
Fast Recovery from Dual Link Failures
in IP Networks

Shrinivasa Kini† Srinivasan Ramasubramanian† Amund Kvalbein‡ Audun F. Hansen‡?

†Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
‡Simula Research Laboratory, Oslo, Norway

?Telenor R&I, Fornebu, Norway
skini@ece.arizona.edu, srini@ece.arizona.edu, amundk@simula.no, audunh@simula.no

Abstract—This paper develops a novel mechanism for re-
covering from dual-link failures in IP networks. The highlight
of the developed routing approach is that a node re-routes a
packet around the next-hop failed link without the knowledge of
the second link failure. The proposed technique requires three
protection addresses for every node, in addition to the normal
address. Associated with every protection address of a node is
a protection graph, in which some of the links connected to
the node are removed. Every protection graph is guaranteed
to be two-edge connected, hence can recover from one failure.
The network recovers from the first failure by tunneling with a
protection address; and the tunneled packet is routed over the
corresponding protection graph. We prove that it is sufficient to
provide up to three protection graphs per node to tolerate any
arbitrary two link failures in a three-edge connected graph. We
evaluate the effectiveness of the proposed technique over several
network topologies.

I. INTRODUCTION

The Internet is increasingly being used as a platform for
applications with strict demands on robustness and avail-
ability, like trading systems, online games, telephony, and
video conferencing. For these applications, even short ser-
vice disruptions caused by routing convergence can lead to
intolerable performance degradations. As a response, several
mechanisms have been proposed to give fast recovery from
failures at the Internet Protocol (IP) layer [1], [2], [3], [4],
[5]. In these schemes, backup next-hops are prepared before a
failure occurs, and the discovering router handles a component
failure locally, without signalling to the rest of the network.
The advantage of such solutions is that they allow an almost
instantaneous response to a failure, without the instability that
follows a convergence. Often, proactive recovery schemes are
thought of as a first line of defense against component failures.
They are used to maintain valid routing paths between the
nodes in the network, until the routing protocol converges on a
new global view of the topology. Such a strategy is particularly
germane when facing transient failures, which are common in
IP networks today [6].

The goal of this paper is to enhance the robustness of
the network to dual link failures. To this end, we develop
a technique that combines the positive aspects of the various
single-link failure recovery techniques. In the developed ap-
proach, every node is assigned up to four addresses – one
normal address and up to three protection addresses. The

network recovers from the first failure using IP-in-IP tunneling
[RFC2003] using one of the “protection addresses” of the next
node in the path. Packets destined to the protection address of
a node are routed over a protection graph where the failed
link is not present. Every protection graph is guaranteed to be
two-edge connected by construction, hence is guaranteed to
tolerate another link failure. We develop an elegant technique
to compute the protection graphs at a node such that each link
connected to the node is removed in at least one of protection
graphs, and every protection graph is two-edge connected. The
highlight of our approach is that we prove that every node
requires at most three protection graphs, hence three protection
addresses.

The paper is organized as follows: Section II surveys
the techniques developed for fast recovery from single link
failure. Section III describes the network model. Section IV
describes our approach for dual link failure recovery, proves
the requirement of up to three protection addresses per node,
and discusses two different approaches to route using colored
trees in the protection (auxiliary) graphs. We evaluate the
effectiveness of the proposed approach on several networks
and present our results in Section V. Section VI concludes the
paper.

II. FAST RECOVERY FROM SINGLE LINK FAILURES

Traditional routing in IP networks involves computing a
forwarding link for each destination, referred to as the primary
(preferred) forwarding link. When a packet is received at
a node, it is forwarded along the primary forwarding link
corresponding to the destination address in the packet. To
recover from the failure of the forwarding link, a node must re-
route the packet over a different link, referred to as the backup
forwarding link. The backup forwarding link at different nodes
in the network must be chosen in a consistent manner to avoid
looping.

Equal cost multi-path (ECMP) [RFC 2991, RFC 2992] is
a technique employed in IP networks today that computes
multiple forwarding links for a specific destination as long
as the cost of the paths through each forwarding link is the
same as the shortest path cost to the destination. Every packet,
whether forwarded along the primary or backup forwarding
link, will be forwarded to a node with a lower cost to the

2

destination than the current node. This monotonicity property
of the multiple paths keeps the routing algorithm simple, where
a packet need not be identified whether it was a rerouted packet
or not. In addition, the failure of a link need not be advertised
in the network. However, the drawback of the ECMP approach
is that not all nodes in the network may have equal-cost
multiple (shortest) paths to a destination. A trivial example
is a ring network with odd number of nodes, where no node
has ECMP paths. For every destination node in a ring network
with even number of nodes, there exists only one node in the
ring with two ECMPs to the destination.

In [7], Iselt et al. establish virtual links in the network using
Multi-Protocol Label Switching (MPLS) with a specific cost
that would enable every node in the network to have equal-cost
multi-paths to a destination node. Narvaez et al. [8] develop a
method that relies on multi-hop repair paths to route around a
failed link. This approach requires message exchanges among
nodes within a local neighborhood around the failed link, in
order to avoid looping and achieve local re-convergence of
routing table. In [9], a similar approach that considers dynamic
traffic engineering is developed. Reichert et al. [10] propose
a routing scheme named O2, where all routers have two or
more valid loop-free next hops to any destination. However,
the technique does not guarantee single link failure recovery
in any two-edge connected network.

