
Latency Reduction by Dynamic Core Selection and Partial
Migration of Game State

Paul B. Beskow, Knut-Helge Vik, Carsten Griwodz, Pål Halvorsen
Department of Informatics, University of Oslo, Norway Simula Research Laboratory, Norway

Email: {paulbb, knuthelv, griff, paalh}@ifi.uio.no

ABSTRACT
Massively multi-player online games force developers to deal with
the conflicting requirements of supporting large numbers of con-
current players, while simultaneously maintaining low latency. As
a result, a common way of distributing load is by dividing the vir-
tual environment into virtual regions. We propose the use of core
selection for finding an optimal server for placing a region and sup-
port for migrating the game state to that server. The first goal relies
on a set of servers and measurement of the interacting players la-
tencies. By locating an optimal server, we wish to decrease the
overall latency of the majority of players. This reduction occurs by
migrating the region to a server closer in proximity to the majority
of players in that virtual region, thereby lowering the response time
of any interaction. The geographical proximity of players can be
determined by analyzing IP addresses, RTTs or similar.

1. INTRODUCTION
“Lagger!” is a likely expression to hear uttered in a real-time in-
teractive online game. This term addresses players with excessive
latency, which in the gaming community is colloquially referred to
as lag. It should be understood that this term holds no positive con-
notation, as a player that has high latency will inadvertently have a
negative effect on the perceived quality of the game play [1,2]. This
occurs, as most online games are based on a client-server model,
where events are collected at the server, and in turn distributed to
the interacting players. By its nature, if one player is on a slow
connection, any added delay is not isolated to the player alone, but
will propagate to other interacting parties, potentially resulting in
inconsistencies. While having minor effects on the outcome of the
game, it results in a perceived deterioration to the quality of inter-
action [3]. As such, low latency for all players is a prevalent goal.

As latency is affected by physical distance between the player and
the server, reducing the latency to all players is an arduous task.
Thus, providing the required level of interactivity, within the la-
tency requirements of the game (ranging from 100 to 1000 ms [4]),
becomes very hard and may demand that the player is in close prox-
imity to the server.

As an example, consider massively multi-player online games (MMOGs),
which are persistent online worlds that allow thousands of users
to interact concurrently in a virtual environment. To support this
many concurrently interacting players, the virtual environment is
commonly split into virtual regions. This makes it possible to dis-
tribute the regions across a number of (possibly geographically dis-
tributed) servers, this as the regions are logically decomposed, i.e.,
each, in effect, responsible for handling some regions and the play-
ers interacting in each region. As the geographical dispersion of
players in MMOGs depends heavily on the time of day [5], it is
possible to have players clustered by their virtual (belonging to the
same region) as well as physical location, e.g., if most players are
from Europe, then use a server in Europe. Therefore, since a user’s
proximity to the server impacts the latency, and in turn, since la-
tency is an integral factor for the playability of an online game, this
raises an interesting question: How can we optimize the placement
of a virtual region and its interacting players given a set of globally

distributed servers?

In the remainder of this paper, we will describe our use of core
selection for finding the most appropriate server for placing a vir-
tual region, when given a player base and a set of available servers.
Once a server has been selected, we use our migration functional-
ity to move the active region to its new location. To maintain an
optimized set of references to the migrated game state we use a
distributed name service. On the background of existing work in
distributed systems, we believe that with the combination of core
selection, a distributed name server and migrationwe have a viable
solution for creating a globally distributed game, which is capable
of lowering the overall latency of the interacting players.

In section 2, we look at the basis for some of our assumptions,
and take a closer look at related work. In section 3, the core se-
lection process is described in detail and how it can be applied to
the scenario we have described in a reasonable way. In section 4,
we look at the migration functionality and how it is supported by
the distributed name service. In section 5, we evaluate the core se-
lection process and migration functionality. Finally, we summarize
our findings in section 6.

