Workload Characterization for News-on-Demand Streaming Services

Frank T. Johnsen and Trude Hafsge
Department of Informatics
University of Oslo, Norway
{frankjo, truhafso} @ifi.uio.no

Abstract

This paper focuses on design issues for multime-
dia distribution architectures and the impact workload
characteristics have on architecture design. Our con-
tribution is an analysis of server load and user behav-
ior in a News-on-Demand environment, with focus on
access patterns, popularity modeling, and the forma-
tion of traffic peaks. Finally, we evaluate an existing
synthetic workload generator, MediSyn, and suggest
some enhancements which will improve its suitability
for News-on-Demand workload modeling.

1. Introduction

Designing an architecture for the dissemination of
large amounts of multimedia data requires knowledge
of the content itself and the way users interact with the
content. Such knowledge enables the system architect
to consider media and use, and thus employ the proper
techniques when designing the system. This encom-
passes choices of hardware and provisioning resources
such as storage, network, file system, page caching al-
gorithm and processing power. Further enhancements
such as the use of caching proxies can be employed
to reduce the load on the origin server and also limit
bandwidth consumption. An optimized architecture
can provide prompt responses to a large number of
users while ensuring the cost-effectiveness of the sys-
tem. Overprovisioning resources will ensure good ser-
vice to users, but initial deployment costs are high.

Workload characterization is an important tool in
designing architectures for large scale multimedia
distribution, such as content distribution networks
(CDNgs). Statistical knowledge of user access patterns

Carsten Griwodz and Pal Halvorsen
Networks and Distributed Systems
Simula Research Laboratory, Norway
{ griff, paalh} @simula.no

enables the architect to dimension the system accord-
ingly. This is important for a single server system, but
even more so in hosting centers where several indepen-
dent services share the resources. In shared systems,
knowledge of the diurnal access patterns of the hosted
services can be used to ensure efficient resource usage,
while simultaneously avoiding system overload due to
aggregated traffic.

News-on-Demand (NoD) is one service that relies
on such distribution systems and that is becoming in-
creasingly popular. In Norway today, we see that on-
line newspapers are gaining more and more users and
that paper editions are losing ground [1].

We have obtained two years worth of logs of
streaming media accesses from Verdens Gang (VG),
Norway’s largest online newspaper [1]. We performed
an initial analysis of these logs in [2], and have now
performed additional investigations of access patterns,
stream interactions, lifetime and popularity of streams
and traffic peak formation. This paper focuses on the
aspects of NoD workload characteristics which may
affect CDN architecture design:

e Server and network resource usage

To properly dimention the system, one needs to
estimate the number of concurrent users that are
to be expected, and their interaction with the con-
tent. We present our findings relating to band-
width, server memory working set, and more;
these aspects are affected by access patterns, pop-
ularity and interactivity.

e Diurnal access patterns
The diurnal access pattern defines the variation in
access intensity for a specific period of time. This
pattern is important for modeling the variations in



resource usage within a given time period, for ex-
ample a day. In a single server system, one has
to provision for the highest expected load, while
shared systems can use this knowledge to perform
statistical multiplexing of the resources. The di-
urnal access pattern varies from culture to culture
as a result of social differences. We compare our
findings to a similar study from Spain.

Popularity

Knowledge of popularity is important for mod-
eling server and network load. Traditionally, a
Zipf distribution has been used to model file pop-
ularity for Video-on-Demand (VoD) workloads,
but we show that it does not accurately model a
news service with an open-ended archive and note
some flaws in its use. We discuss the method used
for popularity generation in the synthetic work-
load generator MediSyn [3] and relate it to our
data set.

Interactivity

While file popularity concerns the total number
of accesses to each file, the interactivity relates
to the aggregated client interactions within a file.
Thus, an analysis of client interactivity can give
us an overview of how the users use the mate-
rial and which parts of the files are most popu-
lar. Such knowledge is particularly useful when
considering whether to include caching solutions
as part of the system architecture. For example,
if a high percentage of incomplete accesses are
concentrated on the beginning of most files, then
employing prefix caching [4] may be a good idea.

Traffic peaks

Some days have an access intensity far surpassing
the average. These peaks put high loads on the
server and demand a lot of bandwidth from the
network. We have investigated how such peaks
form and show that a hyperbolic tangent function
can be used to describe them. If a system can
detect the formation of a peak it may have time
to react and allocate the resources needed to ac-
comodate it. Our investigations show that peaks
form over a number of minutes, thus leaving the
system with ample time to react.