The IETF community is also showing interest in a so-
lution for fast rerouting in IP networks. Shand and Bryant
[11] present a framework for IP fast reroute, where they
mention three candidate solutions for IP fast reroute that all
have gained considerable attention. These are multiple routing
configurations (MRC) [2], failure insensitive routing (FIR)
[3], [12], and tunneling using Not-via addresses (Not-via)
[1]. The common feature of all these approaches is that they
employ multiple routing tables. However, they differ in the
mechanisms employed to identify which routing table to use
for an incoming packet.

The MRC approach divides the network into multiple aux-
iliary graphs, such that each link is removed in at least one
of the auxiliary graphs and each auxiliary graph is connected.
Every node maintains one routing table entry corresponding
to each auxiliary graph for every destination. If the primary
forwarding port fails, a packet is routed over the auxiliary
where the primary link was removed. The routing table to
use (or equivalently the auxiliary graph over which the packet
is forwarded) is carried in the header of every packet. The
drawback of this approach is that it does not bound the
number of auxiliary graphs employed. For example, a ring
network with n nodes would require n auxiliary graphs, thus
requiring log n bits to specify the routing table to use. The
MRC approach has been extended to handle multiple failures
[13]. The auxiliary graphs are then constructed so that for
any combination of two component failures, there exists an
auxiliary graph that does not use the two failed components.
With this approach, the number of auxiliary graphs is not
bound to a maximum. In [13], medium-sized networks require
as much as 12 auxiliary graphs to guarantee recovery from two

link failures.
The number of routing tables to be maintained at a node

may be reduced by observing that several auxiliary graphs
may have the same forwarding node. The idea behind the FIR
approach is to use the incoming link over which the packet was
received at a node to compute the forwarding link. Therefore,
every node will maintain as many routing table entries as
the number of links incident at the node. The advantage
of this approach is that there is no additional information
carried in the packet header. In [14], the authors improve the
multi-failure tolerance of FIR; however, no guarantees can be
given. To the best of our knowledge, there are no FIR-based
approaches that guarantees recovery from dual link failures.

In the Not-via approach, the network is divided into L
auxiliary graphs, where L is the number of links in the
network, such that in each auxiliary graph only one link is
removed. In the auxiliary graph where link ` is removed,
nodes x and y that are connected by link ` are assigned
“not-via” addresses, referred to as x` and y`. Every node
computes the route to nodes x and y in the auxiliary graph.
When the primary forwarding link ` fails, node x tunnels the
packet to node y using the not-via address y`. Tunneling may
be implemented using any standard encapsulation protocol,
such as IP-in-IP [RFC2003], GRE [RFC1701] or L2TPv3
[RFC3931]. Once the packet arrives at node y, the packet
continues along its original path. Observe that the number
of not-via addresses required for a node will be the same as
the degree of the node, and the network employs as many
addresses as the number of links in the network. The idea
of tunneling is elegant as routing in the auxiliary graphs is
independent of the routing in the original graph. However, the
requirement of a not-via address for every link at a node and
that different nodes may have different number of addresses
assigned to them does not scale. The scalability issue is even
more pronounced when multiple links may fail as a not-via
address would be required for every possible failure scenario.

A. Colored trees

An efficient approach to route packets along link- or node-
disjoint paths in packet-switched networks with minimum
routing table overhead and lookup time is to employ colored
trees (CTs) [15], [16]. In this approach, two trees, namely
red and blue, are constructed rooted at a drain such that the
paths from any node to the drain on the two trees are link- or
node-disjoint. Figure 1 shows an example network with red
and blue trees rooted at node A. It is necessary and sufficient
for a network to be two-edge (vertex) connected to compute
colored trees such that the paths from a node to the root on
the two trees are link-disjoint (node-disjoint).

The colored trees approach provides two forwarding links
(red and blue) at every node for a destination, thus falls into
the class of techniques that employs multiple routing tables.
While it resembles MRC, the colored tree approach employs
only two routing tables, thus requiring one overhead bit to
be carried in the packet header. This overhead bit may be
eliminated computing the forwarding link based on input link.

3

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree rooted at A (b) Blue tree rooted at A
Fig. 1. Example network with colored trees rooted at node A

The packets received on a red (blue) link may be forwarded
to the red (blue) neighbors. The packets received over links
that are not on either tree may be forwarded on any of the
outgoing links. The colored trees may also be employed for
tunneling, where if the preferred forwarding link fails, the
packet is tunneled to the next node. If the failed forwarding
link is present on the red (blue) tree, then the packet is tunneled
using blue (red) tree. If the failed forwarding link is not present
on any of the trees, the packet may be tunneled to the next node
on either tree. However, with colored trees, the packet may be
redirected directly to the destination, while still employing any
desired routing algorithm when there are no failures. Under
this approach, every packet carries a one-bit overhead that
specifies if the packet has seen a failure or not. If this bit
is set to 0, the packet is forwarded based on the destination
address only. If this bit is set to 1, the packet is routed based
on the destination address and incoming link.

III. NETWORK MODEL

Consider a network represented as a graph G(N ,L), where
N denotes the set of nodes and L denotes the set of links
in the network. The links are assumed to be bidirectional.
An edge i → j represents a directed link from node i to
node j. A link failure is assumed to affect the edges on both
directions. The network is assumed to have at most two link
failures at any given time. The link failures are known only
to nodes connected to the failed link and the information is
not propagated to the rest of the network. We assume that the
network employs link-state protocol by which every node is
aware of the network topology.

