Experiences from Developing a Component Technology
Agnostic Adaptation Framework

Eli Gjgrven, Frank Eliasseh?, and Romain Rouvdy

! Simula Research Laboratory,
P.O.Box 134, 1325 Lysaker, Norway
eligj @i mla.no
2 University of Oslo, Dept. of Informatics,
P.O.Box 1080 Blindern, 0314 Oslo, Norway
frank@fi.uio.no,rouvoy@fi.uio.no

Abstract. Systems are increasingly expected to adapt themselves to changing
requirements and environmental situations with minimum user interactions. A
challenge for self-adaptation is the increasing heterogeneity of applisatimh
services, integrating multiple systems implemented in different platfornfeamd
guage technologies. In order to cope with this heterogeneity, self-aeagyts-

tems need to support the integration of various technologies, allowing thet tar
adaptive system to be built from subsystems realized with different ingriean

tion technologies. In this paper, we argue that state-of-the adaptatioaviarks

do not lend themselves to ease technology integration and exploitation of ad-
vanced features and opportunities offered by different implementsg@imolo-

gies. We present the @A\ adaptation framework and its support for technology
integration and exploitation. Unlike other adaptation frameworks the adaptatio
framework of QUA is able to exploit a wide range of adaptation mechanisms
and technologies, without modification to the adaptation framework itsel& As
demonstration of this property of @, we describe the integration of an ad-
vanced component model technology, ttrAETAL component model, with the
QUA framework. Our experience from this exercise shows that thé& @dapta-

tion framework indeed allows integration of advanced implementation tézhno
gies with moderate effort.

1 Introduction

Increasingly dynamic computing environments requirevearfe developers to support a
wider range of technologies with applications that needatacte continually evolving
situations and environments. Well desigraamponent modelsnforceseparation of
concernsthus relieving application developers from having to &ddrconcerns, such
as extensibility, distribution, and reconfiguration of tgplication, and letting them
focus on business and application logic. In order to eas¢asies of system develop-
ers and administrators, separation of concerns can be degdny ageneric adapta-
tion frameworkfor handling self-adaptation of applications and servidg®,3]. Self-
adaptation includes the ability to self-configure autooadly and seamlessly according
to higher-level policies. By the same approach, the apibicaleveloper can model a
set of components and their non-functional properties, laade it to an underlying

middleware to reason about changes in context and how tlesges should impact
and possibly reconfigure the application components toigeothe optimal end-user
satisfaction with the service. This way, adaptive behaigaleveloped separately from
the application business logic.

However, a challenge for self-adaptation is the increakitgrogeneity of applica-
tions and services, integrating multiple systems impleteeim different platform and
language technologies [4,5,6]. In order to cope with thietugeneity, self-adaptive
systems need to suppaechnology integratiowhich is the process of building a sys-
tem from subsystems technologies. Successful technotuggration includes over-
coming three challenge®: ensure that thintegrated subsystems are able to interop-
erate safelyii) integrate into the adaptation framework the differeathnologiesised
in the system to be adapted, aif whenever possiblexploit the specific features and
opportunitiesoffered by the different implementation technologies uddtk latter is
generally preferable as it will reduce duplication of effavhen using advanced imple-
mentation technologies, such as state-of-the-art commgiatforms. Recently, much
effort has been spent on interoperability, in particulathie area ofService-Oriented
Architecture SOA) [7] and web-services composition [8,9]. However, Sfodus on
solving the first problem by standardizing the interactietween services, thus hid-
ing the service implementation platforms. Consequeni@ASloes not facilitate the
exploitation of adaptation-related features that seringglementation platforms may
provide. Thus, adaptation techniques are limited to theiipation and orchestration
of workflows through dedicated languages and engines.

In this paper, we focus on the second and third problems, lyateehnology inte-
gration andexploitation in the context of self-adaptive systems. In order to fullps
port technological heterogeneity, self-adaptive systemst support integration and
exploitation also of adaptation-related technologiesilevnsuring that the resulting
system as a whole performs as expected. In order to be aplglitmapplications and
adaptation mechanisms implemented with different teagiek, the adaptation frame-
work of a self-adaptive system needs tabehnology agnostidt must be able to adapt
the behavior of applications and services without depandimknowledge of particular
adaptation mechanisms, and application implementatidmiaogies. In contrast, cur-
rent adaptation frameworks are bound to particular adaptatechanism technologies,
such as component models, middleware, or communicatioasttictures [2,3]. Inte-
grating new technologies into these adaptation framewwmidg require major changes
to be made both to the integrated systems and the framevgaik iFurthermore, the
resulting system may not be able to exploit the specific céipab of the integrated
technology. Such a tight coupling between the adaptatiaméwork and the adapta-
tion mechanisms does not facilitate an easy technologygraten.

