
Architecture and Performance of a Practical IP Fast
Reroute Implementation

Ole Kristoffer Apeland∗ and Tarik Čičić†
∗ Simula Research Laboratory, Martin Linges vei 17, N-1331 Fornebu, Norway

Email: oleap@simula.no
† Department of Informatics, University of Oslo, Gaustadelléen 23, N-0371 Oslo, Norway

Email: tarikc@ifi.uio.no

Abstract—IP Fast Reroute (IP FRR) denominates a set of meth-
ods and technologies for proactive, local recovery in IP networks.
It has received much attention recently, in the research commu-
nity and the IETF. Several proposals for IP FRR have been
published by independent research groups, and main properties
and trade-offs are understood. However, only simulation-based
and analytical evaluations are known to be performed so far. In
this paper we present the architecture and evaluate performance
of the first known practical implementation of IP FRR. The
arcitecture features a modular approach consisting of an IP FRR
framework and exchangeable backup path calculation modules.
The performance evaluation is based on an implementation of
Multiple Routing Configurations. The implementation provide
throughput that closely matches the achieved performance during
normal operation.

I. INTRODUCTION

The versatility of the Internet Protocol (IP) combined with
the ubiquitious Internet deployment has lead to a migration
of all types of network services to a single platform. These
include VoIP, video conferencing and other real-time and inter-
active services, increasing the requirements for the reliability
and availability of the network infrastructure.

Normally, failures in IP networks are taken care of by
mechanisms that exist in traditional IP routing protocols such
as OSPF or IS-IS. These protocols identify failures as topology
changes, and convey the information throughout the network
using link-state advertisements. All routers re-calculate their
routing paths, and populate their forwarding tables based
on this information. Such global, reactive response is slow.
Although a careful tuning of parameters can decrease the re-
convergence time to a sub-second timeframe in a controlled
environment [1], normally the re-convergence time is unac-
ceptable for time-critical applications.

Several studies have shown that network failures happen
frequently [2][3][4]. Furthermore, they show that a significant
portion of these events have a temporary scope where 50% last
less than one minute[4]. Ideally these transient failures should
be handled without a global re-convergence. Due to stability
concerns there is a limit on how fast it is possible to trigger
a global re-convergence[5].

In recent years a research area, IP fast reroute, has provided
IP based networks with the means to recover from node
and link failures almost instantaneous. This is achieved by
invoking pre-calculated repair paths in the node that detects

the failure. A framework is being adopted by the IETF[6].
Several schemes that utilize such local, proactive recovery are
known, and include “NotVia” [7], “Multiple Routing Con-
figurations” [8] and “Failure Insensitive Routing” [9]. Since
the backup path can be selected locally, the detecting node
needs not inform other routers. For the short-lived failures
this may suffice since the pre-calculated information may be
used until the component is operational again. For permanent
failures the recovery mechansims extend the period available
to perform the time-consuming global failure signaling and
path calculations. This should allow the disruption time to be
reduced to the time needed to detect the failure and invoke the
recovery rerouting, can be done in tens of milliseconds.

IP FRR schemes and methods have so far been studied using
simulation and analytical models only. There is a need to better
understand the architectural constraints and the performance
yield of the IP FRR. The mechanisms generally impose a
higher resource usage in routers, and if the performance
limitations are exceeded it could lead to an unstable network
where the effect of a single failure propagates and disrupts
traffic otherwise unaffected. In this paper we describe an
implementation of IP fast reroute in software based routers
running GNU/Linux.

This paper is organized as follows. Section II describes the
IP fast reroute scheme used in this implementation and gives a
short introduction to the basics of routing and forwarding using
GNU/Linux. Section III gives an overview of the challenges
the implementation needs to meet. Section IV gives a detailed
description of the IP FRR architecture and implementation
while section V gives an evaluation of the performance.