2. BACKGROUND AND RELATEDWORK

2.1 Game Characteristics
The body of work that analyzes game traffic has grown consider-
ably in the recent past. The main conclusions in our scenario are
that 1) game traffic varies strongly with time and the attractiveness
of the individual game [6, 7], 2) some latency is tolerable [1], as
long as it does not exceed the threshold for playability, i.e., ranging
from 100ms to 1000ms depending on the type of game [4] and 3)

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

R
T

T
 (

s
)

connection RTTs sorted by min RTT

Figure 1: AO: connection RTTs sorted by min RTT

geographical dispersion of players in an online game depends heav-
ily on the time of day [5]. In addition to these works, we have an-
alyzed packet traces (see [8]) from Funcom’s popular role-playing
MMOG Anarchy Online (AO) [9]. Statistics from the traces reveal
that there is a potential gain with respect to latency by using our
migration middleware. For example, in one of the game regions
within a timespan of about one hour, we found approximately 175
distinct connections. These are sorted according to their measured
RTT in figure 1. With the knowledge that the servers are located in
the US, the observed minimum latencies in the figures indicate that
there are players concurrently located in the US, Europe and Asia.
The number of players in different areas of the world also typically
vary according to the time of day, and finding an appropriate loca-
tion for the server might be of vital importance in order to meet the
latency requirements, i.e., as the majority of users are in the second
range in figure 1, the average latency could be reduced by moving
the game region to a server in Europe.

2.2 Server selection
Game server selection is an important facet for the playability of
a game. This is particularly true for games that are highly sensi-
tive to latency, such as first person shooter (FPS) games. As such,
the player’s selection process is commonly guided by measuring
dimensions that affect playability, such as latency and packet loss.
This sensitivity to latency is commonly alleviated by having a high
distribution, and availability, of servers. To this respect, Chambers
et al [10] have looked at how server selection can be optimized
for a single client given a set of available servers. Following this
scenario and figure 2, where the circles denote acceptable bound-
aries for playability, we see that the servers in Chicago and New
York will be weighted equally for Jane, while only New York is
acceptable for Anette. In a further study, Claypool [11] notes that
we regularly find groups of players that wish to play together on
a server, such as friends or clans (organized players). As such, he
has investigated how server selection can be optimized from the
perspective of a group of players. Given this scenario and figure
2, the guided selection process would weight Chicago higher then
New York fpr George, Jane and Tom, while New York is weighted
the highest for Jane and Anette. A third study, which is related to
these topics, looks at how the search itself can be performed in an
optimal way [12]. The two former papers both have in common that
they consider server selection from the perspective of the player(s),
and additionally assume a certain availability of servers. As we can
see from figure 2, it is common for geographically coupled users
to play against each other. For a world spanning game, where all
users interact in the same game instance, such as an MMOG, there
is often a limited number of servers to select from. Thus, the dif-

ferences in geographical locality become more apparent. When we
consider the time-of-day characteristics of geographical dispersion,
it would be beneficial to examine if these techniques can be applied
by a server, to improve the playability for a group of players, e.g.,
the players in the same virtual region.

Figure 2: Clustering in FPS style games.

2.3 Virtual regions
As MMOGs are expected to handle thousands of concurrently in-
teracting players it is common practice to use a static, region based
partitioning scheme. The virtual environment is thus divided into
smaller, more manageable parts, where each virtual region is hosted
on a single server in the cluster. A widely accepted problem with
the static partitioning scheme is that it does not take into account the
dynamic nature of MMOGs. Even if the static partitioning is based
on population density trends, and arranged to accommodate this, it
is still susceptible to imbalances due to unforeseen events. Thus,
a lot of research focuses on how to improve the flexibility of these
partitioning schemes, and consequently, algorithms for efficiently
distributing entities and regions. This research, however, does not
address how the locality of the users, in relation to a server, will
effect latency. For example, Turck et al [13] have investigated the
effects of dividing a game world into dynamic micro-cells. A study
with a similar background is performed by Duong et al [14]. Such
micro-cells can be reassigned to servers in a cluster if the load on
the server they are currently residing on becomes too large. Differ-
ent load-balancing algorithms were applied, none of which factored
in locality of users, and the number of micro-cells supported per
server was varied. The test was performed on a centralized clus-
ter. A similar approach is deployed by IBM with the Matrix [15]
middleware. The focus is on the player, where consistency updates
are limited to an area of interest. It is based on the observation that
MMOGs are nearly decomposable systems, and as such, it is usu-
ally sufficient to update players with only those events that occur in
their zone of visibility. Matrix makes use of region based partition-
ing as an underlying foundation, but this is for the purpose of easily
distributing the virtual world across multiple servers. Consistent for
all these approaches is that a dynamic solution outperforms a static
one.