This paper describes theu@ adaptation framework and its support for technology
integration and exploitation. As a demonstration of theetatve describe our experi-
ence with integrating an advanced component model tecgpolbe FRACTAL com-
ponent model [10], with the QA framework. Unlike other adaptation frameworks, the
adaptation framework of QA is able to exploit a wide range of adaptation mechanisms
and technologies, without modification to the adaptatiamfiework itself. In order to
establish a clear separation between the adaptation frarkend the adaptation mech-

anisms, we apply th®ependency Inversion Princip[@1] to the QUA architecture.
Under this principle, higher level policies do not dependimmodules implementing
the policies, but rather on abstractions. Specifically, Xjyressing adaptation policies
asutility functions[12], we enable the specification of adaptation policies #na in-
dependent from the technologies used to implement the atiaptactions enforcing
the policies. Furthermore, rather than defining yet anatbherponent model, the @A
adaptation framework defines a concise, technology-agnostta-model that abstracts
over the various legacy component models, which can be plliggto the adaptation
framework.

In the remaining of the paper, we first study the requiremgivasself-adaptive sys-
tems must satisfy in order to facilitate easy technologggration, and we introduce
the design principles that support these requirementsSggition 2). These principles
are demonstrated through thes® adaptation framework design (cf. Section 3), and
the integration of the RACTAL component model (cf. Section 4). We discuss the expe-
riences made from this integration (cf. Section 5) beforgctieding and presenting our
future work (cf. Section 6).

2 Technology Integration and Adaptation Frameworks

This section analyzes the challenges of designing an ataptaamework support-
ing technology integration and further motivates the nemdcfearly separating the
adaptation concerns. Then, the main design principlestaddpr achieving a better
separation of adaptation concerns in theAframework are introduced.

2.1 Limitation of Technology Integrations in Self-adaptive Systems

Conceptually, a self-adaptive system consists of threts plieadaptation framework
theadaptation mechanismand thetarget adaptive system

Theadaptation frameworkalso known as control loop) is responsible for control-
ling the ongoing adaptation processes. The adaptatiorefrank constantly observes
and analyzes the behavior of the target adaptive systeninatashtiates, plans, and ex-
ecutes adaptations when necessary. The adaptation fraknesnzased on adaptation
policies, used to decide which adaptation to carry out irhestation. The adapta-
tion framework depends cedaptation mechanismehich perform adaptation related
actions, such as collecting and processing informatiorutathee target adaptive sys-
temand its environment, evaluating alternative adaptatidioias, and performing the
selected ones. Examples of such mechanisms are contextomiogy component life-
cycle handling, and reconfiguration mechanisms.

Thetarget adaptive systenepresents the target of adaptation. The adaptive system
spectrum covers application software, middleware inftastire €.g, communication,
transaction, persistence), lower level operating systeaules €.g, scheduler, driver),
or device resource®(g, screen resolution, network interface).

The current direction in self-adaptive software reseasdo isolate the adaptation
concerns from the application logic using generic adamafiameworks [2,3]. How-
ever, state-of-the-art adaptation frameworks and cooredipg adaptation policy spec-

ification languages are tailored to specific component nsoaladl platforms. The adap-
tation policy languages, such agarRAN [2] or PLASTIK [3], can be used to define
both coarse-grained adaptations, such as replacing onpormnt with another, and
more technical and fine-grained adaptations, down to thed tesetting the value of a
component parameter. These adaptation frameworks imptigetaoupling between
the adaptation policies—stating what adaptations shouldaoeed out and when—
and the adaptation mechanisms—implementing the corresppadaptation actions.
Typically, the adaptation policy refers directly to the ptidion actions themselves.
Actually, the integration of a new technology can have thie¥dng impacts:

— integration of adaptive systems requires porting the taadaptive application or
service to the technology platform of the adaptation frapré&wand to integrate
associated adaptation mechanisms into the framework;

— integration of new adaptation mechanisms requires upglttim adaptation frame-
work with knowledge about the new mechanisms;

— updating the adaptation framework requires careful ev@mnaf the effects that
the updates will have on other mechanisms and adaptivensystentrolled by the
adaptive systems.

Thus, a possible, and unfortunate, consequence of the alependencies may be
that adding a new component to a target adaptive systemresqupdating the higher
level adaptation policies. In order to overcome the abowlehge, design principles
for building technology-agnostic adaptation frameworks aeeded. Technology ag-
nostic adaptation frameworks preserve the technologietrbgeneity of the target
systems, while exploiting adaptation-related featuresided by their implementation
platforms. We argue that to achieve the above, separatiadagtation concerns should
be enforced when designing and implementing the adaptaéibavior. In particular, by
handling the three parts as separate concerns, we are agldue the dependencies
between them, and thereby facilitate the integration of selutions in each concern
with less impact on the others.