The remainder of the paper is organized as follows:

A brief overview of related work is given in Section 2.
Next we present the workload characteristics that have
been derived from the logs in Section 3. In Section 4
we discuss an existing synthetic workload generator in
the context of our results. Finally, Section 5 concludes
the paper.

2. Related work

In a previous study [2], we performed an initial
analysis of some aspects of NoD workloads. That
poster paper discusses access intensity, popularity
modeling using the Zipf distribution, user interaction
with streams and the existence of short term effects. In
this paper, we present further findings from our con-
tinued studies of the same log material.

Kim et al. [5] analyzed logs from an online news-
paper in Korea. They argue that NoD is different from
VoD in terms of media type and size, life cycle of arti-
cles and frequency of users’ interaction. They develop
a popularity model called the Multi-Selection Zipf dis-
tribution and show how one can perform prefetching
and placement between disk and cache based on this
model.

Pafieda et al. [6] have investigated user behavior
of a VoD service with a wide variety of subjects and
lengths, followed by a study of server workload in
a large online newspaper [7]. Their server workload
analysis was performed using Spanish logs, and we
compare our findings from the Norwegian newspaper
with their results.

MediSyn [3] is a generator for synthetic multimedia
workloads developed by Hewlett-Packard (HP). It pro-
vides a valuable tool for evaluating systems based on
its synthetic traces. The generator is developed based
on a workload study performed on logs of company
internal traffic from HP’s enterprise servers.

Yu et al. [8] present a measurement study of a large
VoD system in China. They found that changes in
video popularity is strongly influenced by the intro-
duction of new content as well as external factors.
They point out that the study which forms the basis
for MediSyn may have limited applicability due to the
limited choice of topics in the system, but do not at-
tempt to prove or disprove this in any way. In our
study, we compare our results with the modeling tech-
niques in MediSyn, evaluating its suitablity for model-



600

500 |

Number of accesses

100 ¥,

0

400

300

200

R wx

All days
Weekdays

. % Weekends *

—

,,,,,,,,,,

0

5

10

15

20

Time of Day

Figure 2. Hour-to-hour access intensity

ing NoD workloads.

Rocha et al. [9] investigate alternative mechanisms
for scalable streaming to interactive users. They iden-
tify a set of workload aspects that impact the scala-
bility of classes of streaming protocols. They propose
and evaluate several optimizations to streaming proto-
cols and show that it is possible to reduce the average
server bandwidth required for interactive workloads.
One significant contribution of that study is their clas-
sification of interactivity into three categories; low,
medium and high interactivity based on client inter-
action patterns. In our study, we compare our findings
with their criteria.

3. Workload characteristics

The logs contain 4.6 million client accesses to about
3,500 different files, of which just under 1,000 are au-
dio files. When we use the term access in our analysis
discussions, one access corresponds to one successful
request line in the log. We have removed all failed re-
quests from the logs.

The files in the data set vary in size from a few KB
and up to several MB. Video files make up the major-
ity of the total size of the files, with roughly 17 GB
compared to the 284 MB of audio. Audio files are
more uniform in size than video, most likely because
the majority of audio files are hitlist music files, which
tend to be more or less the same length.

3.1. Access Intensity
Load can be measured by investigating bandwidth

usage, memory usage and/or the number of accesses.
We analyze all these three aspects.

The streaming media, being both audio and video
files, have quite different ratios when it comes to hits
and bandwidth. Even though audio has quite a few
hits, video streaming constitutes the bulk of the band-
width consumption. Our analysis shows an average
streaming bandwidth of 14.43 GB/hour or 4.1 MB/s.
During the busiest time of day the bandwidth con-
sumed by streaming traffic often exceeds 25 GB/hour.
Figure 1(a) shows the average hourly bandwidth usage
with standard deviation of the VG streaming server for
the entire two year period. Monthly averages show that
the highest hourly bandwidth usage recorded there is
94.92 GB/hour.

