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Abstract — A simple technique to estimate the position of a 
mobile node inside a building is based on the Received Signal 
Strength (RSS). In previous publications, we investigated the 
effectiveness of using circular array antennas and beamforming 
in order to enable an access point to estimate the position of a 
mobile inside a building. We also discussed the feasibility of using 
model-based radio maps to reduce the need for extensive offline 
measurements. In this paper, a positioning algorithm based on 
the relative order of the received signal strengths is discussed. 
This algorithm in conjunction with the ray-tracing propagation 
model can have promising performance for indoor environments 
and essentially eliminates the needs for an extensive set of a 
priori measurement, training or intricate calibration. 
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I.  INTRODUCTION 
The ability to locate and track mobile users is a key service 

in pervasive information systems. Technologies that find the 
location of mobile sources inside buildings are an attractive 
area of research and development. Currently, a significant 
application of such technologies is in emergency situations but 
more commercial and public safety applications are emerging 
every day. 

A simple technique to estimate the position of a given 
source is based on the Received Signal Strength (RSS). RSS is 
attractive because it is widely applicable to wireless sensor or 
local area networks and does not require sophisticated 
localization hardware. The general philosophy in this approach 
is to establish a one-to-one correspondence between a given 
position and the average received signal strength from at least 
three access points with known locations. One such system that 
has been implemented on the existing wireless local area 
network infrastructure is RADAR [1]. There are two main 
phases in the operation of this system: an off-line phase (i.e. 
data collection or training phase) and an online phase (i.e. 
mobile position estimation). In the off-line phase, a “Radio-
Map” of the environment is created. A “Radio-Map” is a 
database of locations throughout the environment and their 
corresponding received signal strengths from several access 
points. In the on-line phase, access points measures the 
received signal strength from the mobile, and then search 
through the Radio-Map database to determine the best signal 
strength vector that matches the one observed. The system 

estimates the location associated with the best-matching signal 
strength vector (i.e. nearest neighbor) to be the location of the 
mobile. This technique essentially calculates the 2L  distance 
(i.e. Euclidean distance) between the observed RSS vector and 
the entries in the set defined by the radio-map. It then picks the 
vector that minimizes this distance and declares the 
corresponding physical coordinate as the estimate of the 
mobile’s location. 

The main drawback of the RSS-based techniques such as 
RADAR is the need for a measurement-based training phase, 
during which the radio map of the environment is created. This 
map essentially contains the received signal strengths from all 
reference nodes throughout the environment. The process to 
generate a radio map is not only labor-intensive and costly but 
also very sensitive to changes in the environment and possible 
sources of interference in the building. 

A simple alternative to generate the radio map for RSS-
based positioning system is using an appropriate propagation 
model instead of the actual measurements. For example, 
deterministic channel models such as ones based on ray-tracing 
are a good candidate for this problem. However, in these 
models, only simple high-level building information such as 
layout is used and other detail information about the 
environment such as the exact radio properties of the walls, and 
other obstacles affecting the RSS such as furniture are often 
ignored. The accuracy of the predicted signal strengths can be 
highly dependent on this detailed information which is almost 
impossible to capture in the model. Therefore, the performance 
of the positioning system will depend on the model’s detail. 
For example, Figure 1 illustrates the dependency of the 
positioning accuracy on different wall-types used in the ray 
tracing model. The observed variation (i.e. as much as 65%) in 
performance is mainly due to the fact that the algorithm is 
based on the numeric values of the received signal strengths; 
therefore any error in the predicted RSS values (i.e. caused by 
the ray-tracing model) will directly reflect on the accuracy of 
the positioning system. This means that the system 
performance could potentially be improved if there are 
positioning algorithms that do not rely on the exact values of 
the predicted RSS. 