2.2 Providing a Clear Separation of Adaptation Concerns

In the area of agile programming, tBependency Inversion Princip(@®IP) has been
introduced as a fundamental design principle, which cbuates to improving software
maintainability and extendability [11]. The DIP can be appito systems where higher
level modules, containing the important policy decisions dusiness models of an
application, controls lower level modules, containing ith@lementation of the higher
level policies. Thus, according to this principle:

a) high level modules should not depend on low level modulesh Bbould depend
upon abstractions;

b) abstractions should not depend upon details. Details dhdrpend upon abstrac-
tions.

We apply the DIP to the case of an adaptation middleware stingiof a higher
level module, the adaptation framework containing the tatagm policies and lower
level modules, containing the adaptation mechanisms.

In [11], the author points out two consequences of applytregRIP. The first, and
most obvious, consequence is that no implementation clesdd depend on another
implementation class, but rather on abstractions. Thermgeconsequence is that the
abstractions should be owned by the higher level policier than the lower level
implementations. From this, we formulate the followinguggments for the design of
the adaptation framework:

1. theadaptation framework and the adaptation mechanism shogsedd on adap-
tation mechanism abstractiotfaccording to DIRa)),

2. theadaptation mechanisms and the adaptation target shoulémpn adaptation
target abstractiongaccording to DIR)),

3. theadaptation mechanism abstraction should be owned by thptatlan frame-
work rather than the mechanisms (according to B)R

4. theadaptation target abstraction should be owned by the adaptanechanism
rather than the adapted system (according to)P

Figure 1 illustrates the design of an adaptation framewbék satisfies the DIP
principle. The modelling convention used here, and in tist of the paper, is that
closed arrows represent an implementation relationship the implementing class to
the interface, while open arrows represent associatiotislependencies.

Adaptation «interface»
Framework |« «| Adaptation Mechanisms
implements

«interface»
«| Adaptation Target

| Adaptation Mechanisms
Provider

implements

Adaptation Target
Provider

Fig. 1. Applying dependency injection principle to adaptation frameworks.

Many adaptation frameworks satisfy the requirements In@442,3,13]. They typ-
ically define adaptation-related interfaces that must q@émented by target systems
in order to conform to the adaptation mechanisms. Howesealistussed in Section 2.1,
these frameworks use adaptation policies that tightly kot adaptation framework
and the mechanisms, making the adaptation mechanism ebmtraot truly owned
by the adaptation framework as specified by requirement RvBeve discuss how to
design adaptation policies, making possible to fully $atise DIP.

2.3 Using Technology-independent Adaptation Policies

The adaptation framework depends on an adaptation poligichais applied to de-
cide which mechanism to use in a certain situation. Many tdiam frameworks are
based on variants afile-based adaptation policig®,3], where policies are specified

using condition-action expressions. Rule-based appesachn be simple and practi-
cal, at least as long as the rule-set is small. However, atlaptrules do not separate
well between the adaptation framework and adaptation nmésima Rules map adap-

tation conditions directly to detailed knowledge about thrget adaptive system, and
the available adaptation mechanisms. When integrating raptation mechanisms
into the rule-set, at best, new rules have to be added to theset. In order to keep

the rule-set consistent, then the entire rule-set has tdéeked for completeness (all
conditions map to an action) and conflicts (conditions miagpd multiple actions that

are contradictory). At worst, the policy language is notresggive enough for the new
mechanism. For example, the policy language designed fipasting the capabilities

of a given component model, may not be directly applicablariother component

model. The essential problem is that the rule-based pdlicguages are owned by the
mechanisms, producing dependencies that are difficultridlbavhen integrating new

technologies.

Utility-based adaptation policiebave been elaborated as an alternative to rule-
based policies in self-managing systems [12]. Utilitydshpolicies are expressed as
functions assigning to each configuration alternative—dditlg adaptation mecha-
nisms necessary to implement the alternative—a scalar wradieating the desirability
of this alternative. A utility-based adaptation framewalikcovers a set of configura-
tion alternatives, computes their utility, and selectsahe with the highest utility. This
way, utility functions introduce a level of indirection meten the adapted system and
the mechanisms implementing a configuration, and its detya The utility value is
calculated from metadata describing the functional anditatise properties of a con-
figuration, rather than the technical implementation krealgle. Thus, utility functions
provide a higher-level, mechanism and technology independdaptation policy lan-
guage. The reader can refer to [14] for a detailed discusgiont the characteristics of
utility functions.

2.4 Reflecting the Target Adaptive System Properties

In order to be able to compute utility values, metadata atimutunctional and qualita-

tive properties of configuration alternatives and adaptatechanisms must be avail-
able to the adaptation framework. Thus, the adaptationdveork depends on a techno-
logically independent meta-model that is able to expreesnmation about the required
properties.

In order for the adaptation framework to be independent@gttistence of particu-
lar reflective capabilities provided by target technolsgitne metadata must be pro-
vided by a separate module. A variant of traditional reftacticalledmirror-based
reflection[15], can be used to define reflective APIs suitable for tetdgically in-
dependent adaptation frameworks. In mirror-based reflecthe reflective capabilities
are provided by separate objects caltidgrors, instead of by the reflected objects them-
selves, as is common in traditional reflection. The readerreter to [15] for a detailed
discussion about the characteristics of mirror-basedatéste

3 Designing the QUA Adaptation Framework

This section introduces the design of theQadaptation framework, which proposes
to improve the state-of-the-art adaptation middleware@gghes by offering a modular
support for reflecting, reasoning, and deploying services.

