the RDP

session, while the packet sizes are somewhat lower.

C. TCP Shortcomings

Griwodz et al [7] describe how, for streams of certain

characteristics, TCP retransmission schemes result in higher

latency when loss occurs. The reason is that the fast retransmit

mechanism in TCP, which enables retransmission of lost

segments before a timeout occurs, depends on feedback from

the receiver (ACKs). The mechanism requires three duplicate

acknowledgments (dupACKs) in order to initiate a fast re-

transmission [12], [4]. The reason for waiting until the third

indication of loss is to avoid spurious retransmissions when

reordering happens on the network. For thin stream scenarios,

where interarrival times between sent packets are relatively

high, the consequence is that many (or all) all retransmissions

will be caused by timeouts. This is because there are seldom

enough packets in flight (packets on the wire) to generate the

necessary feedback to trigger a fast retransmit. In addition,

the retransmission timeout (RTO) is exponentially increased

when multiple losses are detected (exponential backoff), which

results in a still larger latency penalty. This mechanism is

designed to ensure that an acceptable send rate is found,

and to prevent a stream from exceeding it’s fair share of the

bandwidth resources. Thin streams, however, do not use their

fair share, most of the time they stay within the worst-case

throughput of 2 packets per RTT. The large IATs make it

impossible for the thin stream to back off when packets are

lost multiple times, resulting in a situation where the RTO

value is very high, without any actual benefit with regard to

resource distribution on the network. The result for the thin

stream is that the retransmission is delayed by seconds (or

even minutes) if segments is lost several times.

Applications that provide no interactive service may do well

under such conditions. Thin-stream applications, however, are

often interactive and may suffer from the extra delay. With

these characteristics and strict latency requirements in mind,

supporting thin-stream interactive applications is challenging.

The task is made even more difficult by the fact that a

significant characteristic of this type of application is its

lack of resilience to network transmission delays. The data

streams in the described scenarios are poorly supported by

the existing TCP variations in Linux. Their shortcomings are

that 1) they rarely trigger fast retransmissions, thus making

timeouts the main cause of retransmissions, and 2) TCP-style

congestion control does not apply because the stream cannot

back off. Thus, since improvements for TCP have mainly

focused on traditional thick stream applications like web and

FTP download, new mechanisms are needed for the interactive

time-dependent thin-stream scenario.

III. TCP ENHANCEMENTS

The results of our earlier investigations of reliable transport

protocols [7], [10], [6] show that it is important to distinguish

between thick and thin streams with respect to latency. Where

high-rate streams are only concerned with throughput, the per-

ceived quality of most thin streams depends on timely delivery

of data. Working from the assumption that there is potential

for large performance gains by introducing modifications that

tune TCP for thin streams, we have tested the combination of

several such mechanisms on typical thin-stream applications.

In short, if the kernel detects a thin stream, we trade a

small amount of bandwidth for latency reduction by enabling

modifications to TCP. The modifications are designed in such

a way that they are transparent to the receiver (i.e., a server can

run the modified TCP, and unmodified clients may still receive

the benefits). Any client should therefore be able to receive

the stream sent by the modified TCP version, regardless of

operating system and version. The modifications are also

transparent to the application running on top of TCP (they can

be enabled by using a /proc variable, and will thus be active

for all networked applications). The following modifications

have been implemented in the Linux kernel (v.2.6.23.8):

• Removal of exponential backoff: Since most thin

streams send out packets with a high IAT, more or less

all retransmissions are caused by timeouts. A timeout re-

transmission invokes exponential backoff, which doubles

the time to wait for the next retransmission.

If the number of packets in flight (i.e., unacknowledged

packets) is less than the number required to trigger a

fast retransmission, we remove the exponential factor. If

more than four packets are on the wire, the possibility

for triggering a fast retransmit increases, and therefore

exponential backoff is employed as usual. Since the

streams that gain from this modification are very thin, the

increase in bandwidth consumption due to the removal of

exponential backoff in these cases is very small. That is,

the stream does still not have to use its allowed send

window.

• Faster Fast Retransmit: Instead of having to wait

several hundred milliseconds for a timeout retransmission

and then suffer from the exponential backoff, it is much

more desirable to trigger a fast retransmission. This re-

quires the connection to wait for three duplicate acknowl-

edgments (four acknowledgments of the same packets),

which is not ideal for many thin stream scenarios. Due to

the high IAT in our scenario, sending three packets often

takes longer than the timeout.