 
Figure 1.  Average location error for various wall types 

In [11], we discussed a positioning algorithm based on the 
relative order of the received signal strengths. That algorithm 
in conjunction with the ray-tracing propagation model showed 
promising performance for indoor environments without any 
needs for an extensive set of a priori training. However, the 
drawback of that approach was the need for high access point 
density (i.e. number of access points per square meter). This 
high density requirement essentially provided the robustness of 
the methodology against the inherent inaccuracies that exist in 
the model-based radio-map. At the same time, a high number 
of access points could create obstacles in practical 
implementation and deployment of such systems. 

In [2], we proved that information pertaining to the angular 
distribution of power can be used to increase the accuracy of an 
RSS-based localization methodology. We showed that by using 
access points capable of measuring the spatial power spectrum 
the system would be able to estimate the mobile position with 
fewer access points and higher accuracy. However, a more 
generalized and sophisticated measurement-based radio-map 
that contained received signal strength information from 
various directions was required in order to implement that 
approach. 

In [10], we proposed a novel positioning methodology that 
extended our work in [2] and exhibited acceptable performance 
without the need for an extensive set of measurements in the 
off-line mode. The only drawback in [10] was the need for 
calibration of the ray-tracing tool that generates the radio-map 
of the environment. This was needed to ensure that the mean of 
the average received signal strength (when measured in 
decibels) between the ray-tracing prediction and actual 
measurement is zero. Any bias on the average predicted RSS 
could directly influence the accuracy of the estimated positions. 
Therefore, in practice, some a priori work to adjust the 
parameters of the ray-tracing tool is needed. This might not be 
feasible for large size environments. 

In this paper, we extend our work in [2], [10] and [11]; and, 
combine the strength of each previously proposed approach to 
obtain a positioning methodology that 1) totally removes the 
dependence of the system on the existence of an accurate un-
biased radio map 2) requires low access points density 3) offers 
acceptable level of accuracy for most commercial applications. 

The rest of this paper is as follows. Section 2 will describe 
our proposed positioning approach. Modeling the error in the 
estimated RSS by the ray-tracing tool is discussed in Section 3. 
System performance is provided in Section 4 and finally 

concluding remarks and future plans are expressed in Section 
5. 

II. APPROACH 
Consider a simple system consisting of 1≥M Access 

Points (AP) and a mobile node inside a building. Assume that 
the grid of points Niyx ii ,....,2,1),( =  cover the entire 
building layout with a known resolution. If the mobile’s 
coordinate is ),( ** yx  then the objective of the positioning 
system is to estimate the mobile’s location by finding the 
closest grid point to the mobile’s coordinate. In other words, 
find ‘ k ’ where 

),(),(minarg ** yxyxk iii −= . 

 
Assume that the mobile node is a simple transmitter with an 

omnidirectional antenna and known transmit power ‘ P ’. The 
AP is a receiver that is equipped with a circular array antenna 
with beamforming capability. In this way, the RSS in any given 
direction can be measured by electronically rotating the main 
lobe of the antenna pattern to the desired direction. Define 

)(θmAPRSS  to be the RSS from the mobile at the access 

point m  (i.e. MmmAP ,....2,1= & M is the total number of 
access points) when the main lobe of its antenna is pointing at 
azimuth direction θ  (Fig. 2a). Also, as shown in Fig. 2b, 

define )(
),(

θmAP

iyix
R  to be the received signal strength from 

the mAP  at the grid point ),( ii yx  if the access point transmits 
a signal identical to the mobile (i.e. same power and 
frequency). If ),( jj yx happens to be the same as 

),( ** yx (i.e. actual coordinate of the mobile node), then due 
to symmetry in the propagation of radio waves, we should 
have: 
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Now define )(ˆ
),(

θmAP

iyix
R  to be the received signal strength 

from the mAP  at the grid point ),( ii yx  estimated by a 
deterministic model such as ray-tracing. There will be a 
difference between this estimate and the actual value of the 
RSS. Define the “error” in the estimated RSS at grid 
point ),( ii yx to be the absolute value of this difference. In 

other words, if )(
),(

θmAP

iyix
E denotes this error, then: 
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The value of this error in dB can be modeled as a Normal 
Random Variable with intensity σ  and mean μ . Derivation of 
this modeling has been provided in [10]. 
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Figure 2.  RSS from (a) Mobile to AP, and (b) from a grid point to AP 
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=θ can be calculated by the ray-

tracing model and the results can be saved in a database to 
form an estimated radio map of the environment. N is the total 
number of grid points on the estimated radio map. 