Another way of defining server load is by investi-
gating memory usage. The amount of memory used
on the server is determined by the set of files currently
being accessed by clients. For a streaming server the
memory required to hold this set of files can be called
the working set [7]. The maximum working set for
the duration of the logs was 1,090 MB. Using an in-
terval of one hour, the interval average working set
was 44 MB. This indicates that it may be beneficial to
utilize a memory caching technique such as general-
ized interval caching [10]. By using such a technique
to optimize memory usage the number of hard drive
accesses will be kept at a minimum. The maximum
hourly working sets for the entire log span is shown in
Figure 1(b).

Variations in the number of concurrent users will af-
fect the load on the server. The working set depends
on the number of unique files being accessed. The ac-
cess count, on the other hand, indicates the number of
concurrent streams from the server. Figure 1(c) shows
the variations in accesses from hour to hour. A large
number of users accessing the same file will result in a
small working set, but a high access count and a cor-
respondingly high bandwidth consumption. Thus, the
working set and the access count are both important
and orthogonal aspects of system load. Respectively,
they determine the amount of memory needed and the
total bandwidth required.

The access count, like the bandwidth usage, fol-
lows a regular daily pattern. News requires interac-
tivity from the users. This means that diurnal access
patterns, and thereby server load, depend largely on
the daily habits of users, and will vary from one cul-
ture to another. [6] reports that the user access pattern



50 T T T T 1200

1000

800 -

600 -

400 -

Bandwidth in GB
5

200 -

Total working set size in MB

el 0

0 5 10 15 20 0 4000

Hour
(a) Averaged hourly bandwidth usage

12000

10000

8000 -

6000 -

4000 -

2000

Number of concurrent users

0

8000 12000 16000 0 4000 8000 12000 16000
. Time index in hours
(b) Maximum hourly working set

Time index in hours
(c) Number of requests per hour

Figure 1. Server load over time

experienced by a Spanish news service clearly shows
how users have a long midday lunch break, and that
users are most active during the evening. Norwegian
social habits are different from those experienced in
Spain; most Norwegians work from 8 am to 4 pm, and
these working hours are strictly adhered to by the ma-
jority of employees. This pattern is clearly visible in
Figure 2, which shows the average number and stan-
dard deviation of accesses for all days, weekdays and
weekends, respectively. During workdays the main
bulk of accesses occurs during working hours, with
the highest point being reached around noon. During
weekends the total number of accesses is significantly
lower, and the standard deviation is higher. In addi-
tion, users start using the news service later in the day
during weekends. For a detailed discussion of the rea-
sons for variations during the weekend, see our previ-
ous study in [2].

3.2. Modeling popularity with the Zipf dis-
tribution

The Zipf distribution is used to describe the pop-
ularity distribution of multimedia contents in vari-
ous applications, among others VoD scenarios. It is
not clear whether this assumption of Zipf-distributed
popularities holds for news items in a NoD scenario.
Cherkasova and Gupta [11] note for an enterprise me-
dia server workload that workloads do not necessar-
ily follow the Zipf distribution on a longer time scale,
while they do on short time scales. Like the authors of
many other papers, they observe a common problem
with the Zipf distribution. It is a hyperbolic function
and not additive. When you cut off part of a Zipf func-
tion, for example by handling highly popular items
through caching and observe only the remaining tail,

that tail can not follow a Zipf distribution. In fact, if
the original data followed a Zipf distribution, then the
tail can not be fitted correctly to a Zipf distribution for
another skew factor.

Furthermore, if a popularity distribution can be
matched by a Zipf distribution for one skew factor,
then this approximation may hold for as long as the
popularity of all observed items remains unchanged.
If the popularity of items develops over time, then the
relative popularity of an item differs between its short
term relative popularity and its long term relative pop-
ularity; if a day’s top news item is replaced by an-
other one every day, then the long term relative pop-
ularity of these news items can not be Zipf-distributed.
This is not considered in [6], where the authors rather
try to find a limit value for the skew factor when the
time (and the number of archived news items) goes
toward infinity. Kim et al. [5] propose a “new popu-
larity model called the Multi-Selection Zipf distribu-
tion”. The semantic problem of identifying model and
distribution nonwithstanding, they use the one-month
average popularity of news and try to match this with
a Zipf distribution although the relative popularity of
news items is known to change rapidly. Predictably,
the outcome is that popularity differences at the top
are less pronounced than a Zipf distribution would ex-
press. The authors observe correctly that popularity
spreads over several articles (in the course of a month),
but the conclusion drawn is not that the granularity of
the observation is too coarse, but that articles should
be grouped together. Critically, this was done without
considering the temporal correlation of those articles.

