
Experiences from Developing a Component Technology
Agnostic Adaptation Framework

Eli Gjørven1, Frank Eliassen1,2, and Romain Rouvoy2

1 Simula Research Laboratory,
P.O.Box 134, 1325 Lysaker, Norway

eligj@simula.no
2 University of Oslo, Dept. of Informatics,
P.O.Box 1080 Blindern, 0314 Oslo, Norway

frank@ifi.uio.no, rouvoy@ifi.uio.no

Abstract. Systems are increasingly expected to adapt themselves to changing
requirements and environmental situations with minimum user interactions. A
challenge for self-adaptation is the increasing heterogeneity of applications and
services, integrating multiple systems implemented in different platform andlan-
guage technologies. In order to cope with this heterogeneity, self-adaptive sys-
tems need to support the integration of various technologies, allowing the target
adaptive system to be built from subsystems realized with different implementa-
tion technologies. In this paper, we argue that state-of-the adaptation frameworks
do not lend themselves to ease technology integration and exploitation of ad-
vanced features and opportunities offered by different implementationtechnolo-
gies. We present the QUA adaptation framework and its support for technology
integration and exploitation. Unlike other adaptation frameworks the adaptation
framework of QUA is able to exploit a wide range of adaptation mechanisms
and technologies, without modification to the adaptation framework itself. Asa
demonstration of this property of QUA, we describe the integration of an ad-
vanced component model technology, the FRACTAL component model, with the
QUA framework. Our experience from this exercise shows that the QUA adapta-
tion framework indeed allows integration of advanced implementation technolo-
gies with moderate effort.

1 Introduction

Increasingly dynamic computing environments require software developers to support a
wider range of technologies with applications that need to handle continually evolving
situations and environments. Well designedcomponent modelsenforceseparation of
concerns, thus relieving application developers from having to address concerns, such
as extensibility, distribution, and reconfiguration of theapplication, and letting them
focus on business and application logic. In order to ease thetasks of system develop-
ers and administrators, separation of concerns can be supported by ageneric adapta-
tion frameworkfor handling self-adaptation of applications and services[1,2,3]. Self-
adaptation includes the ability to self-configure automatically and seamlessly according
to higher-level policies. By the same approach, the application developer can model a
set of components and their non-functional properties, andleave it to an underlying

middleware to reason about changes in context and how these changes should impact
and possibly reconfigure the application components to provide the optimal end-user
satisfaction with the service. This way, adaptive behavioris developed separately from
the application business logic.

However, a challenge for self-adaptation is the increasingheterogeneity of applica-
tions and services, integrating multiple systems implemented in different platform and
language technologies [4,5,6]. In order to cope with this heterogeneity, self-adaptive
systems need to supporttechnology integration, which is the process of building a sys-
tem from subsystems technologies. Successful technology integration includes over-
coming three challenges:i) ensure that theintegrated subsystems are able to interop-
erate safely, ii) integrate into the adaptation framework the different technologiesused
in the system to be adapted, andiii) whenever possibleexploit the specific features and
opportunitiesoffered by the different implementation technologies used. The latter is
generally preferable as it will reduce duplication of efforts when using advanced imple-
mentation technologies, such as state-of-the-art component platforms. Recently, much
effort has been spent on interoperability, in particular inthe area ofService-Oriented
Architectures(SOA) [7] and web-services composition [8,9]. However, SOAfocus on
solving the first problem by standardizing the interaction between services, thus hid-
ing the service implementation platforms. Consequently, SOA does not facilitate the
exploitation of adaptation-related features that serviceimplementation platforms may
provide. Thus, adaptation techniques are limited to the specification and orchestration
of workflows through dedicated languages and engines.

In this paper, we focus on the second and third problems, namely technology inte-
gration andexploitation, in the context of self-adaptive systems. In order to fully sup-
port technological heterogeneity, self-adaptive systemsmust support integration and
exploitation also of adaptation-related technologies, while ensuring that the resulting
system as a whole performs as expected. In order to be applicable to applications and
adaptation mechanisms implemented with different technologies, the adaptation frame-
work of a self-adaptive system needs to betechnology agnostic. It must be able to adapt
the behavior of applications and services without depending on knowledge of particular
adaptation mechanisms, and application implementation technologies. In contrast, cur-
rent adaptation frameworks are bound to particular adaptation mechanism technologies,
such as component models, middleware, or communication infrastructures [2,3]. Inte-
grating new technologies into these adaptation frameworksmay require major changes
to be made both to the integrated systems and the framework itself. Furthermore, the
resulting system may not be able to exploit the specific capabilities of the integrated
technology. Such a tight coupling between the adaptation framework and the adapta-
tion mechanisms does not facilitate an easy technology integration.