II. BACKGROUND

A. MRC
Multiple Routing Configurations (MRC)[8] is an IP Fast

Recovery scheme based on observing that high link weights
in a network with shortest-path routing can be used to “isolate”
some nodes from forwarding. The isolated nodes are still
functional data sources or destinations, but the shortest path
algorithm will not select them as transit nodes. MRC requires
that all nodes in the network are connected by a path that does
not contain any isolated nodes.

Normally, MRC uses the default, non-restricted topology for
routing. If a failure is detected, the detecting node selects a

“backup topology” where the next hop (failed) node is isolated.
This way a path that bypasses the failure is implicitly selected.

The MRC concept development has undergone sev-
eral iterations. The most recent version called “Relaxed
MRC”(rMRC)[10] is both simpler and has improved perfor-
mance compared to its predecessors. Typically, 3-6 backup
topologies are sufficient to guarantee recovery from any link
or node failure in the network.

B. Routing and forwarding using GNU/Linux
Software routers implement the forwarding and routing

logic in software, and are generally built using normal PC-
class hardware. This design allows new routing and forward-
ing functionality to be easily implemented. Furthermore, the
components used are usually cheap and well documented,
and there exists a large selection of open source software for
networking application. In our implementation we have used
GNU/Linux as the foundation.

GNU/Linux based software routers implement the tradi-
tional split between routing and forwarding; the forwarding
engine and its configuration framework is found inside the
Linux kernel while the routing protocols are implemented
by software routing suites (i.e. applications) in the user-
space. Thus, software routing suites construct and maintain
the routing table, while the kernel uses this information in
order to decide and subsequently transmit the packet towards
its next hop.

The GNU/Linux operating system is a moving target as
continuous development takes place in nearly all areas. We
give a high level view of the current mechanisms used, as that
are less likely too change in a radical way in the near future.

1) Routing engine: For the routing engine we selected
Quagga [11], which is a popular software routing suite for
GNU/Linux, BSD and Solaris. The software is based on a
modular architecture where the routing service is provided by
a set of daemons that implement different routing protocols.
A large number of common unicast IPv4 and IPv6 IGPs
daemons are available. Quagga is configured by activating
daemons according to the desired routing protocols. These
daemons are then tied together with a daemon named zebra,
responsible to update the kernel routing table and pass routing
information between the IGP daemons. As Quagga operates at
the application level and only instruct the forwarding process
of the kernel it is hardware independent and very portable. An
example Quagga configuration that runs OSPF[12] is depicted
in Fig. 1.

2) The kernel forwarding engine: Several components are
combined in order to provide the IP layer functionality in
the Linux network stack. Here we give a basic understanding
of the design and key components used; the routing policy
database (RPDB), Netlink[13], and Netfilter [14].

The packets are processed and distributed into different
internal paths depending on a variety of aspects. In particular
this is determined by the individual packets origin and proto-
col. For example the locally generated packets are submitted
to a different routing decision, i.e. the logic surrounding a

Fig. 1. Network node architecture overview. The shaded boxes implement
the MRC functionality.

table lookup procedure, than packets received from a network
interface. Due to optimizations, these differences are also re-
flected in the information available at the different processing
paths and stages. E.g. the routing decision used for processing
locally generated packets is not provided with an actual IP
header, but operates on information that at a later stage will
be used to generate the header.

The table lookup procedure in linux implements policy
routing by using a set of rules and up to 255 different routing
tables to extend the capabilities of the table lookup function.
The collection of routing tables and rules is called the Routing
Policy DataBase (RPDB). In the Linux kernel the rules are
ordered by priority in a linear list that is used to evaluate both
meta and header information of IP packets. Furthermore, the
rules contain an action predicate commonly used to decide
which routing table to consider when determining the next-
hop. The rule matching and subsequent actions are performed
in a linear manner until a route is selected or no more rules
are left. The default behavior of Linux is to have three rules,
matching all packets, that point to a local, main and default
routing table. Additional user specified rules may for example
be specified in order to tell the lookup procedure to consider
specific routing tables based on which interface a packet
arrived at.