A network must be three-edge connected in order to be
resilient to two arbitrary link failures, irrespective of the recov-
ery strategy employed. We assume that the given network is
three-edge-connected. Verification of three-edge connectivity
and determination of three-vertex connected components have
been extensively studied [17], [18], [19], and the complexities
of verification and decomposition algorithms are O(|L|).

IV. OUR APPROACH

In order to recover from arbitrary dual-link failures, we
assign up to four addresses per node – one normal address and
up to three protection addresses. In IPv4 address space, the two
additional bits may be derived from the reserved bits. As IPv6
provides a much larger range of address space, every node may
be assigned up to four addresses where the least two significant
bits will have specific meaning as below. The default (normal)

address of a node u ∈ N is denoted by u0. This acts as the
primary address for the routing protocol. In addition, there are
three backup addresses denoted by u1, u2, and u3 which are
employed whenever a link failure is encountered.

The links connected node to u are divided into three
protection groups, denoted by Lu1, Lu2, and Lu3. Node
u is associated with three protection (auxiliary) graphs –
Gui(N ,L\Lui), where i = 1, 2, 3. The protection graph Gui is
obtained by removing the links in Lui from the original graph
G. The highlight of our approach is that each of the three
protection graphs is two-edge connected by construction. We
prove in Section IV-A that such a construction is guaranteed in
any three-edge connected graph. Let Sug = {v | u–v ∈ Lug}
denote those nodes that are connected to u through a link
that belongs to Lug . As we will restrict the nodes that can
generate traffic on the protection graph Gug to Sug , we refer
to the nodes in Sug as source nodes in the protection graphs.

A. Computing Protection Graphs

The decomposition of the graph into three protection graphs
for every node u ∈ G is achieved temporarily removing node
u and obtaining the connected components in the resultant
network. For each connected component, we observe its con-
nectivity with node u in the original graph and distribute the
links connecting node u and the component considered into the
required groups. We are given a three-edge connected network.
If in addition, the network is also two-vertex connected (3E-
2V), then removal of a node will keep the remaining network
connected. However, if the network is three-edge connected
but only one-vertex-connected (3E-1V), removal of node u
may split the network into multiple connected components.
In such a scenario, we consider every connected component
individually and then combine the corresponding protection
graphs obtained from multiple connected components.

Theorem 1: Given a 3-edge connected graph G(N ,L),
there exists three protection graphs for every node u such that
each protection graph is two-edge connected and every link
connected to u is not present in at least one of the protection
graphs.

Proof: We prove the theorem by construction. Consider
an arbitrary node u ∈ N . Let Lu denote the set of links at
node u. The steps for computing the protection graphs from
G are:

1. Remove node u and all the links connected to node u.
The remnant graph will consist of one or more con-
nected components. Let C denote the set of connected
components.

2. For every connected component c ∈ C, we denote the
set of links connecting node u and nodes in c in G by
Luc. For component c, perform the following steps:
2.a) Decompose the connected component c into two-

edge-connected components. Let Dc denote the set
of two-edge components.

2.b) Reintroduce node u and its links to component
c, while retaining the two-edge-connected compo-
nents. We denote this new subgraph of G by Guc.

4

Also, we denote the link protection groups associ-
ated with this component by Luic (i = 1, 2, 3).

2.c) If the number of two-edge connected components
in c is exactly 1, i.e., |Dc| = 1, then

2.c.i) If |Luc| = 3, i.e., there are exactly three links
from node u connecting to nodes in the com-
ponent, then assign one link each to the three
groups Lu1c, Lu2c and Lu3c.

2.c.ii) If |Luc| > 3, of all the edges from node u in
Guc, assign at least two edges to group Lu1c

and the remaining edges to group Lu2c. The
third group does not have any links associated
with it.

2.d) If |Dc| > 1, then
2.d.i) As G is three-edge connected, every two-edge-

connected component with degree 1 in Dc has
at least two links connecting to node u from the
nodes in that component. Therefore, for every
two-edge connected component in Dc which
has degree 1, assign at least one link connecting
to u in Guc to groups Lu1c and Lu2c each.

2.d.ii) For every link connected to u in Guc that is not
considered in step 2.d.i, assign it randomly to
either Lu1c or Lu2c.

3. Combine the corresponding groups obtained across dif-
ferent connected components to obtain the final protec-
tion groups.

Lui =
⋃
c∈C
Luic

We now show that each protection graph obtained with
protection groups Lui is two-edge connected. Note that we
split the graph G in step 1 and merge the link groups obtained
from the different connected components in step 3. It is suffi-
cient to prove the two-edge connectivity for protection graphs
obtained for a single component subgraph Guc because if every
protection graph for Guc is two-edge-connected, the union with
corresponding protection graphs across all components also
results in two-edge connected graphs. Therefore, we consider
a single connected component c and its subgraph Guc to
demonstrate the two-edge connectivity of its protection graphs.
Steps 2.c.i, 2.c.ii and 2.d are the three cases which handle the
distribution of links from u in Guc.

Let us first consider the three protection graphs obtained by
links distributed for case 2.c.i. Since G is three-edge connected,
the removal of any single link will result in a graph that is at
least two-edge connected. And so, each of the three protection
graphs obtained is clearly two-edge connected.