We have therefore reduced the number of required dupli-

cate acknowledgments to one, provided that the number

of packets in flight is less than four. Otherwise, the chance

of receiving three dupACKs increases, and regular (three

dupACKs) fast retransmit is employed.

• Redundant Data Bundling: As shown in table I, many

thin-stream applications send small packets. As long as

the combined packet size is less than the maximum seg-

ment size (MSS), we copy (bundle) data from unacknowl-

edged packets in the send buffer into the new packet.

If a retransmission occurs, as many of the remaining

unacknowledged packets as possible are bundled with

the retransmission. This increases the probability that

a lost payload will be delivered already with the next

packet. Figure 1 shows an example of how a previously

transmitted data segment is bundled with the next packet.

Notice how the sequence number stays the same while

the packet length is increased. If packet a) is lost, the

ACK from packet b) will ACK both segments, making a

retransmission unnecessary.

As mentioned in the description of the first two modifi-

cations, they are only applied when the stream is thin. This

is accomplished by defining a threshold for the number of

packets in flight. Thus, to avoid that streams already using

their fair share of the available resources (in accordance with

TCP) consume even more using our proposed mechanisms,

the proposed enhancements are only applied when thin stream

properties are detected. Redundant data bundling (RDB), on

the other hand, is limited by the IAT and packet size of the

stream. If the packets are large, which is typical for bulk

(a) First sent packet.

(b) Second packet: Bundled data.

Fig. 1. Method of bundling unacknowledged data.

data transfer, bundles can not be made, and RDB will not

do anything.

IV. RELATED WORK

A huge amount of work has been performed in the area of

TCP performance. The vast majority of this work, however,

addresses bulk transfer, whereas time-dependent thin-stream

applications are, to the best of our knowledge, hardly looked

at. Nevertheless, we present here a couple of ideas that are

related to our latency reduction mechanisms.

The “Limited Transmit” Mechanism [3] is a TCP mecha-

nism that tries to do more efficient recovery when a connec-

tion’s congestion window is small, or when a large number

of segments are lost in a single transmission window. If the

receiver’s advertised window allows the transmission of more

segments and the amount of outstanding data would remain

less than or equal to the congestion window plus two segments,

the sender can transmit new data upon the arrival of the

first two duplicate ACKs. This happens without changing the

congestion window.

In an IETF draft1, Allman et al. suggest that measures

should be taken to recover lost segments when there are too

few unacknowledged packets to trigger Fast Retransmit. They

propose Early Retransmit (ER), which should reduce waiting

times for any of four situations: 1) the congestion window is

still initially small, 2) it is small because of heavy loss, 3) flow

control limits the send window size, 4) or the application has

no data to send. The draft proposes to act as follows whenever

the number of outstanding segments is smaller than 4: if new

data is available, it follows Limited Transmit [3], if there is

not, it reduces the number of duplicate packets necessary to

trigger fast retransmit to as low as 1 depending on the number

of unacknowledged segments. Our fast retransmit-triggering

mechanism has no stepwise escalation, but is fully applied

when there are few packets in flight. This is because we can

1IETF Draft draft-allman-tcp-early-rexmt-07: Mark Allman, Konstantin
Avrachenkov, Urtzi Ayesta, Josh Blanton, Per Hurtig, “Early Retransmit for
TCP and SCTP”, June 2008, expires December 2008.

expect the thin stream to keep its properties throughout its

lifetime and also because so many thin-stream applications

are interactive with strict latency requirements. Allman et al.

try to prevent retransmission timeouts by retransmitting more

aggressively, thus keeping the congestion window open. If

their limiting conditions change, they still have higher sending

rates available. Our main goal is to keep the delivery latency

low. We have no motivation to prevent retransmission timeouts

in order to keep the congestion window open and retransmit

early to reduce application-layer latencies.

The removal of the exponential back-off can of course

result in spurious retransmissions when the RTT changes. The

proposed method of TCP Santa Cruz [9] uses TCP timestamps

and TCP options to determine the copy of a segment that an

acknowledgment belongs to and can therefore provide a better

RTT estimate. Since the RTT estimate can distinguish multiple

packet losses and sudden increases in actual RTT, TCP Santa

Cruz can avoid exponential back-off. The ability of Santa Cruz

to consider every ACK in RTT estimation has minor effects

in our scenario where few packets are generated. The ability

to discover the copy of a packet that an ACK refers to would

still be desirable but would require receiver-side changes that

we avoid.