Such problems can be avoided by considering only
phases that are so short that the popularities are sta-
ble, as in [12]. To exploit the data set from a dura-



1e+06

" Actual popﬁlamy
Zipf, alpha=1.3 -~

100000 P
10000 +

1000 +

Accesses

100

1000

100
File index

(a) All files; entire log span

1 10

10000

Actual popularity
Zipf, alpha=1.2 -~

o

0.001 ¢

Normalized access frequency
°
2

1e-04 . .
1 10 100
File index

I
(b) All files; day-to-day average

Figure 3. Popularity distribution using Zipf

140 T T T T 1

120

100

80

60

Number of files
Ranking
>

40

= 100

250

Number of files

i L’L,
0 m
10

0 20 30 40 50 [ 20

after first access

Da
(a) Day the file reaches top ranking
over time

40

. . Number of days .
(b) Decline in popularity from top ranking

20 40 60 80 100 120 140 160 180 200
Number of days accessed

(c) Active days of popular files

60 80 100

Figure 4. Long-term popularity development

tion spanning several stable phases, the items for each
phase can be sorted by popularity and the values av-
eraged for every index among all of the stable phases.
If every single stable phase can be approximated by
a Zipf distribution, then it is also possible to approxi-
mate the averaged short term period to this distribution
function.

However, Almeida et al. [12] do not observe a Zipf
distribution in spite of considering only stable phases.
They observe a different popularity distribution that
they describe as a concatenation of two Zipf-like distri-
butions. Obviously, the popularity distribution of their
content is extremely heavy-tailed. The data presented
by Yu et al. [8] shows the same properties, and so does
our data: The entire log period as a phase is shown in
Figure 3(a). The picture is totally different when we
consider the duration of the stable phase. Figure 3(b)
shows the results for an average where the phase is a
day. The Zipf distribution, here plotted with a skew
factor of 1.2, does not quite fit; there is a heavy tail,
but it describes the top movies quite well. Yu et al. at-
tribute the heavy tail to old videos that remain in the
VoD system that they investigated. Zipf describes also
our news popularity very well for nearly all content in

the system. Our investigation also shows how impor-
tant it is to know the duration of the stable phase of the
content of an on-demand system before employing the
Zipf distribution to describe its popularity distribution.

3.3. Long-term popularity development

The most popular files make up a large percent-
age of the load experienced by the streaming server.
The manner in which users interact with these files
can therefore have a large impact on the service, and
a better understanding of how these popular files are
used is needed. In the following analysis, popular files
are defined as the collection of files which topped the
daily hit statistics at least once. There are three aspects
of popular files that are of particular interest, namely
how fast a newly published file achieves the top rank-
ing, how long popular files remain popular and for how
long they are accessed at all. Figure 4(a) shows that the
majority of popular files reach top ranking on the same
day as they are published. This is a consequence of the
nature of news, where the breaking news is presented
first on news websites and is of high interest to most
readers. The few files that reach top ranking late in
their lifespan are mostly audio files containing music.



0.8

0.6

04t

Normalized accesses

Cumulative normalized accesses

Eﬁ

Normalized accesses

0.01 \—/_\

0 10 20 30 40 50 60 70 80 90 100 0 10 20
Part of file in percent
(a) Interactivity averages

30 40
10 percent buckets
(b) Cumulative prefix accesses

10 20 30 40 50 60 70 80 90 100
Part of file in percent
(c) Interactivity: Example file

K 0
50 60 70 80 90 100 0

Figure 5. File access patterns

Once a file has reached the highest ranking it is likely
to drop in popularity shortly after. This is illustrated
by Figure 4(b), which shows the decline in popularity
over time for these popular files. Most files drop to be-
low tenth place in just a few days. This indicates that
more recent news has captured the attention of readers,
and older news is less interesting to view. Figure 4(c)
supports this. It shows the number of active days of the
most popular files, where an active day is a day where
the file is accessed at least once. For most files, the
set of active days is one continuous period, but some
files have a few days when they are not accessed at all.
Such days are not considered a part of the files’ active
days, and are thereby not counted. We see that 50% of
the popular files are active 20 days or less, whereas a
few files have a relatively long period of active days;
the longest being 200 days. Only one file was accessed
for that long.