Netlink is a general framework for message passing between
single or multiple user-space processes and the kernel as
well as intra-kernel communication. It is commonly used in
the networking subsystem where it assists in tasks such as
user-space management of routing tables and passing internal
event notifications between the various sub components in the
network stack.

Netfilter is a series of hooks located in the Linux network
stack as shown in Fig. 2. Their placement allows packets to be
intercepted at major points in the processing stages as well as
at major forks or intersections in the path a packet may follow.
Each hook maintains a chain of callback functions sorted based
hook type and priority where various sub-processes in the
network stack may register for additional packet processing.
Netfilter is commonly in processes such as packet filtering and
network address translation.

!"#$%$&'()')*+,$-

!./0.123456 !1730.123456

819:8045

*1.;:.<

819:80123

."=>+?@
<$A+-+"?

."=>+?@
<$A+-+"?

5$>#"%B
4?>$%CDA$

5$>#"%B
4?>$%CDA$

7"AB$>-

.!<E
F*4E'GHIJK
D?&'%=,$-L

*4E',""B=M

Fig. 2. A flow diagram showing placement of netfilter hooks (white boxes)
and where in the process the routing decision takes place.

III. DESIGN CHALLENGES

The performance of a software router is governed by the
capabilities of the hardware, and it will never be able to
perform better than what is allowed by the weakest link in
the forwarding chain. Since the routing and forwarding tasks
are implemented in software all processes share the available
resources. Several components may influence packet pro-
cessing performance, including the cache, and computational
resources provided by the CPU, the available memory and
I/O bus bandwidth[15]. Deploying IP fast reroute mechanisms
increases the resource usage, during both failure and normal
operation situations.

IP fast reroute mechanisms use pre-calculated alternative
paths to provide fast recovery. The mechanism we use in our
implementation has no upper bounds on how many backup
topologies are required, but typically 3-6 are sufficient to guar-
antee recovery from any link or node failure in the network.
The additional entries in the routing table increase the memory
usage for the routing tables, the administration overhead, and
the potential number of entries in the table lookup cache. In
software routers memory is cheap and plentiful, and thus we
don’t perceive additional memory requirements as a problem.
However, the administrative overhead could potentially disrupt
traffic if increased by a large factor. We choose to minimize
RPDB administration overhead at the cost of using multiple
routing tables. By doing this the size of routing table used
during failfree operation is kept at its original size and allows
sequential scheduling of ordinary and recovery administration
tasks.

In a failure situation IP fast reroute mechanisms increase
the computational complexity for packet processing in routers
adjacent to the failed network component. In order to deter-
mine if an IP packet should be recovered it must be submitted
to an ordinary route resolve providing an outgoing interface.
Subsequently, if the selected next-hop link has failed, the
recovery procedure needs to perform it’s own route resolve
in order to determine the alternative outgoing interface. This
leaves less resources available for other important routing tasks
such as processing routing update LSAs, re-compute the paths,
and updating the FIB. In order for routers perform recovery
while retaining operational stability, the packet recovery pro-

cess needs to be as fast as possible. Thus, we try to minimize
the computational overhead in the packet recovery process.

IV. ARCHITECTURE AND IMPLEMENTATION

The architecture of our implementation is divided in two
main parts; the MRC/IP FRR extensions to the kernel for-
warding procedure, and the MRC extensions to the routing
protocol running in userspace. An overview of the architecture
is shown in Fig. 1. Our work extends the original architecture
with four additional components; a backup configuration gen-
erator, a routing information processor, a user-space to kernel
communication channel, and an extended forwarding engine.