2.4 Summary
In summary, the work on static and dynamic partitioning consider
server load in a centralized cluster and not latency due to the ge-
ographical location of users, this despite the fact that there is vis-
ible evidence of such a trend. Most of the research tries to opti-
mize the partitioning of the virtual environment into regions which
can dynamically accommodate hot-spots. Furthermore, with re-
spect to server selection, previous work look at how to best select
the best game instance (machine), e.g., with lowest latency. How-
ever, in these tests, little or no efforts have been made to investigate
the effects of a decentralized distributed system middleware, which
would allow for regions of the game to be migrated based on the

Figure 3: Latency as physical distance

physical locality of the users, in addition to their virtual locality.
Our analysis of the game traffic shows that the there are players
connected from all around the world (see figure 1), but the amount
of players from a part of the world will depend on the time of day.
Thus, as there is a shift in the location of the majority of players,
another approach to reducing the latency, both due to RTT and loss,
is to dynamically find the center of the group of players and migrate
the game objects to a server whose location is closer to the majority
of the users. We can accomplish this through core selection, which
helps us determine which node to migrate the players to.

3. CORE SELECTION
An efficient means to reducing latency can be accomplished by mi-
grating game state to an appropriate server. This appropriate server
may be a server close to the center of a given group of players. As
an example, consider an MMOG with geographically distributed
servers (see figure 3). At any time, a server can be hosting none,
some or all of the virtual regions making up a virtual environment
of the same game instance. Given a region, there are currently a
number of interacting players, and as we have seen earlier, there is a
high probability that the majority of these players are in reasonable
proximity of each other, as seen from a geographical perspective at
a given time. Furthermore, looking at figure 3, we can see how a la-
tency requirement can be translated into a measurement of physical
distance. In this example, we have two server nodes, one located
in New York and one in Oslo. In addition, we have three players
that are connecting from Mexico City, Seattle and Nuuk. In case
of a 250 ms delay requirement from the server (500 ms pairwise
latency in RTS), the bordered intersection indicates an optimal area
for the server to be located, and given the set of available servers,
the natural choice would be to select the server in New York as the
core server node.

Accordingly, it is desirable to determine if the server currently host-
ing a region is the optimal choice. In this context, optimal will
be determined by the overall latency experienced by the players
currently interacting there. As such, we wish to ascertain whether
there is a server in the system that would be able to provide these
players with better overall performance in terms of network delay.
Looking at figure 3, with server nodes in Oslo and New York, we
can naturally assume that the core selection process would have
selected New York as the optimal location.

To accomplish this, we can use core selection techniques, which
in this scenario requires complete information about the available
server nodes, and players interacting in the region. Based on this in-
formation, the heuristic core selection method will determine which
server provides the optimal placement for that region and its play-
ers.

3.1 Core selection heuristics
The core search is conducted by core selection heuristics that are
devised from a graph theory perspective. Upon core selection, the
core nodes may be used to administrate clients that join and leave
groups. Such groups can be defined and updated dynamically in an
MMOG, for example, based on some area-of-interest management
like the same virtual region. Names given to core nodes include
leaders, core nodes or rendezvous-points. Typically, the core node
of a group is contacted for each membership change, such that it
always has the latest view. When a limited set of nodes handles the
membership management, it simplifies membership updates, and
applications that have highly dynamic groups require fast and sim-
ple group management.

Core-based protocols work on the assumption that one or more core
nodes are selected as group management and forwarding nodes.
Therefore, the cores need to be selected using some core selection
heuristic. Several core selection heuristics have been proposed, and
a comprehensive study is given by Karaman and Hassanein [16].
An overall goal is to select cores on the basis of certain node prop-
erties, such as, bandwidth and computational power. We wish to
base this decision primarily on latency. The cores that are selected
depend on the group size and location, as well as the capacities in
the available core nodes. In this paper, our focus is on electing a
single core node for each defined group. The core may, for exam-
ple, be a server or a proxy administrated by the game provider.