V. TEST RESULTS

We have used well-known applications that generate thin

streams in order to test our TCP enhancements. The applica-

tions have strict requirements with respect to tolerable latency,

and the perceived user satisfaction therefore depends heavily

on timely delivery of data.

Fig. 2. Network setup for tests.

We used the netem [1] emulator with a variety of settings

to create loss and delay reflecting a large range of values

observed in the Internet. For the presented results, an emulated

loss rate of 2 % and an RTT of 130 ms was used as a

representative example. These values were chosen to reflect an

intercontinental connection between access networks (based on

actual measurements and statistics from literature [11]). The

network setup is shown in figure 2.

A. Skype

VoIP over the Internet is used by a steadily increasing

number of people. We wanted to investigate whether our

modifications could improve the perceived quality of such a

VoIP session, and chose Skype as the test application. Skype

is a popular VoIP program that defaults to UDP for transport,

but falls back to TCP if UDP for some reason is blocked.

The TCP modifications for thin streams should be able to help

reduce latency upon packet loss. Due to the relatively low IAT,

the triggering of fast retransmissions by standard mechanisms

is possible. The RDB mechanism, however, will be ideal for

reducing perceived impact of loss for this data pattern.

When regarding speech in VoIP conferences, differences

between each conversation can make it difficult to evaluate

one session when compared to another. To have directly

comparable data, and to be able to reproduce the results,

we chose to use sound clips which we played across the

Skype session. We experimented with several different sound

clips, both with respect to the numerical results gathered from

packet traces, and to the subjective tests that are described

in section V-B. A total of three different sound clips were

ultimately chosen for this test. Each clip was played two

times, one with TCP modifications and one with regular TCP.

The sound clip was sent across the Skype connection and the

resulting output was recorded at the receiver.

Figure 3 contains the statistical results for one of the sound

clips. The cumulative density function (CDF) graphs show

the relative difference in latency between the two streams,

i.e., how much of the data is received within a certain time.

Figure 3(a) shows when the data is delivered to the receiver

machine (at the transport layer), and we can see that TCP with

modifications delivers lost payload much earlier than standard

TCP.

Unfortunately, the transport delivery latency does not say

very much about any gains when it comes to the application,

and thus perceived quality. TCP is required to provide both

reliability and in-order delivery to the application. If a packet

loss occurs, the following packets must wait in the receive

buffer until the lost segment has been recovered. Thus, there

is often a tail of other packets that have been delivered, but

must wait before they are all handed to the application.

Figure 3(b) shows the application layer latency, and here

we see an even larger gain when using TCP with the modifi-

cations. Close to 7% of the data sent with standard TCP had

to wait for one or more retransmissions, while only around

2% (the loss rate) of the data sent with the modifications was

stuck in the receive buffer. With the average IAT of 34 ms for

this stream (see table I), most of the data segments affected

by loss were delivered with the next packet. In addition, even

though a retransmission occurs, the data is still delivered faster

than with standard TCP.

It is also interesting to observe that the application layer

latency is very close to the transport layer latency, when the

TCP modifications is applied, which means that the implicit

delay caused by having to wait for retransmissions is minimal.

B. Skype user test

When taking part in a phone conversation, one of the

most important aspects is the sound quality. Distortion and

similar artifacts will degrade the user experience, making it

more difficult to understand the speaker. We therefore made

recordings of Skype conversations played over links with loss

and delay, and had a group of people evaluate the perceived

quality. The same sound clip was played twice, one time with

the TCP modifications and one time with regular TCP.