A. MRC forwarding(MRCf)

In order to support IP fast reroute using MRC we extend the
forwarding mechanism by adding two basic components to the
linux forwarding engine; a general framework to support IP
fast reroute mechanisms and an implementation of the MRC
forwarding mechanisms that fits into this framework. The main
components and their connections are shown in Fig. 3

1) Fast Reroute Framework: The framework is connected
to the forwarding engine using the Netfilter framework. This
allows the framework to register callback functions at several
parts of the network stack. In general we only pick up packets
after an ordinary route resolve; i.e. at the FORWARD hook and
at the LOCAL OUT hook. At these points packets are avail-
able regardless of the path followed within the network stack
and the selected outgoing interface is known. As a precaution
the framework also register a hook at the POST ROUTING.
At this stage no packets should be sent to a failed outgoing
interface. This hook allows the framework to verify that
packets sent to the outgoing buffer of any failed interface are
dropped.

We also register a special hook the PRE ROUTING. Nor-
mally, when a packet arrives at an interface it will be dropped
if the source address in the IP header matches the local
addresses of the router. This logic is used to avoid spoofing
attacks or misconfigurations. However, when using IP fast
reroute it could happen that a packet is recovered at a
downstream router and that the recovery path of that packet
includes the source router. Thus, in such an event the packet
is moved from PRE ROUTING, routed as though it was a
locally generated packet, and subsequently released at the
LOCAL OUT hook.

Using netfilter hooks allows the framework to inspect which
outgoing interface was intended to be used for each individual
packet. It also makes it easy to toggle on or off both the
framework and the recovery functionality, leaving IP fast
reroute to be an option that may be easily toggled during
operation.

2) Failure handling engine: The main responsibility of the
failure handling engine is to keep track of the failed interfaces.
It maintains a local list which maps each network interface to
an operational status. This is then used to verify if the outgoing
interface selected by each individual packet is operational.

Powered by yFiles

rMRC Module

rMRC Recovery

rMRC Tag Engine

Fast Reroute Framework

Fast Reroute Drop Failed

Failure Handling
Engine

Netlink
Configuraiton

PRE_ROUTING POST_ROUTING

LOCAL_IN

FORWARD

LOCAL_OUT

Routing
Decision

Routing
Decision

Netlink Notifications
(netdev_event,
inetaddr_event)

FIB_Frontend

Network
Interface

(incoming)

Network
Interface

(outgoing)

Sockets

FIB 0-254
and rules

(Removed)

RRC Rules Update

Multifail Query Failure Query
Failure Query

FIB lookup

FIB lookup

Fig. 3. An overview of the kernel modifications needed to implement the
IP fast reroute framework and MRC module

The time it takes to respond to a failure is largely gov-
erned by the discovery time. Failures may be discovered
actively using OSPF hello messages or standalone mechanisms
such as the bidirectional forwarding detection protocol[16],
or passively, by detecting loss of ethernet carrier. In this
implementation we only implement detection trough listening
to loss of carrier. The carrier loss detection time is determined
by the specific hardware and driver capabilities. Some cards
support notification of carrier status using interrupts while
others may rely on the kernel to actively poll the status.
Regardless of the method, they are generally able to detect
an report such a loss at least within tens of milliseconds.

In the event of a failure the driver reports this using a netlink
message. The default behavior within linux is to prune all
routing tables entries containing the failed interface when such
a message is received. To be able to identify the packets whos
next-hop should have used the failed interface, we intercept
the messages sent from the network card as they are delivered
to the routing table subsystem. The messages are then either
stored in a soft sate-waiting queue or, alternatively dropped,
depending on the routing protocol used. For static routing the
messages should be dropped. However, when using dynamic
routing protocol such as OSPF, the message should be released
after the re-convergance process, right before the new topology
is reflected in the normal operation routing table. Furthermore,
the messages are used by the framework to keep track of the
interface status.