Consider the second case of 2.c.ii where the component c
consists of one single two-edge connected component and the
groups Lu1c and Lu2c have at least two links each. Since c is
two-edge connected, addition of node u and links in Lu2c to
form Gu1c maintains the two-edge connectivity for Gu1c. The
same is true for Gu2c.

Finally, we consider the case of step 2.d. For any node
v ∈ Gu1, we observe its connectivity in the protection graph

from its location in its two-edge connected component. Each
two-edge connected component with degree 1 in Guc has
at least one link connected to u in the protection graph.
Considering links in the set Luc, each component has degree
greater than or equal to two in the protection graph. Since the
original graph was three-edge connected and the component is
two-edge connected, we can compute two link-disjoint paths
from v to u, either through links connected to u in the same
component or by switching over to other components. Thus,
Gu1c is two-edge connected. Identically, Gu2c is also two-edge
connected.

Consider the example network in Figure 1. The network is
three-edge and two-vertex connected. To obtain the protection
graphs for node A, we remove A and obtain the decomposition
of the network into its connected components. In this case, the
connected components themselves are two-edge connected and
so no further decomposition is required. Figure 2 shows the
two-edge connected components identified for the network.
Based on the step 2d of our scheme, we obtain the protec-
tion groups as LA1 = {A–B, A–D}, LA2 = {A–E, A–C},
and LA3 = φ. Observe that the network remains two-edge
connected after the removal of each LA1, LA2, and LA3.

A

B C D E

F G H K

Fig. 2. Example network showing the two-edge connected components when
obtaining the protection groups for node A.

Now, consider the three-edge and one-vertex connected
network in Figure 3(a). As earlier, in order to obtain the
protection groups at a node, say E, we remove node E and
obtain the connected components. We further compute the
two-edge connected components in each of these components,
as shown in Figure 3(b). In this case, as both components
have exactly three links to E, both components will have three
protection groups. The final protection groups are obtained by
combining corresponding groups from the two component sub-
graphs and one possible result could be LE1 = {E–A, E–B},
LE2 = {E–D, E–F} and LE3 = {E–H, E–K}.

B. Packet Forwarding

By default, all packets are transmitted to the default address
of the destination. A packet destined to d is transmitted with
address d0, and is routed on graph G. The network is assumed
to employ any desired routing algorithm under no failure
scenario. Every node is assumed to route the packet based
on the destination address and the interface (incoming link)
over which the packet was received. For every destination-
interface pair, the routing table at a node specifies the interface
(outgoing link) over which the packet has to be forwarded.
Note that if the network employs shortest path routing, the

5

A B

D
E

H K

C

F
G

L

(a) A 3-edge and 1-vertex connected network.
A B

D
E

H K

C

F
G

L

c1 c2

(b) 2-edge connected components in the split components
obtained after removing node E.

Fig. 3. An example 3-edge connected network and its decomposition into
two-edge connected components for node E.

outgoing link for default destination address for a node would
be the same, irrespective of the incoming interface.

Consider a packet destined to node d with address d0 has the
default forwarding link as x–y at node x. Let link x–y belong
to group g (∈ {1, 2, 3}) at node y. In the event that link x–
y is not available, node x stacks a new header to the packet
with destination address as yg . The packet is now transmitted
on the protection graph Gyg , where it may encounter at most
one additional link failure. Given that the protection graph is
two-edge connected, we employ the colored tree technique to
route the packet. Under the colored tree approach, in every
protection graph Gyg , we construct two trees, namely red and
blue, rooted at yg such that the path from every node to yg are
link-disjoint. Observe that an incoming link in the protection
graph may either be red or blue. Therefore, the tree on which a
packet is routed is identified based on the incoming link. Thus,
it is not necessary to explicitly specify the tree in the packet
header. Without loss of generality assume that the packet is
routed on the red tree. Given that the packet experiences a
failure in the protection graph, it is simply forwarded along
the blue tree. Once the packet reaches the desired node yg ,
the top header is removed, and the packet continues on its
original graph in G. It is worth noting that only the neighbors
of y whose link to y are removed in Gyg are the only nodes
that will transmit packets to the alias address yg .

C. Forwarding Tree Selection in a Protection Graph

Consider a packet destined to node d with address d0

encounters a failure at node x, where the default forwarding
link x–y. Node x stacks a new header to the packet with the
destination address as yg . The packet may now be transferred
either along the red or blue tree. There are two approaches to
select the default tree over which the packet is routed.

The first approach is referred to as the red tree first (RTF),
where every packet is forwarded along the red tree. Upon
failure of a red forwarding link in the protection graph, the
packet will be forwarded along the blue tree. When a blue

forwarding link fails, the packet is simply dropped as it
indicates that the packet has already experienced two link
failures1.