This paper describes the QUA adaptation framework and its support for technology
integration and exploitation. As a demonstration of the latter, we describe our experi-
ence with integrating an advanced component model technology, the FRACTAL com-
ponent model [10], with the QUA framework. Unlike other adaptation frameworks, the
adaptation framework of QUA is able to exploit a wide range of adaptation mechanisms
and technologies, without modification to the adaptation framework itself. In order to
establish a clear separation between the adaptation framework and the adaptation mech-

anisms, we apply theDependency Inversion Principle[11] to the QUA architecture.
Under this principle, higher level policies do not depend onthe modules implementing
the policies, but rather on abstractions. Specifically, by expressing adaptation policies
asutility functions[12], we enable the specification of adaptation policies that are in-
dependent from the technologies used to implement the adaptation actions enforcing
the policies. Furthermore, rather than defining yet anothercomponent model, the QUA
adaptation framework defines a concise, technology-agnostic, meta-model that abstracts
over the various legacy component models, which can be plugged in to the adaptation
framework.

In the remaining of the paper, we first study the requirementsthat self-adaptive sys-
tems must satisfy in order to facilitate easy technology integration, and we introduce
the design principles that support these requirements (cf.Section 2). These principles
are demonstrated through the QUA adaptation framework design (cf. Section 3), and
the integration of the FRACTAL component model (cf. Section 4). We discuss the expe-
riences made from this integration (cf. Section 5) before concluding and presenting our
future work (cf. Section 6).

2 Technology Integration and Adaptation Frameworks

This section analyzes the challenges of designing an adaptation framework support-
ing technology integration and further motivates the need for clearly separating the
adaptation concerns. Then, the main design principles adopted for achieving a better
separation of adaptation concerns in the QUA framework are introduced.

2.1 Limitation of Technology Integrations in Self-adaptive Systems

Conceptually, a self-adaptive system consists of three parts: theadaptation framework,
theadaptation mechanisms, and thetarget adaptive system.

Theadaptation framework(also known as control loop) is responsible for control-
ling the ongoing adaptation processes. The adaptation framework constantly observes
and analyzes the behavior of the target adaptive system, andinstantiates, plans, and ex-
ecutes adaptations when necessary. The adaptation framework is based on adaptation
policies, used to decide which adaptation to carry out in each situation. The adapta-
tion framework depends onadaptation mechanisms, which perform adaptation related
actions, such as collecting and processing information about the target adaptive sys-
temand its environment, evaluating alternative adaptation actions, and performing the
selected ones. Examples of such mechanisms are context monitoring, component life-
cycle handling, and reconfiguration mechanisms.

Thetarget adaptive systemrepresents the target of adaptation. The adaptive system
spectrum covers application software, middleware infrastructure (e.g., communication,
transaction, persistence), lower level operating system modules (e.g., scheduler, driver),
or device resources (e.g., screen resolution, network interface).

The current direction in self-adaptive software research is to isolate the adaptation
concerns from the application logic using generic adaptation frameworks [2,3]. How-
ever, state-of-the-art adaptation frameworks and corresponding adaptation policy spec-

ification languages are tailored to specific component models and platforms. The adap-
tation policy languages, such as SAFRAN [2] or PLASTIK [3], can be used to define
both coarse-grained adaptations, such as replacing one component with another, and
more technical and fine-grained adaptations, down to the level of setting the value of a
component parameter. These adaptation frameworks impose atight coupling between
the adaptation policies—stating what adaptations should becarried out and when—
and the adaptation mechanisms—implementing the corresponding adaptation actions.
Typically, the adaptation policy refers directly to the adaptation actions themselves.

Actually, the integration of a new technology can have the following impacts:

→ integration of adaptive systems requires porting the target adaptive application or
service to the technology platform of the adaptation framework, and to integrate
associated adaptation mechanisms into the framework;

→ integration of new adaptation mechanisms requires updating the adaptation frame-
work with knowledge about the new mechanisms;

→ updating the adaptation framework requires careful evaluation of the effects that
the updates will have on other mechanisms and adaptive systems controlled by the
adaptive systems.

Thus, a possible, and unfortunate, consequence of the abovedependencies may be
that adding a new component to a target adaptive system requires updating the higher
level adaptation policies. In order to overcome the above challenge, design principles
for building technology-agnostic adaptation frameworks are needed. Technology ag-
nostic adaptation frameworks preserve the technological heterogeneity of the target
systems, while exploiting adaptation-related features provided by their implementation
platforms. We argue that to achieve the above, separation ofadaptation concerns should
be enforced when designing and implementing the adaptationbehavior. In particular, by
handling the three parts as separate concerns, we are able toreduce the dependencies
between them, and thereby facilitate the integration of newsolutions in each concern
with less impact on the others.