3.2 Core selection in a proxy architecture
Today’s typical client/server model makes it easy to manage the
global game state, but it has drawbacks. The server is a potential
bottleneck, both in terms of computing and bandwidth capacity,
and the latency heavily depends on the physical distance from each
individual client to the server. In figure 4(a), we illustrate an exam-
ple where a centralized server stores the game state and cannot take
into account the physical location of the clients.

Proxy technology and peer-to-peer are distributed options. Proxy
technology has an infrastructure with a centralized server and a set
of distributed proxy servers. Some proxies are usually physically
closer to the clients than a central server, and may, for example,
hold partial game state copies of the virtual game regions needed
by the clients connected to it. The proxies can be organized hier-
archically, each responsible for a fixed set of clients based on lo-
cation, or, in a proxy pool fashion, where clients connect to the
proxies that are best suited in a given situation. In figure 4(b),
the central server has migrated the state to a proxy that is closer
to the group of clients. A peer-to-peer architecture distributes the
game state among peers and have no central server, making it very
hard to administrate the game state such that it is consistent. Cur-
rently, MMOGs can not solely use a peer-to-peer architecture be-
cause there is no working business model.

In our work, we focus on proxy technology because it allows a
trade-off between client/server and peer-to-peer advantages and dis-
advantages. However, a mix of client/server and peer-to-peer com-
munication styles may be used for different traffic types fitting to
these models.

The core selection heuristics presented here search among a prede-
fined set of servers and proxies to find one optimal core, which is
the graph median. The graph median is the node for which the sum
of lengths of shortest paths to all other vertices’s is the smallest.
The heuristics are [16]:

(a) Centralized architecture (b) Proxy architecture

Figure 4: Architecture

• Topology Center: Find a central entity (server) that is closest
to the topological center of the global graph.

• Group Center: Find a proxy that is closest to the group center
of the group graph.

The topology center heuristic is given as input a set of available
servers that are located around the world. The heuristic searches
for the server for which the sum of latencies of shortest paths to
all clients in its member network is the smallest. The group center
heuristic similarly searches among a set of available proxies located
around the world. It is given as input a group of clients, and based
on this the group center heuristic selects the core proxy to be the
proxy for which the sum of latencies of shortest paths to all the
clients in the group is smallest. These simple heuristics form pow-
erful techniques in the search for suitable hosts to migrate game
state to.

4. MOVINGWORLDSWITHMIGRATION
The core selection process is responsible for determining whether
the current server hosting a virtual region (based on its player pop-
ulation) is optimal. In the case where it is able to locate a more
appropriate server, the MMOG will move the game state of that
region to its new location. To accommodate this process, we have
developed a middleware that is capable of performing such migra-
tion of game state, which consists of a number of interacting objects
(following the object-oriented paradigm). Before migrating an ob-
ject, we must know that all references to that object will be main-
tained. To accomplish this, we use a name service. This service
is responsible for keeping an up-to-date index for the location of
objects in the distributed system, and redirect method invocations
accordingly. As such, the reduction in latency is accomplished by
decreasing the response time of, for instance, remote method invo-
cations (RMI). This because we move objects closer to the majority
of the players.

4.1 A name service
The name service maintains references to the objects in the dis-
tributed system, this goal can be accomplished in several ways.
Znati and Molka [17] analyzed three approaches to implementing
a name service; in the form of centralized, hybrid and distributed
versions. Prior to contacting the target object itself, the centralized

version contacts a name service, located at a well-known server,
to obtain the objects location in the network. As such, the cen-
tralized naming scheme adds an extra level of indirection to the
name resolution process. The hybrid approach is based on the de-
sign principle of keeping names together with the objects they are
bound to on the local level, but resorts to multicasting when resolv-
ing names at a regional level. The distributed paradigm removes
this level of indirection by placing the name of the object with the
object itself. Once an object resolution has been performed, the
object is accessed directly at the server managing the object. The
results showed that the centralized model could achieve acceptable
performance only as long as the ratio of remote to local requests
was kept reasonable. The performance of the hybrid model highly
depended on the efficiency of the cache design. With all other net-
work conditions set equal they found that, relative to the response
times of the centralized simulation, the response time of the dis-
tributed simulation were smaller. We relate these three models to
MMOGs with geographically distributed servers by coupling them
with the following characteristics:

1. There are thousands of concurrently interacting players.

2. The virtual environment is divided into virtual regions.

3. Players are dispersed physically as well as virtually.

4. The physical player distribution depends on time of day.

5. The servers in the system are geographically distributed.

6. Code is shared so only data is migrated.

7. There occurs frequent object creation and destruction.

8. Efficiency is more important then consistency.

Given these characteristics a distributed name service best suits our
needs, primarily because efficiency is more important then consis-
tency in this scenario. It is more efficient because there is no over-
head in binding an object with the name service, as this occurs
locally. Given that the servers in the system are geographically dis-
tributed this becomes essential. Other advantages are that there is
no single point of failure, which implies that large parts of the ap-
plication can continue running if a server were to fail. Looking up
objects will also be efficient, as we can directly query the node our
name service has registered as the current maintainer. Though it
is worth nothing that this access time will depend on how many
times an object has been migrated (from its point of creation) and
at which point in this chain the invocation is performed. For further
details and a thorough discussion about the implementation of the
name service, references and migration see [18]. In the following
section we will solidify our understanding of the described mecha-
nisms by looking at an example of them in use.

4.2 In action
Consider a system consisting of two servers, as seen in figure 3.
As it is currently evening in Europe, the majority of the interacting
players are European. As such, all of the virtual regions are cur-
rently being hosted inOslo. In addition to the European players, we
have a couple of players connected from Nuuk and Seattle. Look-
ing at figure 5(a) we see that these two players have been bound to
the name service and received an identifier (the other players are
not shown in this example). We can also see that the Nuuk player
references the player in Seattle. Notice that this reference is not to

(a) Before migration. (b) After migration.

Figure 5: Server configuration

the player object in local memory, as we might expect, but to the
identifier (created earlier) in the name service. As the time passes
the population on the server shifts from being predominantly Euro-
pean to American. As such, the core selection process is performed
for each virtual region. For some of the regions it is found that the
server in New York is best fit to serve the currently connected play-
ers. As we can see from figure 5(a), the region with the players con-
nected from Nuuk and Seattle is marked for migration. At this point
in time, the region these two players are interacting in is migrated
to the server in New York. We will see how this is accomplished in
our middleware, when we follow the steps outlined in figure 5(a),
which denotes the actions before migration, and figure 5(b), which
denotes the actions taken during and after migration.

The first step (1), consists of serializing the player object. Serial-
ization is the act of creating a binary representation of the object
that can be transmitted across the network. In this case, the player
object is migrated to our server in New York. The second step (2)
consists of recreating the object at the receiving side, which is also
known as deserialization. Once the object has been recreated, it is
bound with the local name service, which is the third step (3). At
this point in time, the Oslo server knows that the player object is
in New York (it sent it there after all), but will have no way of for-
warding requests, as it will have no way of knowing what object in
New York to forward requests to. This is because the player object
has been given a new identifier in New York, and, in effect, has no
knowledge of its past history from the server in Oslo. This is why
we in the fourth step (4) need to return the identifier assigned to the
player object by the server in New York. After Oslo has updated its
name service by associating the received identifier with the player
object, which happens in step five (5), we can without worry re-
move the object from local memory; as is done in step six (6). The
reason for this is that any invocations made to the player object will
now be intercepted correctly, because the name service in Oslo now
knows the identity of the object in New York.

5. EVALUATION AND DISCUSSION
We implemented our core (proxy) selection heuristics in a simu-
lator that mimics group communication in a game using a prese-
lected central entity to handle the membership management. The
central entity is always selected using the core selection heuris-
tic topology center. Furthermore, we generated network topologies
with the BRITE Internet topology generator [19], and in our experi-
ments, we used flat, undirected Waxman topologies [20]. From this
network, we created a fully connected undirected mesh, represent-
ing application layer communication that is shortest-path routed.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180

d
ia

m
et

er
 (

se
co

n
d

s)

Number of Nodes

Worst case server location
Proxy architecture (5 proxies)

Proxy architecture (10 proxies)
Proxy architecture (20 proxies)

Best case shortest path group tree
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160 180

d
ia

m
et

er
 (

se
co

n
d

s)

Number of Nodes

Worst case server location
Proxy architecture (5 proxies)

Proxy architecture (10 proxies)
Proxy architecture (20 proxies)

Best case shortest path group tree

Figure 6: Diameter of group trees using a proxy architecture

Invocation type # of Invocations Mean

Remote 100,000 2.26541 milliseconds

Normal 100,000 0.10125 microseconds

Table 1: Cost of method invocation.