In order to generate the same original sound for both runs,

we played the first minute of the clip. We present results using

one speech podcast and two songs. The podcast was chosen

because speech is what Skype is designed for, thus the codec

should be tuned for it. The songs were chosen because it is

easier to notice artifacts when you have a rhythm to relate

to. A complicating factor is that Skype encoding sometimes

distorts the sound when using TCP, even under perfect network

conditions (no loss or delay). All the recordings would,

however, be exposed to these irregularities, so the resulting

recordings should be directly comparable. Unfortunately, it

was not possible to investigate the cause of the distortion

further since Skype is a proprietary application.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
o

d

N
o

m
o

d

E
q

u
a

l

M
o

d

N
o

m
o

d

E
q

u
a

l

V
a

r1

V
a

r2

E
q

u
a

l

C
h

o
s
e

n
 s

e
le

c
ti
o

n
 (

%
)

Clip 1 Clip 3 Clip 2

Comparative tests mod/nomod
Reference test:

Same clip played twice

Fig. 4. Preferred sound clips from Skype user tests

As a reference test, we played the same version of one

sound clip twice. This was done to ensure that a “memory

effect” does influence the answers overly much (for instance

that, after listening to two clips, the listener would prefer the

first clip because he/she had “forgotten” the faults observed in

that clip.)

All in all we collected 88 votes and the results are shown

in figure 4. The recordings made with the modifications

were clearly preferred by the users. We were told that the

differences in “clip 1” (figure 4), which was the podcast,

were small but still noticeable. With clip 3, which was one of

the songs, the users commented that the version without the

modifications was distinctly suffering in quality compared to

the clip run using modified TCP. The test subjects complained

about delays, noise, gaps, and others artifacts, and said that it

was easy to hear the difference.

In the reference test (“Clip 2“ in figure 4), the majority of

the test subjects answered that they considered the quality as

equal. Of the users that decided on one of the versions of

this clip, most of them chose the one that was played first.

This may be due to the “memory effect” (discussed above);

the listener may have “forgotten” the errors of the first clip.

For “Clip 1”, the modified version was the second clip to

be played. The “memory effect” may here have diminished

the results for the modified version of TCP. Even so, a great

majority of the test subjects preferred the modified version. For

“Clip 3”(figure 4), the order was the opposite (modified TCP

first). We can assume that some of the people who chose the

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300 350 400

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

Skype CDF, 2% loss, 130ms RTT (delivery latency)

TCP New Reno with modifications
TCP New Reno

(a) Transport layer latency.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300 350 400

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

Skype CDF, 2% loss, 130ms RTT (application latency)

TCP New Reno with modifications
TCP New Reno

(b) Application layer latency.

Fig. 3. Skype latency

modified TCP version were fooled by the “memory effect”.

However, the majority of subjects who chose the modified

TCP version is so great (95,4%) that we can safely trust the

numbers.

C. SSH

The second application that was chosen for user evaluation

was secure shell. As described in section II-C, a text-based

SSH session represents a typical thin stream. This protocol

is widely used as a remote tunnel to administrate servers

and remotely edit configuration files. While working in an

SSH session, loss can lead to delays that make the editing

of text more difficult (e.g. lag between pressing keys and the

subsequent screen update). We therefore wanted to analyse

the latency for this application and determine whether there

is a noticeable difference between using regular TCP and the

modified version.

Figure 5 shows the CDFs that resulted from analysing SSH

packet traces. A captured SSH session was replayed over

the test network (figure 2) for 6 hours. The resulting dumps

were analysed with respect to transport and application layer

latency. The SSH session statistics (see table I) show that the

average IAT is high and the packets are small. This means

that all of the modifications are active. For the Skype test,

the IAT was relatively low, so RDB was the mechanism that

contributed most. With the high IAT for the SSH test, the

retransmission mechanisms were in more demand. We can see

from figure 5 that the share of data that experience undue delay

was also smaller for this stream, when using the modifications.

Figure 5(a) shows that 98% of the data was delivered with

no extra delay (reflecting the loss rate of 2%). When loss

was experienced, the delivery latency for regular TCP severely

increases compared to the modified version. When comparing

the transport layer latency (figure 5(a)) to the application layer

latency (figure 5(b)), we can see that waiting for lost segments

is a major delaying factor for as much as 6% of the packets for

regular TCP. The high maximum values that we observed was

due to the high average IAT for this stream. This resulted in

more retransmissions by timeout, and the potential triggering

of exponential backoff. For the unmodified TCP test, most of

the lost segments were recovered after approximately 330 ms,

indicating that retransmission by timeout was the prime mech-

anism of recovery. For the modified version, a more spread-

out pattern reflects the triggering of the modifcations. As for

the Skype test, we observe that the delivery latency for the

application-layer are almost identical to the latency for the

transport layer when applying the modifications.