3.1 An Overview of the QUA Middleware

The QUA middleware supports middleware-managed adaptatiorghwiieans that the
adapted system is specified by its behavior, and thanned instantiated andmain-
tainedby the middleware in such a way that its functional and qagi¢ requirements
are satisfied throughout its lifespan. In order to be ablepoasent the adapted system
from specification to termination, the unit of adaptatiorQuA is a service which we
define as:

A service describes a set of capabilities that are defingyl group ofoper-
ationsand theirinput and output dataandii) a contract(explicit or implicit)
describing the work done, as delivered output data, whewking these oper-
ations with valid input data. Theervice lifesparencloses its specification of
behavior, association with implementation artifactsymerinstantiation, exe-
cution, and termination.

Thus, a service may be associated with implementatioraatsifimplementing its be-
havior, or running objects performing its behavior. Semiimplementation artifacts al-
ways require a particulaervice platformwhich can be used to instantiate a service by
interpreting the implementation artifacts. Finally, Seevimplementations may depend
on other services in order to implement the promised funetity.

A QUA client is typically a client application, using@ to instantiate services, or
service a development tool, usingJ® to deploy service implementations and meta-
data. QA defines a programming API that can be used to invoke tba @iddleware
services from tools or applications, and providing thedwihg operations:

— Publication of service implementatiarservice implementations may include dif-
ferent types of implementation resources, such as impl&atien classes (Java
classes or library modules), component descriptors (ADIXBIL documents),
interface definitions etc., depending on the type of teabgplused to implement
the service.

— Advertising service implementation meta-dadtteta-data describing the static and
dynamic properties of service implementations can be &deerto the middle-
ware.

— Instantiation of servicesservice instantiation means evaluating, selecting, and i
stantiating service implementations, and perform ingiivice configuration. The
resulting service will be maintained by they® middleware throughout its lifespan
through adaptation.

— Reflection on serviceshe QUA middleware defines a reflective API, called the
Service Meta Object Protoc¢EMOP), used to inspect and manipulates services.

In contrast to other adaptation frameworks, which mixesdtiaptation policies
with the adaptation mechanismsp® identifies a clear separation between the three
adaptation concerns described in Section 2.

Conceptually, we order the three adaptation concerns draally, as depicted in
Figure 2. By applying thé&ependency Injection Principl@DIP), we achieve an hor-
izontal separation of concerns by establishing an ordesfngodule pairs where the
higher level module always owns the interfaces shared veixt lower-level modules.

* QuA Adaptation *
Framework
uses uses
Adaptation * L\ uses
Framework «interface» «interface»

Planning Service
Framework Meta-Object Protocol

*
«interface»
Platform
Framework

-7 _ir;p/e_m;nts implements. implements "~
Adaptation Service Service uses. «interface»

i Adaptation Target i i
Mechanisms Planner Serwce M|rror Platform * « | Adaptation Target

Adaptation ‘\ _ _ _reflects _ _ _ _ _ _ _ _ _ * | Adaptation Target
Targets Provider

Fig. 2. Design of the @A adaptation framework.

The adaptation framework module define three abstractidresPlanning Frame-
work is responsible for selecting service implementations|enthie Platform Frame-
work is responsible for managing service implementations dutieir execution. The
Service Meta-Object Protocol (SMOP) can be used to inspect and manipulate ser-
vices throughout their lifespan.

The planning and platform frameworks abstractions are emginted by concrete
planning and implementation mechanisms. The planningdveank is implemented by
Service Planners that use metadata provided by the SMOP to find alternatiwecger
implementations, analyze their expected behavior, aretsah alternative that match
the service requirements. The platform framework is im@etad byService Plat-
forms that enclose technology specific code and mechanisms dugpservice instan-
tiation and adaptation, including binding and rebindingeivice dependencies. Such
adaptation mechanisms typically define adaptation-relateerfaces implemented by
the target system&ervice Platforms are responsible for maintaining the causal con-
nection betweerservice Mirrors implementing the SMOP, and thdaptation Tar-
gets. In the adaptation target layer, we find tAdaptation Target Providers, which
are the base level objects implementing the adaptatioetsarg

3.2 Reasoning Support: the Utility-based Planning Framewdk

The planning framework appliegtility-based adaptation policiefl?2] as a way to
keep the adaptation framework independent of integrateldntdogies and mecha-
nisms. Each service may be associated withiléty function, which is applied by the

planning algorithm to metadata describing the qualitgtraperties of each alternative
service implementations. Metadata about the qualitatiepgrties of a service imple-
mentation can be expressed dpyality predictors which are functions of the run-time
environment, and the quality provided by other services ttie service depend on, if
any. Such predictor functions are written by the implemgéoadeveloper, and made
available through the SMOP. By computing utility functicarsd quality predictors, the
utility of a particular implementation can be calculateddxon the desirability of al-
ternative behaviors, rather than knowledge about theratie implementations and
mechanisms.