2.2 Providing a Clear Separation of Adaptation Concerns

In the area of agile programming, theDependency Inversion Principle(DIP) has been
introduced as a fundamental design principle, which contributes to improving software
maintainability and extendability [11]. The DIP can be applied to systems where higher
level modules, containing the important policy decisions and business models of an
application, controls lower level modules, containing theimplementation of the higher
level policies. Thus, according to this principle:

a) high level modules should not depend on low level modules. Both should depend
upon abstractions;

b) abstractions should not depend upon details. Details should depend upon abstrac-
tions.

We apply the DIP to the case of an adaptation middleware consisting of a higher
level module, the adaptation framework containing the adaptation policies and lower
level modules, containing the adaptation mechanisms.

In [11], the author points out two consequences of applying the DIP. The first, and
most obvious, consequence is that no implementation class should depend on another
implementation class, but rather on abstractions. The second consequence is that the
abstractions should be owned by the higher level policies, rather than the lower level
implementations. From this, we formulate the following requirements for the design of
the adaptation framework:

1. theadaptation framework and the adaptation mechanism should depend on adap-
tation mechanism abstractions(according to DIPa)),

2. theadaptation mechanisms and the adaptation target should depend on adaptation
target abstractions(according to DIPa)),

3. theadaptation mechanism abstraction should be owned by the adaptation frame-
work rather than the mechanisms (according to DIPb)),

4. theadaptation target abstraction should be owned by the adaptation mechanism,
rather than the adapted system (according to DIPb)).

Figure 1 illustrates the design of an adaptation framework that satisfies the DIP
principle. The modelling convention used here, and in the rest of the paper, is that
closed arrows represent an implementation relationship from the implementing class to
the interface, while open arrows represent associations and dependencies.

Adaptation
Framework

«interface»
Adaptation Mechanisms

Adaptation Mechanisms
Provider

Adaptation Target
Provider

«interface»
Adaptation Target

**

uses

**

uses

implements

implements

Fig. 1. Applying dependency injection principle to adaptation frameworks.

Many adaptation frameworks satisfy the requirements 1, 2, and 4 [2,3,13]. They typ-
ically define adaptation-related interfaces that must be implemented by target systems
in order to conform to the adaptation mechanisms. However, as discussed in Section 2.1,
these frameworks use adaptation policies that tightly couple the adaptation framework
and the mechanisms, making the adaptation mechanism abstraction not truly owned
by the adaptation framework as specified by requirement 3. Below, we discuss how to
design adaptation policies, making possible to fully satisfy the DIP.

2.3 Using Technology-independent Adaptation Policies

The adaptation framework depends on an adaptation policy, which is applied to de-
cide which mechanism to use in a certain situation. Many adaptation frameworks are
based on variants ofrule-based adaptation policies[2,3], where policies are specified

using condition-action expressions. Rule-based approaches can be simple and practi-
cal, at least as long as the rule-set is small. However, adaptation rules do not separate
well between the adaptation framework and adaptation mechanism. Rules map adap-
tation conditions directly to detailed knowledge about thetarget adaptive system, and
the available adaptation mechanisms. When integrating new adaptation mechanisms
into the rule-set, at best, new rules have to be added to the rule-set. In order to keep
the rule-set consistent, then the entire rule-set has to be checked for completeness (all
conditions map to an action) and conflicts (conditions mapping to multiple actions that
are contradictory). At worst, the policy language is not expressive enough for the new
mechanism. For example, the policy language designed for supporting the capabilities
of a given component model, may not be directly applicable toanother component
model. The essential problem is that the rule-based policy languages are owned by the
mechanisms, producing dependencies that are difficult to handle when integrating new
technologies.

Utility-based adaptation policieshave been elaborated as an alternative to rule-
based policies in self-managing systems [12]. Utility-based policies are expressed as
functions assigning to each configuration alternative—including adaptation mecha-
nisms necessary to implement the alternative—a scalar valueindicating the desirability
of this alternative. A utility-based adaptation frameworkdiscovers a set of configura-
tion alternatives, computes their utility, and selects theone with the highest utility. This
way, utility functions introduce a level of indirection between the adapted system and
the mechanisms implementing a configuration, and its desirability. The utility value is
calculated from metadata describing the functional and qualitative properties of a con-
figuration, rather than the technical implementation knowledge. Thus, utility functions
provide a higher-level, mechanism and technology independent adaptation policy lan-
guage. The reader can refer to [14] for a detailed discussionabout the characteristics of
utility functions.

2.4 Reflecting the Target Adaptive System Properties

In order to be able to compute utility values, metadata aboutthe functional and qualita-
tive properties of configuration alternatives and adaptation mechanisms must be avail-
able to the adaptation framework. Thus, the adaptation framework depends on a techno-
logically independent meta-model that is able to express information about the required
properties.