The network size was 1000 nodes, and all the nodes join and leave
groups throughout the simulation, causing group membership to
be dynamic. Group popularity was distributed according to a Zipf
distribution [21]. The network layout is a square world with sides
equal to 100 ms.

Our goal is to illustrate the significance of server location. In ad-
dition, we want to show that having a proxy architecture with a
limited amount of proxies can dramatically reduce the overall la-
tencies. We can express the worst-case pair-wise latency between
clients in a network through the diameter (measured from, f.ex a
core node), and it is desirable that the diameter is as low as possi-
ble. Figure 6 shows the diameter of shortest path trees for different
group sizes where servers and proxies are the roots of the trees.
We can see that having a limited amount of proxies placed around
the world can reduce the diameter dramatically. And as expected,
increasing the number of proxies will incrementally decrease the
diameter. The worst-case placement of a server is not an invalid
situation, because if a single server administrates the entire world
the worst-case placement of a server will happen for a large number
of the clients as the day passes.

As our results show, we are able to find suitable proxies which will
lower the diameter of the distribution tree.

The described middleware has been implemented and tested as a
proof of concept. We tested the middleware by implementing a ba-
sic protocol for group communication, with the intent of imitating
the interaction we would expect to see in a virtual region. Running
two servers, we had several clients connect to one of the active
servers, where they initiated their communication. As the clients
were interacting we migrated the region to the second server, where
the clients were able to continue their interaction unhindered. As
such, the middleware has shown that it is capable of migrating ob-
jects, maintain references to these objects, and reconnect the inter-
acting clients so they can continue their interaction.

To measure overhead, we have timed a remote method invocation
and compared it to a regular method invocation. We ran the tests

on an Intel Core 2 Duo, using only one core, which was clocked
at 800MHz. The operating system running Linux kernel version
2.6.22-14. During these tests the sender and receiver were both
running on the same machine. The result is summarized in table
1. These tests represent the expected overhead added by the mid-
dleware itself for invoking methods on a migrated object, which
involves name service look up, serialization, deserialization, and
some additional operations. The test methods took void arguments
and returned an int. The overhead of a remote invocation is con-
siderable when compared to a regular invocation, but is negligible
when compared to the overhead added by the network. With re-
spect to the latency gain, this is totally dependent on the core node
which is found. The results of these tests are reported above.

We also need to consider the overhead of migrating a virtual region,
though this will greatly depend on the number of objects being mi-
grated, and the size of the objects in question. Though this can be
accomplished transparently, without the player ever noticing. With
our middleware we migrate data only, as the code is shared. We
give the application developer the possibility of defining what parts
of an object they wish to migrate. The serialization mechanisms
and more are described in further detail in [18].

6. CONCLUSION
It has been shown that there is a strong correlation between latency
and the playability of an online game [4], with the perceived game
play deteriorating considerably as the latency increases. An im-
portant factor for world spanning games, such as MMOGs, lies in
the diversity of its user base. There will, at any point in time, be
a number of players connected from different physical locations.
It has, however, been shown that distinct groupings will appear,
and change with the time-of-day [5, 8]. There have been made few
efforts into determining how best to support the dynamic player
masses in virtual worlds hosting thousands of concurrently inter-
acting players, when geographically distributed servers are avail-
able.

In this paper, we have presented a viable solution, given a world
spanning game, such as an MMOG, with geographically distributed
servers, as to how this can be accomplished. We have shown how
core selection can be used to find an optimal node in the system for
placing a virtual region, and correspondingly the players interact-
ing in that region. Once an optimal node has been located we can
migrate the game state to that node, maintaining references to the
migrated state through the use of our distributed name service. By
performing this migration, the overall latency of that region can be
lowered, i.e., the decrease in average network latency will by far
outweigh the increased overhead of remote method invocations.