D. SSH user test

Fig. 6. SSH user test: Preferred
connection.

The experience of using a

remote text terminal can be

severely diminished by net-

work loss. The screen may not

be updated with the character

that was typed, and it may be

difficult to edit the document

in a controlled manner. After

analysing the SSH latency, we

wanted to test if the improve-

ments in application layer la-

tency could be noticed by the

user.

The test network was configured in the same way as for

the Skype test. The users opened a command window on the

sender computer and initiated a text-based SSH connection

to the receiver. Each user then opened a text editor (like

“vi” or “emacs”) and typed a few sentences. The users were

encouraged to try to keep their eyes on the screen while typing

in order to observe any irregularities that might occur while

typing. In order to make the test applicable to the users that

prefer watching the keyboard while writing, a second test was

devised. This test consisted of repeatedly hitting the same key,

while watching the screen. After the typing, the user was to

close the editor and log out of the SSH-session. We then

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

SSH session replayed: 6 hours - CDF, 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(a) Transport layer latency.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

SSH session replayed: 6 hours - CDF, 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(b) Application layer latency.

Fig. 5. SSH latency

made a change in the network configuration, and the user

repeated the procedure. Afterwards, the test subjects had to

decide which of the two sessions they considered to have

the best performance. In order to avoid the “memory effect”,

half of the test subjects took the modified TCP test first, the

other half took the regular TCP test first. A total of 26 people

participated in this test. All of the participants were familiar

with text editing over SSH, and used a text editor that they

were comfortable with.

Figure 6 shows how many chose each type of session. The

black area represents the percentage of the test subjects who

preferred the regular TCP session (19%), while the hachured

area represents the ones who preferred the session that used

the modified TCP (81%). A frequently occurring comment

from the users was that they preferred the connection using the

modified TCP because the disturbances that occurred seemed

less bursty. That is, if they had written a group of letters, they

showed up without a large delay. Another recurring comment

was that deleting became more difficult in the sessions using

regular TCP because it was easy to delete too many letters at

a time.

The large share of users that preferred the session using the

modified TCP strongly suggests that the improvement shown

in figure 5 can also be experienced at the user level.

The number of participants for the user tests may, statis-

tically, be too small to draw absolute conclusions based on

them. Seen in correlation with the measured data, however,

we feel that this is a strong indication of the impact of the

TCP modifications on the user experience for the tested thin-

stream applications.

VI. DISCUSSION

The thin-stream modifications to TCP are based on the con-

cept that the applications in question will never use their fair

share of the bandwidth. The price that must be paid for the re-

duced latency is a greater measure of redundant transmissions.

For the exponential backoff- and dupACK modifications, this

comes in the form of more aggressive retransmissions. For

RDB there is a constant factor of redundancy. The increase

in bandwidth, however, is still very small due to the fact that

the applications only transmit sporadically (or at a steady low

rate).

Tests have shown that the redundancy introduced by our

mechanisms is acceptable, at least for removing the exponen-

tial backoff and reducing the number of required duplicate

acknowledgments. For RDB the redundancy is dependant on

the number of bundles that can be made, in other words a

connection with a low IAT and high RTT will experience much

redundancy. Still, when the loss rate, IAT and RTT display

realistic levels, the redundancy introduced with RDB is also

acceptable.

Even though we alter the congestion control, tests run so

far indicate that fairness is preserved. The amount of spurious

transmissions does increase, but the thin (low bandwidth)

nature of the stream makes the impact small. The reason for

the increased packet rate when RDB is used is that it does not

necessarily slow down when loss occurs (since the lost data

might arrive in the next packet and be acknowledged before a

retransmission is triggered).

If the packets are small enough for bundles to be made, the

IAT determines the effect of RDB. If two or more packets can

be sent and acknowledged before a timeout, i.e. the IAT is

less than the RTO minus the RTT, RDB will reduce both the

number of retransmissions and latency. Should the first packet

be lost, the data will arrive with the second packet and be

acknowledged before a timeout can occur.

If the IAT is larger than the RTO minus the RTT, RDB will

still reduce the latency, but will not be able to preempt the

retransmission by timeout, thus increasing the total number of

transmissions. The retransmitted packets will contain as much

unacknowledged data as possible, thus the data will still be

delivered faster than with standard TCP.