3.4. Stream Interaction

Users of the news service can interact with the news
streams using VCR-like commands such as pause,
stop, fast forward and rewind. In addition, they can
also make jumps into a video stream and then start
playback, not at the start of the file, but rather further
into the stream. Not all of these interactions are vis-
ible to the server, the user might for instance pause
playback without this interrupting the stream from the
server. In this case, the arriving data will be buffered
by the client software. Other interactions require some
action to be taken by the server, and this is then visible
in the streaming logs. The logs also show the offset at
which a user starts playback, and the duration of play-
back, which, together with the file length, can be used
to calculate how large a percentage of the file the user

views. All interactions visible to the server can poten-
tially affect the performance of the server and must be
taken into account when evaluating server load.

Rocha et al. [9] define three interactivity categories
for streaming media; High, Medium and Low inter-
activity workloads. Their characterization is based on
average request duration and average request start po-
sition. Our data set has an average request duration
of 53% of the total media length, and the majority of
accesses are for the start of the file. Audio files have
an average request duration of 73%, whereas the video
files have an average of 45%. This places NoD media
in the low interactivity class.

The vast majority of accesses in the logs, 99.3%, are
for playback, and the rest is divided between rewind
and fast forward. This means that the total server load
is determined by playback, and that VCR-like opera-
tions have very little impact on it. A more significant
factor is partial accesses, which are accesses where the
user views only part of the file. Out of the 4.6 million
total accesses over 3 million are partial. Jumping into
the file, either at the beginning or some later part of
the file, is registered as “playback” in the log, with the
file offset indicating the start point. Of the partial ac-
cesses, around 700,000 accesses (approximately 15%)
have an offset greater than zero, meaning that the user
jumped and started playback somewhere else than at
the beginning of the file. Just over half of all accesses
which start at the beginning of the media are aborted
before playing to completion.

Figure 5(a) shows the normalized access distribu-
tion averaged for all files, including the standard de-
viation. Accesses for all files are concentrated at the
start of the file, and client interest is uniformly declin-
ing throughout the duration of the file. This illustrates



200 T T T T T 200

Avera‘ge -
Min
Max

150 150

100

100

50

Accesses per minute
Accesses per minute

o
3
[
[RAS——
—
—
—
[US——
R ——
R — —
—_—
—
—
e
JE——A—
—
[E——
IR
—
—
—
—
—
[US— S
—
A —
—

Average
f(x) = a*tanh(0.3*(x-4.5))+b, a=28,0=28 -~
Example
f(x) = a*tanh(0.3*(x-4.5))+b, a=60,b=58
150

100

Accesses per minute

0 10 20 30 40 50 60 0 5 10
Minutes since first access

(a) Example file

. Minutes
(b) The birth of access peaks

20 25 30 35 40

. Minutes A
(c) Approximation function

Figure 6. Traffic peak formation

the fact that most users will start playback at the be-
ginning of the file, and view it either to completion or
until they lose interest and stop. Such an access distri-
bution suggests employing prefix caching [4].

Focusing only on the accesses that start playback at
the beginning of the file, we found that for video files
34.8% of the users stop playback during the first third
of the stream, while most other users do not stop until
somewhere in the last third. Very few users, less than
3%, stop viewing video files in the middle of the file.
For audio files this is somewhat skewed, as only 6.2%
stop playback in the first two thirds combined, while
the rest listen to the file until the last third. For a com-
plete overview of this distribution, where the accesses
have been divided into 10% buckets, see Figure 5(b).

So far we have seen that on average NoD exhibits
low interactivity, and accesses are weighted towards
the beginning of the files. There are, however, excep-
tions to this when looking at single files. Figure 5(c) il-
lustrates the access distribution of the single most pop-
ular file in the system. This file exhibits medium inter-
activity, and the middle part is actually more popular
than the beginning. In this case it is easy to explain
this anomaly; the file is a video of a car accident, and
the most popular part shows the cars crashing. Users
who have seen the file return to watch this part again,
sometimes more than once. This indicates that consid-
ering employing a segmented caching scheme such as
adaptive and lazy segmentation [13] may be beneficial
in a NoD CDN rather than simpler schemes such as
prefix caching [4].