In order for the adaptation framework to be independent of the existence of particu-
lar reflective capabilities provided by target technologies, the metadata must be pro-
vided by a separate module. A variant of traditional reflection, calledmirror-based
reflection [15], can be used to define reflective APIs suitable for technologically in-
dependent adaptation frameworks. In mirror-based reflection, the reflective capabilities
are provided by separate objects calledmirrors, instead of by the reflected objects them-
selves, as is common in traditional reflection. The reader can refer to [15] for a detailed
discussion about the characteristics of mirror-based reflection.

3 Designing the QUA Adaptation Framework

This section introduces the design of the QUA adaptation framework, which proposes
to improve the state-of-the-art adaptation middleware approaches by offering a modular
support for reflecting, reasoning, and deploying services.

3.1 An Overview of the QUA Middleware

The QUA middleware supports middleware-managed adaptation, which means that the
adapted system is specified by its behavior, and thenplanned, instantiated, andmain-
tainedby the middleware in such a way that its functional and qualitative requirements
are satisfied throughout its lifespan. In order to be able to represent the adapted system
from specification to termination, the unit of adaptation inQUA is a service, which we
define as:

A service describes a set of capabilities that are defined byi) a group ofoper-
ationsand theirinput and output data, andii) a contract(explicit or implicit)
describing the work done, as delivered output data, when invoking these oper-
ations with valid input data. Theservice lifespanencloses its specification of
behavior, association with implementation artifacts, service instantiation, exe-
cution, and termination.

Thus, a service may be associated with implementation artifacts implementing its be-
havior, or running objects performing its behavior. Service implementation artifacts al-
ways require a particularservice platform, which can be used to instantiate a service by
interpreting the implementation artifacts. Finally, service implementations may depend
on other services in order to implement the promised functionality.

A QUA client is typically a client application, using QUA to instantiate services, or
service a development tool, using QUA to deploy service implementations and meta-
data. QUA defines a programming API that can be used to invoke the QUA middleware
services from tools or applications, and providing the following operations:

– Publication of service implementations: service implementations may include dif-
ferent types of implementation resources, such as implementation classes (Java
classes or library modules), component descriptors (ADL orXML documents),
interface definitions etc., depending on the type of technology used to implement
the service.

– Advertising service implementation meta-data: Meta-data describing the static and
dynamic properties of service implementations can be advertised to the middle-
ware.

– Instantiation of services: service instantiation means evaluating, selecting, and in-
stantiating service implementations, and perform initialservice configuration. The
resulting service will be maintained by the QUA middleware throughout its lifespan
through adaptation.

– Reflection on services: the QUA middleware defines a reflective API, called the
Service Meta Object Protocol(SMOP), used to inspect and manipulates services.

In contrast to other adaptation frameworks, which mixes theadaptation policies
with the adaptation mechanisms, QUA identifies a clear separation between the three
adaptation concerns described in Section 2.

Conceptually, we order the three adaptation concerns horizontally, as depicted in
Figure 2. By applying theDependency Injection Principle(DIP), we achieve an hor-
izontal separation of concerns by establishing an orderingof module pairs where the
higher level module always owns the interfaces shared with next lower-level modules.

«interface»
Planning
Framework

«interface»
Service

Meta-Object Protocol

«interface»
Platform
Framework

QuA Adaptation

Framework

Service
Planner

Adaptation Target
Service Mirror

Service
Platform

«interface»
Adaptation Target

Adaptation Target
Provider

implementsimplements implements

implements

*

*

uses

*

* uses
*

*

uses
Adaptation
Framework

Adaptation
Mechanisms

Adaptation
Targets

**

uses

*

*

uses

*

*

reflects

*

*

uses

Fig. 2.Design of the QUA adaptation framework.

The adaptation framework module define three abstractions;ThePlanning Frame-
work is responsible for selecting service implementations, while thePlatform Frame-
work is responsible for managing service implementations during their execution. The
Service Meta-Object Protocol (SMOP) can be used to inspect and manipulate ser-
vices throughout their lifespan.

The planning and platform frameworks abstractions are implemented by concrete
planning and implementation mechanisms. The planning framework is implemented by
Service Planners that use metadata provided by the SMOP to find alternative service
implementations, analyze their expected behavior, and select an alternative that match
the service requirements. The platform framework is implemented byService Plat-
forms that enclose technology specific code and mechanisms supporting service instan-
tiation and adaptation, including binding and rebinding ofservice dependencies. Such
adaptation mechanisms typically define adaptation-related interfaces implemented by
the target systems.Service Platforms are responsible for maintaining the causal con-
nection betweenService Mirrors implementing the SMOP, and theAdaptation Tar-
gets. In the adaptation target layer, we find theAdaptation Target Providers, which
are the base level objects implementing the adaptation targets.