The second approach is referred to as the shortest tree first
(STF), where a packet is forwarded along that tree which
provides the shortest path to the root of the tree. As the packets
are first forwarded on the shortest tree, the packets experience
lower delays under single link failure scenarios. While the red
tree may offer the shortest path for node x in the protection
graph Gyg , the blue tree may offer the shortest path for another
node x′ in the same protection graph, where x, x′ ∈ Nyg . A
packet that is forwarded on the red (blue) tree will be re-routed
to the blue (red) tree upon a red (blue) forwarding link failure.
The limitation of this approach is that it may result in perennial
looping if more than two links fail in the network. Unlike the
RTF approach, where a packet to be forwarded on the blue link
implies that it has already experienced two link failures, the
STF approach does not provide any implicit indication on the
number of failures experienced by the packet. We will employ
an additional bit that denotes the number of failures the packet
has encountered in a protection graph. When forwarded on the
shortest-path tree, the bit is set to 0. Upon the failure of the
forwarding link on the first tree, the packet is forwarded on the
other tree with the bit set to 1. Upon failure of a forwarding
link in the protection graph, a packet is dropped if the bit is
set to 1.

D. Example

Figure 4 shows the normal path for a packet in our example
network without any failures. To recover from a possible
failure of link B–A in that path (and sustain one more link
failure in the backup path) we obtain the protection graph of
the network after removing the protection group LA1 (which
contains link B–A) and construct the red-blue trees. Figure 5
shows the protection graph with the red and blue trees rooted
at node A. As earlier, note the link disjointedness in the red
and blue paths from any node to the root A in the graph.
As an example, if the network employs STF, node B chooses
the blue tree as the backup path for B–A and then a packet
arriving at node B will be tunneled on the path B → C → A
to the appropriate protection address of A.

A

B C D E

F G H K

Fig. 4. Network where the normal path from F to A follows F–B–A.

Notice that the packet may experience a second failure along
the path, which will then be handled in exactly the same way
as the first failure. The maximum number of deflections a

1The fact that the packet is destined to the alias address of a node indicates
the first link failure, while the reception of the packet along the blue tree
indicates that the packet has experienced the second failure.

6

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree with root A (b) Blue tree with root A
Fig. 5. Example network with colored trees in protection graph after
removing link B–A and rooted at node A

A

B C D E

F G H K

A

B C D E

F G H K

(a) Red Tree with root B (b) Blue Tree with root B
Fig. 6. Example network with colored trees in protection graph after
removing link F–B and rooted at node B

packet may experience is bounded by four, which happens
when the network has two failed links both of which are
present in the normal path of a packet. In addition, each failed
link is present on the red tree of the other link’s protection
graph. This can be illustrated by considering another protection
graph of our example network by removing link F–B and
obtaining the red-blue trees rooted at node B as shown in
Figure 6. Note the presence of A → B in the red tree in this
protection graph and link B → F in the protection graph of
Figure 5. Now for our packet from Figure 4, if both links F–B
and B–A have failed in the network, then the path traversed
by the tunneled packet using the RTF approach will be F →
G → H → D → A → C → B on the protection graph of
Figure 6 and B → C → A on the graph in Figure 5. Note that
the tunneled packet is switched from the red tree to the blue
tree at node A in the recovery path after starting from node
F. After arriving at node B, the stacked IP header is removed
and the packet is forwarded based on the original header. As
the next forwarding link B–A has also failed, the packet is
tunneled to node A. The tunneled packet experiences another
link failure on the red tree, hence finally arrives at node A
over the blue tree.

E. Populating the routing tables

Every node is aware of the network topology obtained using
the link-state protocol employed in the network. Every node
is assumed to follow the same deterministic procedure, hence
the decisions made by every node will be consistent, assuming
a consistent view of the network topology. The steps taken
by node u to compute its routing table entries are shown in
Figure 7.

The decomposition of a graph into two-edge connected
components is achieved by employing DFS numbering rooted
at an arbitrary node and computing lowpoint for every node.
A network is two-edge connected if the lowpoint of every

Steps to compute routing table entries at node u

1. Decompose the network into a set of two-vertex con-
nected components, C.

2. For every node v and every component c, compute the
three protection graphs, Gvgc where g = {1, 2, 3}.

3. For every node v and every component c ∈ Cv , compute
the red and blue trees rooted at node v, referred to as
Rvgc and Bvgc.

4. If node u ∈ Svgc or node u is an intermediate node for
any source s ∈ Svgc in Rvgc and/or Bvgc, then a routing
table entry for node vg and the corresponding incoming
link(s) is added to the routing table at u.

Fig. 7. Steps to compute the routing table entries at node u.

node is less than or equal to the DFS-index of the parent.
A node which does not have a lowpoint less than or equal
to the DFS-parent forms the boundary of another component.
The link connecting such a node and its parent adds to the
degree of both components. The network may be divided into
two components by considering the node and the successors
along that node as one component (along with the articulation
node) and the rest of the nodes as the second component.
This procedure is repeated successively to obtain the two-edge
connected components of the graph. Once the decomposition
is complete, the lowpoint of every node in a component (except
the root node of the component) will be less than or equal to
the DFS-index of the parent. The DFS numbering and lowpoint
computation requires O(|L|) time, hence the decomposition
requires the same time as well. Computing the protection
groups for all the nodes, therefore, requires O(|N ||L|).

The computation of colored trees requires (|L|) time for
specific node as root. Thus, the computation of colored trees
for a maximum of 3|N | protection graphs requires O(|N ||L|).

Finally, the routing table entries at a node may be derived
from each colored tree in O(|N |) time. Therefore, the com-
plexity for computing the routing table entries from every
colored tree requires O(|N |2).

The total complexity of the algorithm is O(|N ||L|), deter-
mined by steps 2 and 3.