Our approach in estimating the mobile’s coordinate is to 
build a likelihood map for every access point, and then 
combine the information on all such maps to estimate the 
position of the mobile. A likelihood map, as the name implies, 
should highlight the likely positions of the mobile as seen by 
the corresponding access point. Quantitatively, a likelihood 
map is basically a collection of Likelihood Scores (LS) for 
each grid point. Likelihood score at the grid point ),( ii yx as 
seen by access point m  (i.e. mAP ) is defined as follows: 
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The )),(),,(( jjiikl yxyxf basically calculates the hamming 

distance between the two matrices of ),( iikl yxc and 
),( jjkl yxc . The value of this function is independent of the 

average error (i.e. mean) in the estimated radio map. This 
property does not exist in any methodology that directly uses 
the RSS values in the mobile position estimation process. 
Therefore any bias in the estimated radio map will not impact 
the performance of the system. 

The mobile is likely to be close to grid points that have a 
high likelihood score. So, for each likelihood map, the set of 
grid points with the highest likelihood scores determine 
possible position of the mobile inside the building. Recall that 
each likelihood map is associated to and generated by an 
individual access point. By judiciously combining information 
for all likelihood maps (i.e. access points), a single grid point 
can be found that represents the estimated position of the 
mobile. We propose the following approach to estimate the 
mobile’s position. Define the Total Likelihood Score (

ATLS ) at 
grid point ),( ii yx as: 

∑
=

m
iiAP

iiA yxLS
yxTLS

m
),(

1),(  

The grid point with the highest TLS is the mobile’s 
estimated position i.e. ),( kk yx where ‘ k ’ is 

),(maxarg iiAi yxTLSk =  
 

Figure 3 displays an example of a 2D likelihood map for 
the building layout shown in Figure 5. 
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Figure 3.  Example likelihood map showing possible positions of the mobile 



The total likelihood map is the result of integration of total 
likelihood scores for all grid points across all access points. An 
example of a total likelihood map (in 3D) for the same layout is 
shown in Figure 4.  

 
Figure 4.  Example of the total likelihood map showing the estimated 

position of the mobile 

III. MODELING THE ERROR IN ESTIMATED RSS 
 At indoor environments, the radio wave may travel through 

various obstructions such as walls, doors and furniture before 
reaching the mobile. Since, it is almost impossible to create a 
precise replica of the environment for the ray-tracing tool 
(including radio properties of all obstructions); it is valuable to 
have a model that can account for the difference between the 
average RSS estimates made by ray-tracing and actual 
measurement. 

The difference in the average received signal strength 
(when measured in decibels) between the ray-tracing prediction 

and actual measurement (i.e. )(
),(

θmAP

iyix
E ) can be modeled by 

a Normal random variable. The advantage of our proposed 
positioning strategy is that the mean of the corresponding 
distribution does not have any effect on the system 
performance. So, we only need to consider the impact of the 
variance of this normal distribution on the achievable accuracy. 
We refer to this variance as “error intensity”. We will 
investigate the performance of the positioning algorithm for 
various error intensities. 

In order to do so, we need to generate sample realizations 

of )(
),(

θmAP

iyix
E  for different values of error intensity.  