The planning process can be implemented by numerous digwitBy applying
the DIP also to the planning framework, the adaptation fiaank is protected from
changes in the mechanisms used by the planning framework.

3.3 Technology Support: the Platform Framework

When an implementation has been selected by the planningivark, the platform
framework is responsible for applying the correct mechasifor instantiating the ser-
vice. A service platform is able to interpret implementatartifacts of certain types,
instantiate services from those artifacts, and providengtiae environment for the in-
stantiated services. For exampleJava Service Platform provides access to d&ava
Virtual Maching and is able to instantiate Java objects hosted by that macfiom
Java classes. The platform also defines the types and nafusesvice collaborations
defined by the technology, such as component compositionghrcomponent connec-
tors, or specialized communication patterns, such as @ramen communication and
data streaming.

Upon service instantiation, a service platform receivesifthe adaptation frame-
work, metadata describing the required service, impleatmt artifacts that have been
selected by the planning framework during initial planniagd services that the im-
plementation depends on. Adaptation-aware platforms toothieir managed services,
and when they find it necessary, trigger the adaptation frariefor a re-planning. The
result from the re-planning is a new set of metadata and im@iegation artifacts that
can be used by the platform to perform an adaptation.

In order to hide the details of service instantiation andfigamation from the adap-
tation framework, we apply the DIP to the platform framewofFke adaptation frame-
work invokes a service platform to instantiate a servicésitpackage encapsulating
the implementation artifacts, call&étlieprint as a parameter. As the type of implemen-
tation artifacts used by a certain technology is highly textbgy specific, blueprints
are black boxes to the adaptation framework. The blueprig oontain technology
specific information related to different types of adajgtatmechanisms, such as com-
ponent replacement, component parametrization, insedfionterceptor or monitors,
etc. The QUA adaptation framework does not define the format of a blujmor does
it ever inspect or manipulate its content. Blueprints aeated by technology expert
developers, and deployed to the/® middleware using technology specific tools.

The platform depends on technology specific mechanismsdardp instantiate
and adapt the service. Examples of such services are comipfctories, parsers for

component descriptors, binders and configurators, resgnanagers, etc. These mech-
anisms may either be implemented as a part of the platforthegrmay be deployed to
the middleware as services that the platform depends oredBas the simple abstrac-
tions described above, multiple adaptation techniqueseaintegrated and exploited
through the platform framework concept [2,3,4,5,6,13].

3.4 Reflection Support: the Service Meta-Object Protocol

The QUA middleware defines a service meta-object protocol thabeansed to reflect
on services in all phases of their life-cycle. The SMOP isebasn a services meta-
model, which is used to describe exactly the aspects of aceerglated to planning,
instantiation, and execution of services managed byA&-i.e., its behavior (required
or provided type, and utility function), implementatiomgluding blueprint, required
service platform, and implementation dependencies), mstdmces if any. Figure 3 de-
scribes the QA service meta-model.

Utility
Function

Fig. 3. The QUA service meta-model.

In order to conform to the DIP, the SMOP must provide the aatégpt framework
with a technologically independent reflective API. Thereflective API is based
on mirror reflection, where the meta-level facilities argplemented separately from
the reflected system as described in Section 2.4. Thus, mhiased reflection does not
require any changes to be made to the reflected system, altmlis dhe coexistence
of technology specific reflective APIs required by servicatfokms and their mech-
anisms. In [16], we describe a comprehensive applicatienaio demonstrating the
application of the service meta model, including examplequality prediction and
utility functions.

4 Implementing the QUA-FRACTAL Adaptation Middleware

In [14], we have shown that the framework is applicable tgd@&programming models,
such as the Java programming languages, by designing kigifttwcomponent models
based on this language. In order to confirm the ability of theA@daptation frame-

work to integrate and exploit concrete adaptation techyiely we need to apply the
framework to an adaptation technology that provide a ri¢ctoséeatures. To this end,

we consider the RACTAL component model [10] as an interesting candidate technol-
ogy. The RACTAL component model is a lightweight and hierarchic componerdeh
targeting the construction of efficient and highly reconfale middleware systems.
FRACTAL has been used in several projects to implement advancedtiedapd self-
adaptive behavior [17,2,18]. Thus, if we are able to sudagsntegrate and exploit
the rich set of available mechanisms and tools provideddydFAL ecosystem, with-
out coding RACTAL-specific knowledge into the generic adaptation framewibig,a
strong indication that the QA adaptation framework has the expected capabilities with
regards to supporting integration.