3.2 Reasoning Support: the Utility-based Planning Framework

The planning framework appliesutility-based adaptation policies[12] as a way to
keep the adaptation framework independent of integrated technologies and mecha-
nisms. Each service may be associated with autility function, which is applied by the

planning algorithm to metadata describing the qualitativeproperties of each alternative
service implementations. Metadata about the qualitative properties of a service imple-
mentation can be expressed byquality predictors, which are functions of the run-time
environment, and the quality provided by other services that the service depend on, if
any. Such predictor functions are written by the implementation developer, and made
available through the SMOP. By computing utility functionsand quality predictors, the
utility of a particular implementation can be calculated based on the desirability of al-
ternative behaviors, rather than knowledge about the alternative implementations and
mechanisms.

The planning process can be implemented by numerous algorithms. By applying
the DIP also to the planning framework, the adaptation framework is protected from
changes in the mechanisms used by the planning framework.

3.3 Technology Support: the Platform Framework

When an implementation has been selected by the planning framework, the platform
framework is responsible for applying the correct mechanisms for instantiating the ser-
vice. A service platform is able to interpret implementation artifacts of certain types,
instantiate services from those artifacts, and provide a run-time environment for the in-
stantiated services. For example, aJava Service Platform provides access to aJava
Virtual Machine, and is able to instantiate Java objects hosted by that machine, from
Java classes. The platform also defines the types and naturesof service collaborations
defined by the technology, such as component composition through component connec-
tors, or specialized communication patterns, such as event-driven communication and
data streaming.

Upon service instantiation, a service platform receives from the adaptation frame-
work, metadata describing the required service, implementation artifacts that have been
selected by the planning framework during initial planning, and services that the im-
plementation depends on. Adaptation-aware platforms monitor their managed services,
and when they find it necessary, trigger the adaptation framework for a re-planning. The
result from the re-planning is a new set of metadata and implementation artifacts that
can be used by the platform to perform an adaptation.

In order to hide the details of service instantiation and configuration from the adap-
tation framework, we apply the DIP to the platform framework. The adaptation frame-
work invokes a service platform to instantiate a service with a package encapsulating
the implementation artifacts, calledblueprint, as a parameter. As the type of implemen-
tation artifacts used by a certain technology is highly technology specific, blueprints
are black boxes to the adaptation framework. The blueprint may contain technology
specific information related to different types of adaptation mechanisms, such as com-
ponent replacement, component parametrization, insertion of interceptor or monitors,
etc. The QUA adaptation framework does not define the format of a blueprint, nor does
it ever inspect or manipulate its content. Blueprints are created by technology expert
developers, and deployed to the QUA middleware using technology specific tools.

The platform depends on technology specific mechanisms in order to instantiate
and adapt the service. Examples of such services are component factories, parsers for

component descriptors, binders and configurators, resource managers, etc. These mech-
anisms may either be implemented as a part of the platform, orthey may be deployed to
the middleware as services that the platform depends on. Based on the simple abstrac-
tions described above, multiple adaptation techniques canbe integrated and exploited
through the platform framework concept [2,3,4,5,6,13].

3.4 Reflection Support: the Service Meta-Object Protocol

The QUA middleware defines a service meta-object protocol that canbe used to reflect
on services in all phases of their life-cycle. The SMOP is based on a services meta-
model, which is used to describe exactly the aspects of a service related to planning,
instantiation, and execution of services managed by QUA—i.e., its behavior (required
or provided type, and utility function), implementation (including blueprint, required
service platform, and implementation dependencies), and instances if any. Figure 3 de-
scribes the QUA service meta-model.

is in

refers
Behavior State

Service

Implementation Instance

Type

Utility

Function

QoS

Predictor

Blueprint
*

*
has

*

*

1

*

defines0..1
*

encloses

1 *

*

*

expresses

1
*

refers

*

*

requires
1

*

hosted by

1

*

realizes

Fig. 3. The QUA service meta-model.

In order to conform to the DIP, the SMOP must provide the adaptation framework
with a technologically independent reflective API. The QUA reflective API is based
on mirror reflection, where the meta-level facilities are implemented separately from
the reflected system as described in Section 2.4. Thus, mirror-based reflection does not
require any changes to be made to the reflected system, and it allows the coexistence
of technology specific reflective APIs required by service platforms and their mech-
anisms. In [16], we describe a comprehensive application scenario demonstrating the
application of the service meta model, including examples of quality prediction and
utility functions.

4 Implementing the QUA-FRACTAL Adaptation Middleware

In [14], we have shown that the framework is applicable to simple programming models,
such as the Java programming languages, by designing lightweight component models
based on this language. In order to confirm the ability of the QUA adaptation frame-
work to integrate and exploit concrete adaptation technologies, we need to apply the
framework to an adaptation technology that provide a rich set of features. To this end,

we consider the FRACTAL component model [10] as an interesting candidate technol-
ogy. The FRACTAL component model is a lightweight and hierarchic component model
targeting the construction of efficient and highly reconfigurable middleware systems.
FRACTAL has been used in several projects to implement advanced adaptive and self-
adaptive behavior [17,2,18]. Thus, if we are able to successfully integrate and exploit
the rich set of available mechanisms and tools provided by FRACTAL ecosystem, with-
out coding FRACTAL-specific knowledge into the generic adaptation framework,it is a
strong indication that the QUA adaptation framework has the expected capabilities with
regards to supporting integration.