This paper only discusses changes to TCP. The thin-

stream problems will, however, be relevant to most end-to-

end transport protocols that require reliability. The most used

approach (for instance when implementing reliability on top

of UDP) has been to model retransmission mechanisms after

TCP. Viewed in the light of the latency problems of TCP

retransmission mechanisms for thin streams, the proposed

changes should be considered also for other protocols and

applications that implement end-to-end reliability.

VII. FUTURE WORK

In order to determine the effect of thin-stream modifications

on fairness, we have experimented with subjecting regular TCP

streams to the competition of modified TCP streams through

a bottleneck. The preliminary results show no indication that

the modifications inhibit the competing stream whatsoever.

It will be more challenging to tell how the streams would

perform if a large number of thin-streams using modified

TCP should compete for the same bottleneck. In order to

know more about these complex fairness scenarios, we are

working on simulations of larger networks using thin-stream

TCP modifications.

One way to reduce the redundancy of RDB would be to set

a limit for the size of bundled packets. This would help avoid

the bundling of too many segments on, for instance, a high

RTT connection.

The user tests that we present here provide an indication

of the experienced gain from using the proposed TCP mech-

anisms. More extensive tests based on ITU-T standards for

subjective user tests can be used to provide further evidence of

the effect of the modifications on the experienced performance.

VIII. CONCLUSION

We have described how applications that generate small

packets with high IAT suffer because of the way in which TCP

congestion control handles retransmissions. We have evaluated

a set of proposed mechanisms with respect to delivery latency,

and also gathered user experiences using the same applications

with and without the proposed modifications.

The proposed modifications are compliant with TCP stan-

dards, and transparent to the receiver. In addition, they are

transparent to the application, which makes it possible to use

the modifications for existing applications without any changes

(as is done in the tests presented).

Our analysis of packet traces shows that the modifications

will greatly improve the application layer latency for thin

streams when loss occurs. Furthermore, the user surveys

indicate that improvements to the users’ experience of the

tested applications are evident.

REFERENCES

[1] netem. http://www.linuxfoundation.org/en/Net:Netem, July 2008.
[2] Skype, March 2008. http://www.skype.com.
[3] ALLMAN, M., BALAKRISHNAN, H., AND FLOYD, S. Enhancing TCP’s

Loss Recovery Using Limited Transmit. RFC 3042 (Proposed Standard),
Jan. 2001.

[4] ALLMAN, M., PAXSON, V., AND STEVENS, W. TCP Congestion
Control . RFC 2581 (Proposed Standard), Apr. 1999. Updated by RFC
3390.

[5] CLAYPOOL, M., AND CLAYPOOL, K. Latency and player actions in
online games. Communications of the ACM 49, 11 (Nov. 2005), 40–45.

[6] EVENSEN, K., PETLUND, A., GRIWODZ, C., AND HALVORSEN, P. Re-
dundant bundling in tcp to reduce perceived latency for time-dependent
thin streams. Communications Letters, IEEE 12, 4 (April 2008), 324–
326.

[7] GRIWODZ, C., AND HALVORSEN, P. The fun of using TCP for an
MMORPG. In International Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV) (May 2006),
ACM Press, pp. 1–7.

[8] INTERNATIONAL TELECOMMUNICATION UNION (ITU-T). One-way
Transmission Time, ITU-T Recommendation G.114, 2003.

[9] PARSA, C., AND GARCIA-LUNA-ACEVES, J. J. Improving TCP con-
gestion control over internets with heterogeneous transmission media.
In International Conference on Network Protocols (ICNP) (Nov. 1999),
pp. 213–221.

[10] PEDERSEN, J., GRIWODZ, C., AND HALVORSEN, P. Considerations of
SCTP retransmission delays for thin streams. In IEEE Conference on

Local Computer Networks (LCN) (Nov. 2006), pp. 1–12.
[11] SAT, B., AND WAH, B. W. Playout scheduling and loss-concealments in

voip for optimizing conversational voice communication quality. In ACM
International Multimedia Conference (ACM MM) (Oct. 2007), pp. 137–
146.

[12] STEVENS, W. TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. RFC 2001 (Proposed Standard), Jan.
1997. Obsoleted by RFC 2581.