The work presented in this paper is based on integrating dlaeiful, expressive,
and flexible component reconfiguration mechanisms proiydeRACTAL. In particu-
lar, theFractalADL Factoryis a component factory that instantiateSA€TAL compo-
nents and composites from architecture descriptionsemritt the RACTAL Architec-
ture Description Languagé~RACTALADL) [19]. The FSCRIPT engine interprets con-
figuration scripts written in the ACTAL-based configuration language EapPT [2].
The FERIPTlanguage includes primitives for standamA€TAL component manage-
ment, and can be extended in order to support more advanoéiduations.

4.1 The FRRACTAL Component Model

The reconfiguration capabilities are defined by controlibas defines the level of in-
trospection and control of a component (life-cycle, atttés, bindings, interfaces, etc.).

Bindli

Control Primitive component Content
i wC lcce H
interface TTT

/ic lc cc

ATTT
Internal Serve(r71 I be ¢ Ic ac
Interface L
“c lcibc At * = C

Client

i

¢ lc cc

&
s ¢ lc bc _tl:_ _Icl_ ac
Sefver g 4 o
Interface | i "‘.'_"')l—._._(.:....
_“tApplication : Server2 L ;
COI??[;OS/{e CIIZZ‘/H Co/le:c[/on Shéred
Controller Component Interface Interface Component

Fig. 4. Architecture of a RACTAL component.

Figure 4 illustrates the different entities in a typic& A€ TAL component architec-
ture. Thick black boxes denote tleentroller part of a component, while the interior
of these boxes correspond to tbentent partof a component. Arrows correspond to
bindings and tau-like structures protruding from black boxes aterimal or external
interfaces. Internal interfaces are only accessible froendontent part of a compo-
nent. External interfaces appearing at the top of a compareresent reflective con-
trol interfaces, such as thdfe-cycle Controller(Ic), the Binding Controller(bc) or
the Content Controller(cc) interfaces. The two dashed box&3) fepresent ahared
component.

4.2 The QUA-FRACTAL Middleware

The QUA-FRACTAL middleware has been implemented aseavice platform Frac-
tal Platform, that includes an implementation of theLia run-time, theFractalADL
factory, and thé-Script engine, as illustrated in Figure 5.

«interface»
Platform
Framework

Adaptation
Framework

Fractal
Platform

Adaptation
Mechanisms uses
1

Adaptation Fractal Component
Targets Provider

Fig. 5. Architecture of the RACTAL platform.

The RRACTAL platform instantiates services fronRECTAL blueprints, containing
FRACTALADL descriptors, implementation classes, and FScript gomdition scripts.
It extracts ADL descriptors and implementation classesftioe blueprint, and invokes
the ADL factory to instantiate components from the desorgtThe ADL factory de-
pends on theuLIA run-time to create the component instances from the impi¢ane
tion classes. Finally, FScripts are extracted from thegning and the FSRIPTengine
is invoked to perform configuration based on the FScripgadTALADL and FRIPT
use standard RACTAL controllers to perform component management tasks, such as
binding, life-cycle management, and parameter configumati

In order to be able to exploit different combinations G(fA€TAL components, we
have to enable the @A planning framework to plan alternativeRERCTAL components
independently. For example, in the case of composite copmienwe want to be able
to plan certain sub-components independently, in ordentbtfie combination of com-
ponents that best satisfy the service requirements. Thesige meta-model provided
by QUA enables such a nested planning through the definition ofementation de-
pendencies. Instead of publishing an ADL descriptor dbswgithe complete composi-
tion, we extract ADL descriptions describing sub-compdsénto separate RACTAL
blueprints. Thus, in the case where several implementtidra sub-component are
available, the planner will select the one giving the higloiity.

4.3 TheComanche Application

Below, we illustrate our prototype applicati@omanchea legacy web server devel-
oped by the RACTAL community.Comanches a lightweight web server implemented
with the FRACTAL component modé! This implementation provides the core features

8 Comancheutorial:htt p: / /fractal . ow2. org/tutorial .

of a web server as a proof of concept of the relevancerefdTAL for building middle-
ware systems.

In its initial version,Comancheis made of several components that identify the
various concerns of a web server, as depicted in Figure 6.

N HH+ - -HH -

Receiver 1-IAnaIyzer l: T 1-[Logger l
“Hscheduler, Y

Frontend \

f
o]
Backend Handlers

Comanche

Fig. 6. Architecture of theComancheveb server.

In particular,Comancheontains a componei&cheduler that schedules the treat-
ment of incoming requests (see Figure 6). The implememtatidhis component con-
trols the allocation of dedicated activities for analyzingoming requests. The initial
implementation of the scheduler creates a thread per imgpregquest without control-
ling the number of activities created. In th@rRAN project [2], an alternative to the
scheduler proposes to use a pool of threads to control thédewuaof threads used by
the web server. However, the thread pool scheduler prolides response times than
constantly creating new threads.