F. Application to networks that are not three-edge-connected

Several real-life networks may not be three-edge-connected,
the requirement to tolerate any arbitrary two link failures.
However, the network may have enough redundant links to
tolerate most dual link failures. In such cases, we may still
employ the above developed technique. If the removal of
link ` connecting nodes u and v leaves the graph one-edge-
connected, then we will not be able to construct colored
trees to nodes u and v in the protection graph. However,
we may divide the protection graph into two-edge connected
components and obtain colored trees in each component. A
link `′ in the protection graph whose removal will disconnect
the protection graph will be used as both the red and blue

7

TABLE I
BITS INVOLVED IN AN IP PACKET UNDER THE PROPOSED SCHEME.

Bit Purpose Alternative

Color Distinguish Red-Blue trees Use input link

STF
Failure indication in first backup path when

using STF
-

Address

(Two bits)

Identify protection address

IPv4: Reserved bits in header

IPv6: Least Significant Bits in address space

-

forwarding links in the colored trees. Therefore, except for
failure those links that disconnect the protection graph, any
other single link failure may be tolerated.

Table I lists all the bits involved in an IP packet to support
our scheme.

G. Highlights of the proposed approach

Here, we list the salient features of the developed approach:

• Local and proactive recovery. Our method allows nodes
to recover traffic locally. The recovery is pre-planned,
hence the failure recovery time is greatly reduced.

• No explicit failure notification messages. The proposed
technique recovers from the first failure using tunneling
with protection address corresponding to the protection
graph in which the failed link does not exist. The protec-
tion address provides information on the first failed link,
thus eliminating the need for employing explicit failure
notification mechanisms in the network.

• Arbitrary routing in the failure-free case. Our method
does no impose any restrictions on the routing in the
failure-free scenario. This gives the flexibility to optimize
routing/link weights to meet the selected traffic engi-
neering goal. Specifically, our method works in networks
employing ECMP and asymmetric link weights.

• Three protection addresses per node. Recovery from
any two arbitrary link failures in the network is achieved
by using three protection addresses and three protection
graphs per node. This makes our scheme highly scalable
with the size of the network.

• Repair first failure to next hop. Our protection scheme
tunnels recovered traffic around the protected link to the
next node on the original path. When the traffic exits from
the tunnel, it will follow its normal path to the destination.
This works in much the same way as in not-via routing,
hence the proposed scheme can be easily implemented in
the current routers.

• Red/blue trees to protect against second failure. We
employ colored trees in the protection graphs as it is the
only single link failure scheme that allows the use of both
the trees at the same time. The ability to use both the trees
at any instant helps achieve load balancing, particularly
when the network has experienced a single link failure.

• Minimal overhead. The scheme incurs a minimal over-
head of two bits to distinguish the three protection ad-
dresses from the normal address of a node for a tunneled
packet. If the STF approach is employed to route along
the shorter of the two trees, then an additional one bit
will be used to indicate the number of failures seen by
the tunneled packet and prevent perennial looping.

V. PERFORMANCE EVALUATION

We evaluate the performance of our proposed routing
scheme through simulations by applying the algorithm to five
networks, as shown in Figure 8: (a) ARPANET; (b) NSFNET2;
(c) Node-16; (d) Node-28; and (e) Mesh-4x4. The Node-16
and Node-28 networks are hypothetical minimally 3-connected
networks such that all nodes have exactly three links connected
to them.

The performance metrics that we use for evaluation are: (1)
average length of the default path (on the protection graph)
for every removed link in the protection graph; (2) maximum
length of the default path (on the protection graph) across all
protection graphs; (3) average length of the backup path under
a single link failure in the protection graph averaged over every
link failure that affects the default path; and (4) maximum
length of the backup path under a single link failure in the
protection graph over all protection graphs. We assume that
the failure of every link in the network is equally probable.

Consider a link ` that connects nodes u and v. When there
are no failures, the path length from u to v is 1 hop. When link
` fails, both edges u → v and v → u fail. Consider the edge
u→ v. Let Gvg denote the protection graph at node v in which
link ` was removed. Let Pvg,uv denote path from u to v on the
default path in the protection graph Gvg . Note that, this path
denotes the path on the red tree in the RTF approach, while
it will denote the path with the minimum path length among
the two trees in the STF approach. If we denote |Pi| as the
path length of a path Pi, we compute the average backup path
length between a node pair when the link connected between
them has failed as:

A1 =
1

2|L|
∑
`∈L

(|Pvg,uv|+ |Pug,vu|)

2The NSFNET network considered here has been modified from the original
network with the addition of link numbered 23 to keep the network three-
edge-connected.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3
2

32

26

31
25

29

22

20

19

17
16

21

18

23
28

24

3027

1

7 11

8

13

14

15

10

9

5

6

4

12

1

5

6

9

8

3

4

11

14 15 20

19

16

17

7

10

12

18

13

22

WA

CA1

CA2

UT
CO

2 21

NE IL

MI
NY

NJ

MD
GA

PA

TX

23

8

9

7 13

14

12

2

4

1

5 6

11

17

18

16

10

22

23

21

15

20

19 24

3

1

2 3

4

5
6

7

8
9

10

11 12

13

1514

16

(a) ARPANET (b) NSFNET Node-16
(20 nodes, 32 links) (14 nodes, 23 links) (16 nodes, 24 links)

24

8

9

7 13

14

12

2

4

1

5 6

11

1

2 3

4

5
6

7

8
9

28

22

23

21 27

28

26

17

18

16

19 20

25

10

11 12

13

14 15

16

17 18

10

36

37

35 40

41

39

31

32

30

33 34

38

19

20 21

22

23 24

25

26 27

15

29

42

3

1 5 8

13 16 18

21 24 26

29 31 32

3

15

23

6

17

25

9

19

27

11

20

28

2

14

22

30

4 7 10 12

1 2 3 4

5 7 8

9 10 11 12

13 14 15 16

6

(d) Node-28 (e) Mesh-4×4
(28 nodes, 42 links) (16 nodes, 32 links)

Fig. 8. Networks considered for performance evaluation.