The work presented in this paper is based on integrating the powerful, expressive,
and flexible component reconfiguration mechanisms providedby FRACTAL. In particu-
lar, theFractalADL Factoryis a component factory that instantiates FRACTAL compo-
nents and composites from architecture descriptions written in the FRACTAL Architec-
ture Description Language(FRACTALADL) [19]. The FSCRIPT engine interprets con-
figuration scripts written in the FRACTAL-based configuration language FSCRIPT [2].
The FSCRIPT language includes primitives for standard FRACTAL component manage-
ment, and can be extended in order to support more advanced configurations.

4.1 The FRACTAL Component Model

The reconfiguration capabilities are defined by controllersthat defines the level of in-
trospection and control of a component (life-cycle, attributes, bindings, interfaces, etc.).

Application

Client

Server1

Server2

B C

CA

run
*

**

**

Composite
Component

Primitive component

Shared
Component

Server
Interface

Client
InterfaceController

BindingContent

Internal
Interface

Collection
Interface

c lc bc

c lc cc

c lc cc

c lc cc

c lc bc c lc ac

c lc bc c lc ac

Control
interface

Fig. 4.Architecture of a FRACTAL component.

Figure 4 illustrates the different entities in a typical FRACTAL component architec-
ture. Thick black boxes denote thecontroller part of a component, while the interior
of these boxes correspond to thecontent partof a component. Arrows correspond to
bindings, and tau-like structures protruding from black boxes are internal or external
interfaces. Internal interfaces are only accessible from the content part of a compo-
nent. External interfaces appearing at the top of a component represent reflective con-
trol interfaces, such as theLife-cycle Controller(lc), the Binding Controller (bc) or
the Content Controller(cc) interfaces. The two dashed boxes (C) represent ashared
component.

4.2 The QUA-FRACTAL Middleware

The QUA-FRACTAL middleware has been implemented as aservice platform, Frac-
tal Platform, that includes an implementation of the JULIA run-time, theFractalADL
factory, and theFScript engine, as illustrated in Figure 5.

«interface»
Platform
Framework

Fractal
Platform

«interface»
Adaptation Target

FScript

implements

Adaptation
Mechanisms

Adaptation
Targets

**

uses

Adaptation
Framework

FractalADL

Julia Runtime

implements

1

1

uses

1 1

uses

1

1

uses

Fractal Component
Provider

1 1

includes

1

1
includes

1

1
includes

Fig. 5. Architecture of the FRACTAL platform.

The FRACTAL platform instantiates services from FRACTAL blueprints, containing
FRACTALADL descriptors, implementation classes, and FScript configuration scripts.
It extracts ADL descriptors and implementation classes from the blueprint, and invokes
the ADL factory to instantiate components from the descriptors. The ADL factory de-
pends on the JULIA run-time to create the component instances from the implementa-
tion classes. Finally, FScripts are extracted from the blueprint, and the FSCRIPTengine
is invoked to perform configuration based on the FScripts. FRACTALADL and FSCRIPT

use standard FRACTAL controllers to perform component management tasks, such as
binding, life-cycle management, and parameter configuration.

In order to be able to exploit different combinations of FRACTAL components, we
have to enable the QUA planning framework to plan alternative FRACTAL components
independently. For example, in the case of composite components, we want to be able
to plan certain sub-components independently, in order to find the combination of com-
ponents that best satisfy the service requirements. The recursive meta-model provided
by QUA enables such a nested planning through the definition of implementation de-
pendencies. Instead of publishing an ADL descriptor describing the complete composi-
tion, we extract ADL descriptions describing sub-components into separate FRACTAL

blueprints. Thus, in the case where several implementations of a sub-component are
available, the planner will select the one giving the highest utility.

4.3 TheComanche Application

Below, we illustrate our prototype applicationComanche: a legacy web server devel-
oped by the FRACTAL community.Comancheis a lightweight web server implemented
with the FRACTAL component model3. This implementation provides the core features

3 Comanchetutorial:http://fractal.ow2.org/tutorial.

of a web server as a proof of concept of the relevance of FRACTAL for building middle-
ware systems.

In its initial version,Comancheis made of several components that identify the
various concerns of a web server, as depicted in Figure 6.

Receiver

Scheduler

Analyzer Logger

File Handler

Error Handler
Dispatcher

Comanche

Frontend

Backend Handlers

Fig. 6.Architecture of theComancheweb server.