However, these realizations should be correlated for 
different θ . Consequently, we need a method to generate 
angle-dependent correlated Gaussian random variables. To do 
this, we follow the methodology outlined in [5,6]. If 

],....,,[ 21 NxxxX =  is a random vector containing 

uncorrelated Gaussian random variables ix , then random 
vector ],....,,[ 21 NyyyY =  (with correlated Gaussian random 

variables iy ) can be generated by using a matrix C as 

XCY = . 
C is a matrix of weight coefficient satisfying the following 

relation: 
TCC=Γ  

In other words, C is the Cholesky factorization of Γ , where 
Γ is the correlation matrix of random vector Y  i.e. 
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ijρ  is the angular cross-correlation function of the error in 
the average RSS estimates. We have observed that the 
following exponential decaying function accurately models this 
function. 

2ln
cor
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eij
θ

θθ

ρ
−

−
=  

Nii ,....,2,1=θ is the direction of the main lobe of the 
antenna pattern at the AP. Given an angular rotation step-size 
of δ , we will have δπ /2=N . corθ  is called the de-
correlation angle and corresponds to the angle at which the 
correlation drops to 50%. Through experiment with a 
directional antenna on a rotating platform, (details of which 
have been omitted for brevity), we observed a range of 10° to 
25° for corθ . Interestingly, similar distance dependent 
correlation functions have been reported for outdoor systems 
[7,8]. 

IV. SYSTEM PERFORMANCE 
To evaluate the performance of our proposed positioning 

algorithm, we used WiSE. WiSE (i.e. Wireless System 
Engineering) is a ray-tracing tool that has been developed and 
verified by Bell Laboratories [3,4]. For eachθ , we simply used 
WiSE to estimate values of RSS for all grid points in order to 
build an estimated radio map of the environment. We made 
sure that the antenna pattern at the AP is the same pattern that 
is generated by beamforming with a circular array antenna. .  

Mobile

●

Mobile

●

 
Figure 5.  Building layout with the location of the mobile, AP and grid points 

For the building layout shown in Fig. 5, we conducted 
extensive simulations to obtain the system performance. 



Transmission frequency was set at 2.4 GHz. We have studied 
the effect of many parameters such as grid resolution, de-
correlation angle ( corθ ), rotation step-size ( δ ), number of 
APs, number of the array elements at the AP and error 
intensity; however, for brevity, we only present the main 
performance result in the following. 

Fig. 6 demonstrates the average error in the estimated 
mobile position versus error intensity for various number of 
access points. For error intensities up to 4 dB, it seems that 
using only two access points can lead to reasonable accuracy 
for most applications. For higher error intensities, more number 
of access points can greatly help in reducing the average error 
in the estimate position. As observed, using 5 access points for 
the layout in Fig. 5 leads to a very good performance even in 
the presence of 8dB modeling error. Considering that the size 
of the area under test is 1575 m2, this corresponds to an access 
point density of 0.0032 2/ mAP with an average error of less 
than 2 meters. This level of accuracy has been shown to be the 
best achievable for most RSS-based positioning approaches 
[12].  

We also observed that higher number of antenna elements 
at the AP will increase the resolution of the beamformer; which 
along with an appropriately chosen δ  can enhance the 
positioning accuracy. For brevity, we have omitted these 
results. 

 

Figure 6.  Performance vs. error intensity for various number of access points 
( corθ =10°, δ =5°, Grid Resolution=1 m, Array Elements=8) 

V. CONCLUSION 
The focus in this research was to provide robust 

methodologies that essentially eliminate the need for extensive 
a priori measurement in RSS-based positioning systems. By 
exploiting the information in the angular distribution of RF 

energy around a receiver along with appropriate positioning 
algorithms, one can build reasonably accurate systems that do 
not require any offline measurement, training or intricate 
calibration. The inherent robustness in the algorithm provided 
here creates the possibility to build systems that are quickly 
deployable in any given environment. By integrating any 
simple ray-tracing program with the proposed positioning 
algorithm, a complete system can be designed on recent 
MIMO-enabled 802.11-based systems. Further studies need to 
be done before such systems can have widespread applications 
in our daily life. 
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