TABLE II
AVERAGE PATH BACKUP PATH LENGTH FOR A LINK UNDER SINGLE- AND DUAL-LINK FAILURES USING THE RTF APPROACH.

Metric ARPANET NSFNET Node-16 Node-28 Mesh-4x4

Average backup path

length (single link failure)
6.250 4.630 5.375 8.274 4.062

Maximum backup path

length (single link failure)
16 11 14 24 11

Average backup path

length (dual link failure)
7.352 5.836 7.942 12.015 5.304

Maximum backup path

length (dual link failure)
21 15 20 37 15

TABLE III
AVERAGE BACKUP PATH LENGTH FOR A LINK UNDER SINGLE- AND DUAL-LINK FAILURES USING THE STF APPROACH.

Metric ARPANET NSFNET Node-16 Node-28 Mesh-4x4

Average backup path

length (single link failure)
2.641 2.609 2.083 2.274 2.812

Maximum backup path

length (single link failure)
8 6 6 8 5

Average backup path

length (dual link failure)
8.203 6.492 8.269 12.384 6.508

Maximum backup path

length (dual link failure)
22 14 14 24 17

9

The maximum backup path length under single link failure
scenario is obtained as:

M1 = max
`∈L

[max (|Pvg,uv|, |Pug,vu|)]

We compute the path length from u to v under two link
failures, assuming that link u–v has failed; and that the second
failure affects the default path in the protection graph. Assume
that the second failure occurs at node x ∈ Pvg,uv . Let P ′vg,xv

denote the path from x to v in the tree that is not the default
tree on the protection graph Gvg . In case of RTF, P ′vg,xv

denotes the path from x to v on the blue tree. In case of STF,
it denotes the path with the maximum length of the two paths
in the protection graph. Let Pvg,ux denote the path from u to
x on the default tree in the protection graph. The complete
backup path, denoted by P̈u,v,x, has length equal to the sum
of the hops on the two paths and given as:

|P̈u,v,x| = (|Pvg,ux|+ |P ′vg,xv|)

The average (maximum) path length from u to v under a
link failure in the default path is computed as:

Huv =
1

|Pvg,uv|
∑

x∈Pvg,uv,x 6=v

|P̈u,v,x|

Muv = max
x∈Pvg,uv

P̈u,v,x

The average (maximum) path length between two nodes that
were connected by a failed link and that the second failure
affects the default path in the protection graph is computed
as the average of Huv (maximum of Muv) over all u, v pairs
that have a link between them, denoted by A2 (M2).

A2 =
1

2|L|
∑
`∈L

(Huv +Hvu)

M2 = max
`∈L

[max (Muv,Mvu)]

Tables II and III show the results for the five networks to be
resilient to any arbitrary two link failures with RTF and STF
approaches respectively. Figure 9 shows the distribution of
backup paths for links in ARPANET using both RTF and STF.
The Single Link Failure Backup Path (SLFBP) for a link u–v
is the first backup path for a packet arriving at u when u–v is
absent. The Dual Link Failure Backup Path (DLFBP) length is
the average path length from u–v given u–v is unavailable and
another link fails in SLFBP. As expected, STF performs much
better than RTF in terms of the backup path lengths under
single link failures. However, the advantage of choosing the
shortest path after the first failure may be offset by the second
failure producing longer paths during the recovery, as seen in
the case of NSFNET and Mesh-4x4 networks in the tables.
Note that in all cases, the path lengths for the single failure is
less than half the total number of links in the network. During
recovery from the second failure, a particular node may be
re-visited, but the maximum number of links traversed is still

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60

Shortest Path Lengths

Pa
th

 L
en

gt
hs

 a
fte

r F
ai

lu
re

SLFBP
DLFBP

(a) RTF

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60

Shortest Path Lengths

Pa
th

 L
en

gt
hs

 a
fte

r F
ai

lu
re

SLFBP
DLFBP

`

(b) STF
Fig. 9. Distribution of Single Link Failure Backup Path (SLFBP) length
and Dual Link Failure Backup Path (DLFBP) (average) length in ARPANET
employing RTF and STF schemes.

much lesser than the total number of links in the network.
Because we employ the SimCT algorithm from [16] for the
construction of the red-blue trees, we reap the benefits of that
algorithm in our scheme as well3.

Finally, we compare our single link failure backup paths
with the shortest paths in the network. For every pair of nodes
in the network, we obtain the shortest path using Dijkstra’s
algorithm and compute the modified path, obtained by RTF
or STF, considering any single link failure on the shortest

3The paper employs the concept of “generalized lowpoint” and “preferred
ancestor” techniques to achieve shorter path lengths on the trees. a A
discussion of these concepts is beyond the scope of this paper, and the readers
are referred to [16].