3.5. Traffic peak formation

Some days have an access intensity far surpassing
the average. Unexpected increases in load can over-

load the server and network and leave the streaming
service unusable. This effect is difficult to avoid, but
if the start of the peak formation can be detected au-
tomatically by a server before it becomes overloaded,
then the CDN might be able to perform resource real-
location or employ techniques such as multicast for the
most popular streams in order to alleviate the problem.
Peak formation detection is only possible if the peak
forms over time. If the peak forms instantly the sys-
tem will go from normal load to overloaded without
being able to handle the problem.

Figure 6(a) shows a peak formation for the single
most popular file. After the low, stable access count
for the first 40 minutes the file grew a peak up to above
100 accesses per minute during a timespan of less than
10 minutes. This may be due to a slashdot effect that
appears when the story belonging to this clip appears
on the web page. We can not verify this since we do
not have the corresponding web logs.

We have investigated how the access count of files
causing peaks increases over time. In order to detect
peak formation, one requires statistical knowledge of
peaks. We employed a simple test; summing up the
count of accesses to each file from minute to minute,
and checking when the slope was greater than 1 for
two consecutive minutes. This caught all the peaks,
but also gave a lot of false positives. Thus, we need
a more complex way to detect peaks based on statisti-
cal knowledge of peaks. To ignore the false positives,
we limit our investigations to files with over 10,000
accesses on a given day, and we define the start of a
peak to be the first time the number of accesses per
minute is greater than 10. Some files have a low but
stable access pattern, so we do not consider files with
a maximum number of accesses per minute less than
20 overall. The time from the first access to a file un-



1e+06

Actual popdlarity
Gen. Zipf;, skew=1.95, K=75 -

100000 F

10000 -

1000 |

100 +

Number of Accesses

10 ¢

1

1 10 100 1000 10000
File Index

Figure 7. Generalized Zipf-like distribution
according to MediSyn step 1

til peak formation begins differs widely between files.
From the first access to a file, the shortest time un-
til a peak started forming was 2 minutes, whereas the
longest was 31 hours. The average time from the first
access to a file till the peak started was 2.6 hours, with
a standard deviation of 4.8 hours. We calculated the
average accesses per minute during each peak, and
also the standard deviation. Figure 6(b) illustrates this,
along with the minimum and maximum number of ac-
cesses per minute. We see that a peak builds fairly
rapidly with a massive increase in accesses during the
first 5-10 minutes, after which it remains fairly stable
for an extended period of time. See Figure 1(c) for an
overview of the access peaks experienced by the server
during the time captured by our log material. Having
performed this study, we found that we can employ
a hyperbolic tangent function to describe the average
calculated peak, see Figure 6(c). The figure also shows
how one can approximate one specific example peak,
namely the peak from Figure 6(a) with the same func-
tion but using a different set of parameters. The hy-
perbolic tangent function can be used to model peak
growth, and should perhaps also be considered for use
in a peak detection scheme. To reduce peak load on the
origin server one could consider using caching prox-
ies or predistributing content to replicated servers in a
CDN.

4. Workload generation using MediSyn

Trace driven evaluation is a well known tool for in-
vestigating the usability of various content distribution
techniques, for example evaluating the performance of
caching algorithms. Such evaluations are useful for

optimizing an existing service. When building a com-
pletely new service, or when expanding an existing
service, the traces needed do not exist. In these cases
one needs to use a synthetic workload that is represen-
tative for the service type and expected network and
server load.

MediSyn [3] is the most sophisticated such tool cur-
rently available that is known to us. We evaluate the
usefulness of MediSyn for NoD workload generation
by comparing our log analysis results with the assump-
tions that MediSyn is based on. It generates accesses
in a complex eight-step process:

1. Popularity
The object popularity is generated by a general-
ized Zipf-like distribution that is capable of cap-
turing the circular curve popularity distribution
observed in systems with open-ended archives.
We compare the synthetic generalized Zipf-like
distribution employed by MediSyn to the VG log
material in Figure 7, and see that it fits fairly well.

2. Duration
This step generates the duration of all objects. A
random algorithm is used to match duration with
frequency. This is based on the observation that
there is no correlation between file duration and
access frequency, a fact that we tested and found
true also for the files in our logs.