ServiceM rror comancheM rror = QUA. createServiceMrror(Comanche);
comancheM rror.setUtilityFunction(ComancheUtility);

comancheM rror. set | npl Bl ueprint(ComancheBl ueprint);

comancheM rror. set | npl QSPredictor(ComanchePredictor);

comancheM rror. set | npl Dependenci es("s", Scheduler);

Listing 1.1. Service mirror reflecting th€omancheveb server.

OrWN PP

In order to be able to apply the@-FRACTAL middleware to the configuration
of the Comancheweb server, we had to deploy ti@mancheapplication, including
ADL descriptors, FScripts, and implementation classesh¢oQUA middleware as a
blueprint, and to advertise the necessary meta-datadimgjwtility function and qual-
ity predictors, to the middleware (see the QuA-specific dodedvertising metadata,
represented as a service mirror in Listing 1.1).

<definition nane="Frontend" extends="FrontendType">
<conponent nane="rr" definition="Receiver"/>
<conponent nane="s" definition="Scheduler"/>
<!-- Definitions of bindings -->

</ definition>

Listing 1.2. FRACTALADL descriptor of theComanchdront-end.

abhWNPE

The ADL for the Comanchdront-end is depicted in listing 1.2. The utility of the
Comancheserver is expressed by a function that returns high utiliyes for low re-
sponse times, and low utility values for high response tirhéesting 1.3 contains the
component replacement scrigplace-schedulerused to replace one scheduler com-
ponent with another. The script uses a number of primitiverafors, such astop

bind, andremove in order to implement the routine that has to be followedriheo to
safely replace one component with another. These operatenmapped by FERIPT
to invocations of standardRACTAL controller interfaces.

action repl ace-schedul er (comanche, schedul er) {
st op($comanche) ;
var frontend = $comanche/child::fe;
unbi nd($frontend/child::rr/interface::s[client(.)]);
renove($frontend, $frontend/child::s);
add($f rontend, $schedul er);
bi nd($frontend/child::rr/interface::s, $scheduler/interface::s);
start ($comanche);
return $conmanche;

POO~NOUAWNE

Listing 1.3. FSCRIPT statements replacing componentGomanche

5 Evaluating the QUA-FRACTAL Implementation

In order to evaluate the adaptation framework presenteeatiéh 3, we have to con-
sider to what degree the combined® FRACTAL middleware was able to solve the
challenges mentioned in Section 1, namadipo integrate into the adaptation frame-
work different technologiassed in the system to be adapted, aifjdo whenever possi-
ble exploit the specific features and opportunit@ered by the different implementa-
tion technologies used. With regardiijg we have managed to integrated theAETAL
run-time and RACTAL components into the QA adaptation framework. The integra-
tion required an acceptable amount of work, given the abviiila of developers that
have moderate knowledge about theAmiddleware, and some knowledge about the
FRACTAL middleware. With regard toi) , we have managed to exploit twaRECTAL
specific adaptation mechanisms, namely tRa&TALADL factory and the F8RIPT
language.

In order to reflect the amount code in the resulting middlevthat is technology
agnostic, technology specific, and application specifibjeld presents the number of
classes and the byte-code size of the different parts ofebelting middleware and
application. As indicated by the table, th@&cTAL mechanisms contribute with by
far the largest amount of files and byte-code. The QUA middteweonsists of a rather
small middleware core, which byte-code size is less than ©0%e size of QA-
FRACTAL platform. Furthermore, the number of)@-specific files required in order to
implement the @A-FRACTAL platform was only 8. This number includes both the def-
inition of the QUA-FRACTAL platform interface, the QA-FRACTAL implementation
classes, the QA-FRACTAL blueprint used to encapsulat®ACTAL implementation
artifacts, and an helper platform used to instantiate tb& @ RACTAL platform itself,
as a service.

The relatively small size of the @A middleware is the result of keeping the re-
sponsibility of the QuUA middleware small and concise, ardépendent of technology
specific details and knowledge by the application of the D& atility functions. Due
to these principles, we are able to control an advanced amgprehensive adaptation
middleware technology from this small and generic adamtetiamework.

Table 1. Distribution of code in @A-FRACTAL.

[Concern [Number of class file$Byte-code size (Kb)Distribution (%) |
QUA middleware 53 276 7
QUA-FRACTAL platform 8 76 2
JULIA run-time 300 1,782 45
FRACTALADL factory 171 816 21
FScriPTengine 151 828 21
Utility classes 33 168 4
QUA-FRACTAL total 716 3,946 100
Comancheapplication 17 76

6 Conclusions

Due to the growing heterogeneity of technologies used tdampnt nowadays dis-
tributed systems, existing adaptation middleware faceserand more difficulties to
perform technology agnostic adaptations. This phenom&nparticularly true in the
component-based software engineering community where ofidee state-of-the-art
approaches to adaptation suffer from their tight coupliogtparticular component
model [2,3]. This strong dependency restricts the intégmnaif new technologiese(g,
component models or middleware frameworks) to the fixedfsgistractions supported
by the adaptation middleware, thus avoiding the integnatib technology-specific
adaptation capabilities.