3) rMRC Tag engine: In order to signal to other routers
that a packet has been recovered we tag the packet with a pre
defined TOS value agreed upon by all routers. We use the bits
3, 4 and 5 in the TOS field, originally used to request low
delay, high throughput and high reliability, respectively . This
makes the signaling mechanism compatible with Differentiated
Services but breaks backwards compatibility with with the

”DTR” bits as defined in RFC791[17]. MRC supports recovery
from a single failure. Should a packet marked with a recovery
TOS tag be received and use a failed interface it will be
dropped.

In a real deployment the edges of the network should deploy
a differentiated service in such a way that the values used for
IP fast reroute signaling are unused for packets that have not
been recovered. Failure to do this would lead to packets coded
with ”DTR” bits to be forwarded according to a recovery
topology. Furthermore, the presence of the recovery values
is interpered as though the packet has been recovered once,
forcing it to be dropped if it encounters another failure.

4) rMRC Recovery: In order to successfully recover a
packet there are two main situations the implementation needs
to cover; the initial recovery performed by the router adjacent
to the failure, and subsequently the routers along the recovery
path needs to be able to route the packet according to the
selected recovery path. MRC is a recovery method that uses
a multi topology approach to perform IP fast reroute. In our
implementation we chose to use different tables to represent
the different topologies. This approach reduces the processing
time for routing table maintenance and table lookup for failure-
free traffic, but increases the memory usage by a small amount
and adds some more rules to the RPDB lookup procedure.

In order to forward a packet already recovered the RPDB is
extended with rules allowing incoming packets marked with
the predefined recovery TOS value to be forwarded according
to the corresponding routing table.

The initial recovery is implemented using two new lookup
functions, one for locally generated packets and one for
packets arriving form external sources. Which one is used is
determined by the source address of the packet. The lookup
functions are provided by the framework and will generate a
recovery cache entry from the resulting lookup. Furthermore,
the cache entry obtained from the normal lookup is extended
to contain a reference to the recovery TOS value.

V. EVALUATION

We evaluate our implementation of MRC / IP FRR in terms
of packet processing capabilities, i.e. the router’s ability to
sustain throughput during a failure.

The machines used in the experiments are DELL 2950
servers with two dual core Xeon 5160 processors running
at 3Ghz. They are equipped with 4096MB RAM and Intel
Pro 1000PT (82571EB) network cards. Furthermore, they run
a GNU/Linux operating system using linux kernel version
2.6.23.17 with our patch applied.

We use a basic ring topology consisting of four routers and
four hosts as shown in Fig. 4. The routers run Quagga with
OSPF where the link metrics are configured such that the green
continuous lines are used in a failure-free environment. When
testing failure operation we break connectivity between router
4 and 2. The link speed between all nodes is Gigabit ethernet
running in a full-duplex mode.

Traffic is generated using Iperf[18], a tool designed to mea-
sure various metrics of a network. Iperf runs in a client/server

Powered by yFiles

Router
1

Router
2

Router
4

Router
3

Host
B

Host
A

Host
D

Host
C

Fig. 4. A minimal topology consisting of a ring and two hosts.

configuration where the client generate traffic destined for
the server using either TCP or UDP as the transport proto-
col. When using UDP the Iperf client sends packets with a
predetermined payload at a constant bit rate determined by
the requested payload and bandwidth. Each packet is given
a sequence number and a time stamp that the server uses to
calculate inter arrival times, loss and out-of-order delivery.

We choose to use the UDP protocol for measuring packet
processing capabilities as it gives a best effort delivery without
adapting to the actual network performance. This allows us
to focus on the router and network performance rather than
evaluating traffic engineering aspects of IPFRR schemes or
the performance of specific TCP implementations.

When failing the link between router 4 and 2 the traffic from
host A and B will follow the dotted path, traversing router 4,
3 and 2 before delivered to Host C and D, respectively. With
this failure present, traffic from Host C or D will follow the
path 2, 1, before being recovered using the path 2, 3, 4.