10

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Shortest Path Lengths

Pa
th

 L
en

gt
hs

 a
fte

r F
ai

lu
re

AMPL-STF
EPL-STF
AMPL-RTF
EPL-RTF

Fig. 10. Plot of Average Modified Path Lengths (AMPL) and Expected
Path Lengths (EPL) against Shortest path lengths for single link failures in
ARPANET employing RTF and STF schemes.

path. We also consider the probabilistic expected path length
considering an arbitrary link failure in the network which may
or may not affect the shortest path. Figure 10 shows the plot of
the average modified path lengths and expected path lengths
under single link failures in ARPANET, employing both RTF
and STF. We observe that the expected path lengths are only
slightly greater than the shortest path lengths indicating that
more often than not an arbitrary single link failure may not
affect a packet.

VI. CONCLUSION

The paper develops a novel scheme to provide dual link
failure resiliency in IP networks using IP-in-IP encapsulation
based tunneling. The fast recovery from the first failure is
handled in a protection domain around the failed link, which
can inherently sustain a second link failure within itself. The
paper develops the necessary theory to prove that the links
connected to a node may be grouped such that at most three
protection graphs are needed per node. All backup routes are
constructed apriori using three protection addresses per node,
in addition to the normal address, making the scheme scalable
with the size of the network with minimal overhead. The
paper uses aspects from established schemes as intermediate
steps and does not put restrictions on the routing protocol
handling the normal failure free case. The paper discusses two
approaches, RTF and STF, to forward the tunneled packet in
the protection graph, describing the benefit of shorter paths
in STF at the cost of an extra overhead bit. The performance
of the scheme is evaluated by applying the algorithm to five
networks and comparing the path lengths obtained with the
two approaches.

ACKNOWLEDGMENT

The research developed in this paper is supported by Na-
tional Science Foundation under grants CNS-0325979 and
Cisco Collaborative Research Initiative.

REFERENCES

[1] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-
via addresses,” Internet Draft, Feb 2008, draft-ietf-rtgwg-ipfrr-notvia-
addresses-02.txt.

[2] A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne, “Fast
IP network recovery using multiple routing configurations,” in IEEE
INFOCOM, Apr. 2006.

[3] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive
vs. reactive approaches to failure resilient routing,” in IEEE INFOCOM,
Mar. 2004.

[4] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint
multipath routing using colored trees,” University of Arizona, Technical
Report, 2005.

[5] G. Schollmeier, J. Charzinski, A. Kirstädter, C. Reichert, K. J. Schrodi,
Y. Glickman, and C. Winkler, “Improving the resilience in IP networks,”
in Proceedings of HPSR, Torino, Italy, Jun. 2003, pp. 91–96.

[6] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone network,” in
Proceedings INFOCOM, Mar. 2004.

[7] A. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe, “Resilient routing
using ECMP and MPLS,” in Proceedings of HPSR, Phoenix, Arizona,
USA, Apr 2004.

[8] P. Narvaez and K. Y. Siu, “Efficient algorithms for multi-path link state
routing,” in Proceedings of ISCOM, 1999.

[9] R. Rabbat and K.-Y. Siu, “Restoration methods for traffic engineered
networks for loop-free routing guarantees,” in Proceedings of ICC,
Helsinki, Finland, Jun. 2001.

[10] C. Reichert, Y. Glickmann, and T. Magedanz, “Two routing algorithms
for failure protection in IP networks,” in Proceedings of the 10th IEEE
Symposium on Computers and Communications (ISCC), Jun. 2005, pp.
97–102.

[11] M. Shand and S. Bryant, “IP Fast Reroute Framework,” IETF Internet
Draft, Feb. 2008, draft-ietf-rtgwg-ipfrr-framework-08.txt.

[12] S. Nelakuditi et al., “Failure insensitive routing for ensuring service
availability,” in IWQoS’03 Lecture Notes in Computer Science 2707,
Jun. 2003.

[13] A. F. Hansen, O. Lysne, T. Čičić, and S. Gjessing, “Fast Proactive
Recovery from Concurrent Failures,” in ICC 2007, June 2007.

[14] J. Wang, Z. Zhong, and S. Nelakuditi, “Cam05-4: Handling multiple
network failures through interface specific forwarding,” Global Telecom-
munications Conference, 2006. GLOBECOM ’06. IEEE, pp. 1–6, Nov.
2006.

[15] S. Ramasubramanian, M. Harkara, and M. Krunz, “Distributed linear
time construction of colored trees for disjoint multlipath routing,” in
Proceedings of IFIP Networking, May 2006.

[16] G. Jayavelu, S. Ramasubramanian, and O. Younis, “Maintaining colored
trees for disjoint multipath routing under node failures,” to appear in
IEEE/ACM Transactions on Networking, 2008.

[17] J. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected
components,” in SIAM Journal of Computing, vol. 2, no. 3, 1973, pp.
135–158.

[18] S. M. Lane, “A structural characterization of planar combinatorial
graphs,” Duke Math Journal, vol. 3, no. 3, pp. 460–472, 1937.

[19] Z. Galil and G. F. Italiano, “Maintaining the 3-edge-connected compo-
nents of a graph on-line,” SIAM Journal of Computing, vol. 22, no. 1,
pp. 11–28, 1993.