In particular,Comanchecontains a componentScheduler that schedules the treat-
ment of incoming requests (see Figure 6). The implementation of this component con-
trols the allocation of dedicated activities for analyzingincoming requests. The initial
implementation of the scheduler creates a thread per incoming request without control-
ling the number of activities created. In the SAFRAN project [2], an alternative to the
scheduler proposes to use a pool of threads to control the number of threads used by
the web server. However, the thread pool scheduler provideslower response times than
constantly creating new threads.

1ServiceMirror comancheMirror = QuA.createServiceMirror(Comanche);
2comancheMirror.setUtilityFunction(ComancheUtility);
3comancheMirror.setImplBlueprint(ComancheBlueprint);
4comancheMirror.setImplQoSPredictor(ComanchePredictor);
5comancheMirror.setImplDependencies("s", Scheduler);

Listing 1.1. Service mirror reflecting theComancheweb server.

In order to be able to apply the QUA-FRACTAL middleware to the configuration
of the Comancheweb server, we had to deploy theComancheapplication, including
ADL descriptors, FScripts, and implementation classes, tothe QUA middleware as a
blueprint, and to advertise the necessary meta-data, including utility function and qual-
ity predictors, to the middleware (see the QuA-specific codefor advertising metadata,
represented as a service mirror in Listing 1.1).

1<definition name="Frontend" extends="FrontendType">
2<component name="rr" definition="Receiver"/>
3<component name="s" definition="Scheduler"/>
4<!-- Definitions of bindings -->
5</definition>

Listing 1.2. FRACTALADL descriptor of theComanchefront-end.

The ADL for theComanchefront-end is depicted in listing 1.2. The utility of the
Comancheserver is expressed by a function that returns high utility values for low re-
sponse times, and low utility values for high response times. Listing 1.3 contains the
component replacement scriptreplace-scheduler, used to replace one scheduler com-
ponent with another. The script uses a number of primitive operators, such asstop,

bind, andremove, in order to implement the routine that has to be followed in order to
safely replace one component with another. These operatorsare mapped by FSCRIPT

to invocations of standard FRACTAL controller interfaces.

1action replace-scheduler(comanche, scheduler) {
2stop($comanche);
3var frontend = $comanche/child::fe;
4unbind($frontend/child::rr/interface::s[client(.)]);
5remove($frontend, $frontend/child::s);
6add($frontend, $scheduler);
7bind($frontend/child::rr/interface::s, $scheduler/interface::s);
8start($comanche);
9return $comanche;
10}

Listing 1.3. FSCRIPT statements replacing component inComanche.

5 Evaluating the QUA-FRACTAL Implementation

In order to evaluate the adaptation framework presented in Section 3, we have to con-
sider to what degree the combined QUA-FRACTAL middleware was able to solve the
challenges mentioned in Section 1, namely:ii) to integrate into the adaptation frame-
work different technologiesused in the system to be adapted, andiii) to whenever possi-
ble exploit the specific features and opportunitiesoffered by the different implementa-
tion technologies used. With regard toii) , we have managed to integrated the FRACTAL

run-time and FRACTAL components into the QUA adaptation framework. The integra-
tion required an acceptable amount of work, given the availability of developers that
have moderate knowledge about the QUA middleware, and some knowledge about the
FRACTAL middleware. With regard toiii) , we have managed to exploit two FRACTAL

specific adaptation mechanisms, namely the FRACTALADL factory and the FSCRIPT

language.
In order to reflect the amount code in the resulting middleware that is technology

agnostic, technology specific, and application specific, Table 1 presents the number of
classes and the byte-code size of the different parts of the resulting middleware and
application. As indicated by the table, the FRACTAL mechanisms contribute with by
far the largest amount of files and byte-code. The QuA middleware consists of a rather
small middleware core, which byte-code size is less than 10%of the size of QUA-
FRACTAL platform. Furthermore, the number of QUA-specific files required in order to
implement the QUA-FRACTAL platform was only 8. This number includes both the def-
inition of the QUA-FRACTAL platform interface, the QUA-FRACTAL implementation
classes, the QUA-FRACTAL blueprint used to encapsulate FRACTAL implementation
artifacts, and an helper platform used to instantiate the QUA-FRACTAL platform itself,
as a service.

The relatively small size of the QUA middleware is the result of keeping the re-
sponsibility of the QuA middleware small and concise, and independent of technology
specific details and knowledge by the application of the DIP and utility functions. Due
to these principles, we are able to control an advanced and comprehensive adaptation
middleware technology from this small and generic adaptation framework.

Table 1.Distribution of code in QUA-FRACTAL.