The contribution of this paper is to present the impleméoadf a modular adap-
tation middleware, called @A, whose design supports the integration of various tech-
nologies. This design combines the definition dflata-Object Protoco[15] and the
application of theDependency Inversion Princip[@1]. The former is used to reflect
the meta-data associated to technology artifacts, whilility-based planning frame-
work and aplatform frameworlkapply the latter to reason about the reflected metadata
and perform adaptations, respectively. We validate thésgaheby reporting the integra-
tion of the RRACTAL component model into the @A middleware, and we illustrate the
resulting adaptation middleware on the adaptation of a corapt-based application:
the Comancheaveb server. By facilitating the integration of technolagithis approach
clearly separates the adaptation concern from the apiplicahd the technology.

As a matter of perspective, we plan to extend the set of stegeechnologies and
experiment the consistent adaptation of cross technolpglcations.

Acknowledgements

The authors thank the reviewers of the CBSE conference faake comments. This
work was partly funded by the European Commission througtptbject MUSIC (EU
IST 035166).

References

1. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johns&., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based ayguh to self-adaptive
software. |IEEE Intelligent Systenigi(3) (1999) 54-62

2. David, P.C., Ledoux, T.: An Aspect-Oriented Approach for Depimg Self-Adaptive Fractal
Components. In: 5th International Symposium on Software Compos@6r06). Volume
4089 of LNCS., Springer (2006)

3. Batista, T.V., Joolia, A., Coulson, G.: Managing Dynamic Recondition in Component-
based Systems. In: 2nd European Workshop on Software Archigsdtia?VSA05). Volume
3527 of LNCS., Springer (2005) 1-17

4. Sun microsystems: Java Platform, Enterprise Editon (Java EE)

http://java. sun. com j avaee.
5. OSGi Alliance: OSGi Service Platform Releasket4 p: / / ww. 0sgi . or g.
6. Microsoft .Net: Microsoft .NET Framework 31& t p: / / www. mi cr osoft. coni net .
7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, Besign. Prentice Hall
(2005)
8. Erradi, A., Maheshwari, P., Tosic, V.. Policy-Driven Middlewdoe Self-adaptation of
Web Services Compositions. In: 7th International Middleware Conéerevolume 4290
of LNCS., Springer (2006) 62—-80
9. Kuropka, D., Weske, M.: Implementing a Semantic Service ProviBiatform Concepts
and Experiences. Journal Wirtschaftsinformatik — Special Issuesoricg Oriented Archi-
tectures and Web Servic&g2008) 16-24
10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., StefhBi, The RACTAL compo-
nent model and its support in Java. Software Practice and ExperieSpecial Issue on
Experiences with Auto-adaptive and Reconfigurable Sys&§fisl/12) (2006) 1257-1284
11. Martin, R.C.: Agile Software Development, Principles, PatternsPaadtices. Prentice Hall
(2002)
12. Kephart, J.0., Das, R.: Achieving Self-Management via Utility fions. IEEE Internet
Computing11(1) (2007) 40-48
13. Georgiadis, ., Magee, J., Kramer, J.: Self-Organising Soéwechitectures for Distributed
Systems. In: 1st International Workshop on Self-Healing SystemsI®/@®), ACM (2002)
33-38
14. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsed,, $apadopoulos, G.A.: A
Utility-Based Adaptivity Model for Mobile Applications. In: 21st InternatairConference
on Advanced Information Networking and Applications (AINAQ7), IEE2007) 556-563
15. Bracha, G., Ungar, D.: Mirrors: Design Principles for Metaddvacilities of Object-
Oriented Programming Languages. In: 19th Annual Conference ljac@oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA04), AZ4) 331-344
16. Gjgrven, E., Eliassen, F., Lund, K., Eide, V.S.W., Staehli, Relf-8daptive Systems: A
Middleware Managed Approach. In: 2nd IEEE International Worksbo Self-Managed
Networks, Systems and Services (SelfMan). Volume 3996 of LNG®8inger (2006) 15-27
17. Bouchenak, S., Palma, N.D., Hagimont, D., Taton, C.: Autondfaicagement of Clustered
Applications. In: International Conference on Cluster Computing (Cfi&g IEEE (2006)
18. Roy, P.V.,, Ghodsi, A., Haridi, S., Stefani, J.B., CoupayeR€&inefeld, A., Winter, E., Yap,
R.: Self-management of large-scale distributed systems by combiaeregt@-peer networks
and components. Technical Report 18, CoreGRID - Network of ez (2005)
19. Leclercq, M., Ozcan, A.E., Quéma, V., Stefani, J.B.: SufippHeterogeneous Architec-
ture Descriptions in an Extensible Toolset. In: 29th International Conéeren Software
Engineering (ICSE’07), IEEE (2007) 209-219