Sources of inaccuracy Due to clock resolution and drift
the measurements may have some inaccuracies. Furthermore,
routing traffic and running measurement tools consume con-
siderable resources. Varying link quality due to external or
internal interference may also add to the potential sources of
inaccuracy. We use long test periods to get a high number
of samples as a basis for our results. Furthermore, we try to
smoothen the clock skew by using local NTP servers.

A. Bandwidth

In all tests we generate two simultaneous UDP streams. The
streams flow from host A and B to C and D, respectively. We
run each stream for 60 seconds. Since the streams are started
from two separate hosts, we disregard the results from the first
and last 500 ms of the measurement interval, and monitor that
both the streams are started within this timeframe. Thus, data
is collected for 59 seconds in 500ms intervals. In order to
measure recovery throughput in the full period we temporarily
disable OSPF during these tests.

The average maximum achieved bandwidth during normal
and recovery operation, using different packet sizes is shown
in Table I. The values are obtained from measurements where
the generated bandwidth exceeded the link capabilities. Fur-
thermore, the theoretical maximum throughput is included as
a reference point.

In a failure free environment the routers are capable of
delivering very close to maximum theoretical throughput.

Fig. 5. Sustained bandwidth during recovery and normal operation.

During recovery the throughput delivered ranges between 97.5
and 99.7% of theoretical maximum bandwidth.

Fig. 5 show the average achieved throughput at increasingly
higher bit rates. Again, the legend indicates payload size in
bytes and the operational mode during the forwarding process.
Furthermore, Fig 6 shows the average number of packet
processed per second obtained from the same experiments.
The achieved throughput increases in a linear manner until
near link saturation, at which point the throughput obtained
during normal operation exceeds recovery operation.

The difference in bandwidth observed near link saturation
may originate from the number of memory I/O operations
performed during the recovery process. The router is able
to sustain a linear increase in packets processed per second
when sending smaller size packets, which indicates that the
computational resources available are sufficient. However, the
signaling mechanism in the recovery process requires the pack-
ets to be copied when the TOS field is updated. Furthermore,
the netfilter framework make another copy of the packet when
the IP header is changed. Thus, the number of memory I/O
operations due to an increased number of copy operations of
the packet in conjunction with a large number of small packets
could reduce the throughput.

TABLE I
TABLE SHOWING THE MEASURED AVERAGE THROUGHPUT IN MBPS

DURING LINK SATURATION.

Payload Theoretical max Normal Recovery
256B 795.0 795.0 775.7
512B 885.8 885.6 873.7
768B 920.9 920.9 912.2

1024B 939.4 939.5 932.6
1280B 951.0 950.8 945.3
1420B 955.6 955.6 953.0

Packet processing time in the IP layer In these tests the
results were obtained using the netfilter framework. We have
written a small kernel module that provide each packet with
a time stamp when it arrives at the PRE ROUTING hook.
Furthermore, a time delta is computed when the packet leaves
the POST ROUTING hook.

Table II shows the processing time at the IP layer in
nanoseconds. The results were obtained by logging the pro-

Fig. 6. Packets processed per second during recovery and normal operation

cessing time for the first 100.000 packet in a stream. We
repeated the test varying the payload size and operational
mode. Furthermore, MRC might need two table lookups when
the destination node is the next-hop node and the link has
failed. We tested the performance when of this mechanism by
manually edit the MRC modules configuration.

The results show that the recovery look procedure increases
the processing time by a factor of 2.3 - 3.4. However, the
impact of performing additional table lookups does not seem
to have a large effect on the processing time.

TABLE II
TABLE SHOWING PROCESSING TIME IN NANO SECONDS FOR VARIOUS
OPERATIONAL MODES AND PACKET SIZES. ”RECOVERY 2” INDICATES

THAT TWO TABLE LOOKUPS WERE NEEDED TO RECOVER A PACKET.