Concern Number of class filesByte-code size (Kb)Distribution (%)

QUA middleware 53 276 7
QUA-FRACTAL platform 8 76 2
JULIA run-time 300 1,782 45
FRACTALADL factory 171 816 21
FSCRIPT engine 151 828 21
Utility classes 33 168 4

QUA-FRACTAL total 716 3,946 100
Comancheapplication 17 76

6 Conclusions

Due to the growing heterogeneity of technologies used to implement nowadays dis-
tributed systems, existing adaptation middleware faces more and more difficulties to
perform technology agnostic adaptations. This phenomenonis particularly true in the
component-based software engineering community where most of the state-of-the-art
approaches to adaptation suffer from their tight coupling to a particular component
model [2,3]. This strong dependency restricts the integration of new technologies (e.g.,
component models or middleware frameworks) to the fixed set of abstractions supported
by the adaptation middleware, thus avoiding the integration of technology-specific
adaptation capabilities.

The contribution of this paper is to present the implementation of a modular adap-
tation middleware, called QUA, whose design supports the integration of various tech-
nologies. This design combines the definition of aMeta-Object Protocol[15] and the
application of theDependency Inversion Principle[11]. The former is used to reflect
the meta-data associated to technology artifacts, while autility-based planning frame-
work and aplatform frameworkapply the latter to reason about the reflected metadata
and perform adaptations, respectively. We validate this design by reporting the integra-
tion of the FRACTAL component model into the QUA middleware, and we illustrate the
resulting adaptation middleware on the adaptation of a component-based application:
theComancheweb server. By facilitating the integration of technologies, this approach
clearly separates the adaptation concern from the application and the technology.

As a matter of perspective, we plan to extend the set of supported technologies and
experiment the consistent adaptation of cross technology applications.

Acknowledgements

The authors thank the reviewers of the CBSE conference for valuable comments. This
work was partly funded by the European Commission through the project MUSIC (EU
IST 035166).

References

1. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems14(3) (1999) 54–62

2. David, P.C., Ledoux, T.: An Aspect-Oriented Approach for Developing Self-Adaptive Fractal
Components. In: 5th International Symposium on Software Composition (SC’06). Volume
4089 of LNCS., Springer (2006)

3. Batista, T.V., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in Component-
based Systems. In: 2nd European Workshop on Software Architectures (EWSA’05). Volume
3527 of LNCS., Springer (2005) 1–17

4. Sun microsystems: Java Platform, Enterprise Edition (Java EE)
http://java.sun.com/javaee.

5. OSGi Alliance: OSGi Service Platform Release 4http://www.osgi.org.
6. Microsoft .Net: Microsoft .NET Framework 3.5http://www.microsoft.com/net.
7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall

(2005)
8. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middlewarefor Self-adaptation of

Web Services Compositions. In: 7th International Middleware Conference. Volume 4290
of LNCS., Springer (2006) 62–80

9. Kuropka, D., Weske, M.: Implementing a Semantic Service ProvisionPlatform Concepts
and Experiences. Journal Wirtschaftsinformatik – Special Issue on Service Oriented Archi-
tectures and Web Services1 (2008) 16–24

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani,J.B.: The FRACTAL compo-
nent model and its support in Java. Software Practice and Experience– Special Issue on
Experiences with Auto-adaptive and Reconfigurable Systems36(11/12) (2006) 1257–1284

11. Martin, R.C.: Agile Software Development, Principles, Patterns, andPractices. Prentice Hall
(2002)

12. Kephart, J.O., Das, R.: Achieving Self-Management via Utility Functions. IEEE Internet
Computing11(1) (2007) 40–48

13. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for Distributed
Systems. In: 1st International Workshop on Self-Healing Systems (WOSS’02), ACM (2002)
33–38

14. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S.O., Papadopoulos, G.A.: A
Utility-Based Adaptivity Model for Mobile Applications. In: 21st International Conference
on Advanced Information Networking and Applications (AINA’07), IEEE (2007) 556–563

15. Bracha, G., Ungar, D.: Mirrors: Design Principles for Meta-level Facilities of Object-
Oriented Programming Languages. In: 19th Annual Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’04), ACM(2004) 331–344

16. Gjørven, E., Eliassen, F., Lund, K., Eide, V.S.W., Staehli, R.: Self-Adaptive Systems: A
Middleware Managed Approach. In: 2nd IEEE International Workshop on Self-Managed
Networks, Systems and Services (SelfMan). Volume 3996 of LNCS., Springer (2006) 15–27

17. Bouchenak, S., Palma, N.D., Hagimont, D., Taton, C.: AutonomicManagement of Clustered
Applications. In: International Conference on Cluster Computing (Cluster’06), IEEE (2006)

18. Roy, P.V., Ghodsi, A., Haridi, S., Stefani, J.B., Coupaye, T.,Reinefeld, A., Winter, E., Yap,
R.: Self-management of large-scale distributed systems by combining peer-to-peer networks
and components. Technical Report 18, CoreGRID - Network of Excellence (2005)

19. Leclercq, M., Özcan, A.E., Quéma, V., Stefani, J.B.: Supporting Heterogeneous Architec-
ture Descriptions in an Extensible Toolset. In: 29th International Conference on Software
Engineering (ICSE’07), IEEE (2007) 209–219