3. Prefix

Determining the prefix distribution for each file:
The ratio of complete versus incomplete accesses
is calculated, followed by the ratio of partial ac-
cesses. Medisyn does not model interactivity, and
assumes all accesses start at the beginning of the
file. In our study, 33% of the accesses are com-
plete and the remaining 67% are partial. How-
ever, only 52% of the accesses are partial accesses
starting at the beginning of the file.

4. Bitrate
The bitrates are modeled by randomly choosing a
typical encoding rate for each file. This is done
because the MediSyn study found a very weak
correlation between file size and bitrate. This
holds true in their scenario because they have ma-
terial from a plethora of different publishers. The
files on the VG servers, on the other hand, show



a strong correlation between file size and bitrate.
This is because VG is the main publisher of the
content, and thus uses the same editing and pub-
lishing techniques for all content.

5. File arrival
This step generates the file introduction day, the
number of files introduced per day, the introduc-
tion time and the gap to the introduction of suc-
cessive files. We are unable to verify this point,
since our log material does not contain informa-
tion about file publication time.

6. Lifespan class

A lifespan class is assigned to each file. This class
is either the Pareto distributed news-like lifespan
class or the lognormal distributed regular lifespan
class. The lifespan of files is the total number
of days from the first access to the last access,
also counting the days in between which have no
accesses.

From the VG logs we found that video file access
patterns show a news-like lifespan, whereas the
audio files follow a regular lifespan. For our log
material, it is easy to understand this difference;
videos represent news clips and will be consumed
as such, whereas the audio files are mostly hitlist
songs that will have a longer lifespan but with
lower initial access frequency. In our logs, about
70% of the files are video files and thus follow the
news-like lifespan, while the remaining 30% are
audio files with a regular lifespan.

7. Accesses
Access information is generated using informa-
tion from all the previous steps.

8. Synthetic log generation
The last step generates the synthetic logs contain-
ing all the accesses. These logs can be used for
trace driven simulation and evaluation.

In the above discussion, we have presented
MediSyn’s generation process and related it to our own
analysis. It is important to note that each step by itself
does not accurately model a media workload; for ex-
ample the popularity distribution used in step 1 does
only provide a long-term distribution of parameters. It
is timeless and does not model the popularity correctly

for any specific simulated or actual time. A distribu-
tion that appropriately models popularity at any given
time is only achieved in combination with time-shifted
arrival in step 5 and popularity development over time
that is added in step 6.

We believe that MediSyn can be used to model NoD
workloads, providing some extensions to the gener-
ation process are implemented. One issue is that of
the bitrate: The bitrate should be configurable and not
assumed to be random. Random matching is repre-
sentative for bitrates in services with many publish-
ers, but for single-publisher systems such as VG the
strong correlation between bitrate and file length must
be taken into account. Another important issue is that
of interactivity: Medisyn does not generate interactiv-
ity patterns, but assumes that a user accesses the entire
file or a prefix of the file. This may be an adequate
model for a VoD system, but the interactivity pattern
exhibited by VG users is not that simple. For example,
the sudden increase in traffic caused by peaks is not
captured by their traffic model. Thus, MediSyn must
be expanded to generate more complex content inter-
action patterns before it can accurately model NoD
workloads.

5. Conclusions

In this paper, we have analyzed workload character-
istics for a NoD streaming service and discussed the
impact these characteristics have on multimedia distri-
bution architecture design. The analysis is based on
log material from Norway’s largest online newspaper
spanning almost two years with a total of 4.6 million
accesses. Our most important findings follow.

File access intensity follows a diurnal pattern,
which is different from culture to culture. In Norway
most accesses, measured both in number of hits and in
server bandwidth usage, occur during working hours
(showing what people really do while at work). Week-
end access patterns differ from the weekday pattern
by having fewer hits and a larger variation in access
counts. Knowledge of this pattern is important: In a
single server system it is neccessary to provision for
the highest load, while a CDN can use this knowledge
to perform statistical multiplexing of resources.

The Zipf distribution has been used to model file
popularity in VoD systems. In this paper, we have



shown that it does not accurately model popularity
for a NoD service with an open-ended archive. How-
ever, it can accurately describe the popularity of those
videos that stand for nearly all bandwidth use. The
precondition for drawing conclusions from it is a cor-
rect use of the stable phase of news’ popularity. An
accurate popularity model is important for estimating
server and network load.