Payload mode 2.5th percentile median 97.5th percentile

256B
normal 664 791 998

recovery 1452 1846 2234
recovery 2 1458 1861 2261

1420B
normal 562 689 908

recovery 1497 1891 2276
recovery 2 1440 1846 2225

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an architecture for a
practical IP fast reroute implementation using GNU/Linux. We
have evaluated the performance of our implementation. Our
tests shows that MRC / IP FRR increase the resource usage
in the router. However, in our lab setup we were still able
to provide throughput that closely matches the performance
during normal operation.

Direction for future work include exploring the optimization
aspects of the implementation. We expect that it is possible
to gain some packet processing performance by using a zero
copy approach to signaling. In this implementation the entire
packet needs to be copied when updating the TOS field.

In this paper we do not consider the traffic engineering
part of IP fast reroute, but assume that recovered traffic does
not overload the links used to recover the traffic. However, it
should be noted that the volume of the recovered traffic might

lead to a congestion in other parts of the network. In case
of a failure the recovered traffic may congest other outgoing
interfaces of the router. In this case it is not clear which, if
any, steps should be taken to combat this problem.

REFERENCES

[1] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second igp convergence in large ip networks,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 3, pp. 35–44, 2005.

[2] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an ip backbone,” INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol. 4, pp. 2307–2317, 2004.

[3] D. Watson, F. Jahanian, and C. Labovitz, “Experiences with monitoring
ospf on a regional service provider network,” Distributed Computing
Systems, 2003. Proceedings. 23rd International Conference on, pp. 204–
213, 19-22 May 2003.

[4] G. Iannaccone, C. nee Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an ip backbone,” in IMW ’02: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment. New
York, NY, USA: ACM, 2002, pp. 237–242.

[5] A. Basu and J. Riecke, “Stability issues in ospf routing,” in SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. New York,
NY, USA: ACM, 2001, pp. 225–236.

[6] S. Bryant and M. Shand, “Ip fast reroute framework,” IETF Internet
Draft, draft-ietf-rtgwg-ipfrr-framework-08, February 2008, (Work in
Progress).

[7] S. Bryant, M. Shand, and S. Previdi, “Ip fast reroute using not-via
addresses,” IETF Internet Draft, draft-ietf-rtgwg-ipfrr-notvia-addresses-
02.txt, February 2008.

[8] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne,
“Fast ip network recovery using multiple routing configurations,” in
INFOCOM 2006, Z. Z. Arturo Azcorra, Joe Touch, Ed. Barcelona,
Spain April 23 – 29: IEEE, 2006, pp. xx–yy. [Online]. Available:
http://www.simula.no/departments/networks/.artifacts/infocom06final

[9] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive
vs. reactive approaches to failure resilient routing,” in Proceedings
INFOCOM, Mar. 2004.

[10] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin,
and M. Menth, “Relaxed multiple routing configurations for ip fast
reroute,” in IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS’08), 2008.

[11] “The quagga project,” Online, 2008, http://www.quagga.net/.
[12] “Rfc 2328, ospf version 2,” Online, April 1998,

http://www.ietf.org/rfc/rfc2328.txt.
[13] “Rfc3549, linux netlink as an ip services protocol,” Online, 2008,

http://www.ietf.org/rfc/rfc3549.txt.
[14] “The netfilter.org project,” Online, 2008, http://www.netfilter.org/.
[15] O.-I. Lepe-Aldama and J. Garcia-Vidal, “A performance model of a

pc based ip software router,” Communications, 2002. ICC 2002. IEEE
International Conference on, vol. 2, pp. 1230–1235, 2002.

[16] “Bidirectional forwarding detection,” February 2008, draft-ietf-bfd-base-
08.txt draft-ietf-bfd-base-08.txt (Work In Progress).

[17] “Rfc791, internet protocol,” Online, September 1981,
http://www.ietf.org/rfc/rfc791.txt.

[18] “Iperf,” Online, 2008, http://dast.nlanr.net/Projects/Iperf/.