Thus far, we have implemented the migration and name service
as a proof-of-concept, and run some basic tests to determine its
usability. Furthermore, we have run simulations on core selection
and determined its applicability in the scenarios we have described.
Now, it remains to integrate this functionality with an application
and run large-scale tests.

7. REFERENCES
[1] M. Claypool. The effect of latency on user performance in real-time

strategy games. Elsevier Computer Networks, 49(1):52–70,
September 2005.

[2] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool. The effects of loss and latency on user performance in
unreal tournament 2003. In the Proceedings of NetGames’04,
Portland, Oregon, USA, pages 144–151, August 2004.

[3] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting
players’ performance and perception in multiplayer games. In the
Proceedings of NetGames’05, Hawthorne, NY, USA, pages 1–7,
October 2005.

[4] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, November 2005.

[5] W. Feng and W. Feng. On the geographic distribution of on-line
game servers and players. In the Proceedings of NetGames’03,
Redwood City, California, USA, pages 173–179, May 2003.

[6] W. Feng W. Feng, F. Chang and J. Walpole. Provisioning on-line
games: a traffic analysis of a busy Counter-strike server. In the
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurement, Marseille, France, pages 151–156, November 2002.

[7] S. Sahu C. Chambers, W. Feng and D. Saha. Measurement-based
characterization of a collection of on-line games. In the Proceedings
of the 5th ACM SIGCOMM Workshop on Internet measurement,

Berkeley, CA, USA, pages 1–14, October 2005.

[8] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an
MMORPG. In International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), pages 1–7.
ACM Press, May 2006.

[9] Funcom. Anarchy Online. http://www.anarchy-online.com/, June,
2008.

[10] W. Feng C. Chambers, W. Feng and D. Saha. A geographic
redirection service for on-line games. In Proceedings of the eleventh
ACM international conference on Multimedia, Berkeley, CA, USA,
pages 227–230, November 2003.

[11] M. Claypool. Network characteristics for server selection in online
games. In Proceedings of the fifteenth Annual Multimedia Computing
and Networking (MMCN’08), San Jose, CA, USA, 6818:681808,
January 2008.

[12] G. Armitage. Optimising online fps game server discovery through
clustering servers by origin autonomous system. In International
Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV), May 2008.

[13] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, F. De Turck,
B. Dhoedt, and P. Demeester. Dynamic microcell assignment for
massively multiplayer online gaming. In the Proceedings of
NetGames’ 05, Hawthorne, NY, USA, pages 1–7, October 2005.

[14] T.N.B. Duong and S. Zhou. A dynamic load sharing algorithm for
massively multiplayer online games. In the Proceedings of ICON’03,
Sydney, Australia, pages 131–136, October 2003.

[15] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra.
Matrix: Adaptive middleware for distributed multiplayer games. In
Gustavo Alonso, editor,Middleware, volume 3790 of Lecture Notes
in Computer Science, pages 390–400. Springer, 2005.

[16] Ayse Karaman and Hossam S. Hassanein. Core-selection algorithms
in multicast routing - comparative and complexity analysis.
Computer Communications, 29(8):998–1014, 2006.

[17] T. B. Znati and J. Molka. A simulation based analysis of naming
schemes for distributed systems. In Proceedings of the 25th Annual
Simulation Symposium, pages 42–53, Los Alamitos, CA, USA, April
1992.

[18] P. Beskow, P. Halvorsen, and C. Griwodz. Latency reduction in
massively multi-player online games by partial migration of game
state. Second International Conference on Internet Technologies and
Applications, Wrexham, Wales, pages 153–163, September 2007.

[19] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
BRITE: Universal topology generation from a user’s perspective.
Technical Report BUCS-TR-2001-003, Computer Science
Department, Boston University, April 2001.

[20] Bernard M. Waxman. Dynamic Steiner tree problem. SIAM J.
Discrete Math., 4:364–384, 1991.

[21] B.C. Brookes. The derivation and application of the Bradford-Zipf
distribution. Journal of Documentation, 24(4):247–265, 1968.