Our study of stream interaction patterns revealed
that almost all accesses are for playback, and the ma-
jority of accesses start at the beginning of the file.
However, most accesses are partial, meaning that the
clients do not view the entire file. On average accesses
are biased towards the start of the file, with uniformly
decreasing interest through the duration of the file. In
essence, NoD exhibits low interactivity, and accesses
are weighted towards the beginning of the files. This
suggests that employing a partial caching scheme may
be beneficial in a CDN with NoD workloads.

Some days have an access intensity far surpassing
the average. We have investigated how the access fre-
quency increases. We call this peak formation and
show that this formation phase can be matched by a hy-
perbolic tangent function. The availablility of a model
implies that a system that can detect that a peak is
forming, may be able to reallocate resources to counter
the effect. Caching or file replication could be consid-
ered as countermeasures. Peak detection is not a trivial
task. We leave the evaluation and generalization of a
model that can be used for peak modeling and detec-
tion for future work.

Synthetic workloads are useful for evaluating sys-
tem performance. We evaluated the suitability of
MediSyn for NoD workload generation, and found it
well-suited except for a few shortcomings: The file
bitrate should be configurable and not assumed to be
random. Also, a NoD-like interactivity model needs to
be implemented; MediSyn assumes that all accesses
start at the beginning of the file, while we in our anal-
ysis observed a significant number of accesses to other
parts of the files as well.

References

[1] Computerworld. Nettaviser i toppen (in Norwegian).
http://www.computerworld.no/index.
cfm/fuseaction/artikkel/id/50177.
Accessed 2006-09-24.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[13]

Frank T. Johnsen, Trude Hafsge, and Carsten Gri-
wodz. Analysis of Server Workload and Client Inter-

action in a News-on-Demand Streaming System. In
IEEE ISM, San Diego, CA, USA, December 2006.

Wenting Tang, Yun Fu, Ludmilla Cherkasova, and
Amin Vahdat. Medisyn: A synthetic streaming me-
dia service workload generator. In NOSSDAV, pages
12-21, Monterey, CA, USA, 2003.

Subhabrata Sen, Jennifer Rexford, and Don Towsley.
Proxy Prefix Caching for Multimedia Streams. In
INFOCOM, pages 1310-1319, New York, NY, USA,
March 1999.

Y.-J. Kim, T. U. Choi, K. O. Jung, Y. K. Kang, S. H.
Park, and Ki-Dong Chung. Clustered multi-media
NOD: Popularity-based article prefetching and place-
ment. In IEEE MSS, pages 194-202, San Diego, CA,
USA, 1999.

M. Vilas, X.G. Pafieda, R. Garcia, D. Melendi, and
V.G. Garcia. User behaviour analysis of a video-on-
demand service with a wide variety of subjects and
lengths. In EUROMICRO. IEEE Computer Society,
2005.

Xabiel G. Pafeda et al. Study of server workload in
large online newspaper. In MNSA, Lisbon, Portugal,
July 2006.

Hongliang Yu, Dongdong Zheng, Ben Y. Zhao, and
Weimin Zheng. Understanding user behavior in large
scale video-on-demand systems. In Proceedings of
EuroSys, Leuven, Belgium, April 2006.

Marcus Rocha, Marcelo Maia, Italo Cunha, Jussara
Almeida, and Sérgio Campos. Scalable media stream-
ing to interactive users. ACM MM November 6-12,
2005, Singapore., ACM 1-59593-044-2/05/0011.

A.Dan and D. Sitaram. A generalized interval caching
policy for mixed interactive and long video environ-
ments. In MMCN, San Jose, CA, USA, January 1996.

Ludmila Cherkasova and Minaxi Gupta. Characteriz-
ing locality, evolution, and life span of accesses in en-
terprise media server workloads. In NOSSDAV, pages
33-42, Miami, Florida, USA, 2002.

Jussara M. Almeida, Jeffrey Krueger, Derek L. Eager,
and Mary K. Vernon. Analysis of educational media
server workloads. In NOSSDAV, pages 21-30, Port
Jefferson, New York, United States, 2001.

Songqging Chen, Bo Shen, Susie Wee, and Xiaodong
Zhang. Adaptive and lazy segmentation based proxy
caching for streaming media delivery. In NOSSDAV,
pages 22-31, Monterey, CA, USA, 2003.



