
UNIVERSITY OF OSLO

Department of Informatics

Improving TCP for

time-dependent

applications

Master thesis

Kristian R. Evensen





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 TCP performance for interactive thin streams 5
2.1 Interactive thin stream applications . . . . . . . . . . . . . . . 6

2.1.1 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Audio conferences . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Remote login . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 TCP congestion control . . . . . . . . . . . . . . . . . 11
2.2.2 TCP fairness . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Thin stream experiments in a lab environment . . . . . . . . 16
2.3.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Loss rate and TCP New Reno . . . . . . . . . . . . . . 17
2.3.3 RTT and TCP New Reno . . . . . . . . . . . . . . . . . 18
2.3.4 IAT and TCP New Reno . . . . . . . . . . . . . . . . . 19

2.4 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Removal of exponential backoff . . . . . . . . . . . . 20
2.4.2 Reduce number of required dupAcks . . . . . . . . . 21

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Redundant data bundling 25
3.1 Utilizing free space in a packet . . . . . . . . . . . . . . . . . 25
3.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Linux networking internals . . . . . . . . . . . . . . . 29

i



3.3.2 Implementation details . . . . . . . . . . . . . . . . . 36
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Increased bandwidth usage . . . . . . . . . . . . . . . 41
3.4.2 Copying data . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Evaluation of RDB 45
4.1 Thin stream experiments in a lab environment . . . . . . . . 46

4.1.1 Loss rate and RDB . . . . . . . . . . . . . . . . . . . . 47
4.1.2 RTT and RDB . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 IAT and RDB . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Perceived user latency . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 World of Warcraft . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Skype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.5 BZFlag . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Conclusion 77
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Software 81
A.1 Netem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Streamzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.3 Tcpdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 AnalyzeRdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.5 Tracepump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B Contents of CD-ROM 85

C Published papers 87



List of Figures

2.1 Examples of a TCP receive buffer. . . . . . . . . . . . . . . . . 10
2.2 Slow start, retransmission timeout and fast retransmit . . . . 12
2.3 Our test-network. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Retransmissions versus loss rate while using TCP. 100 ms

RTT and 140 ms IAT. . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Retransmissions versus RTT while using TCP, loss = 1%,

IAT = 140 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Retransmissions versus packet IAT while using TCP, loss =

0.5 % (in each direction), RTT = 100 ms. . . . . . . . . . . . . 20
2.7 100 ms path delay, successful 1., 2. and 3. retransmissions [1] 22

3.1 The minimum size of a gigabit Ethernet frame when trans-
ferring a 98 byte Anarchy Online-packet. . . . . . . . . . . . 26

3.2 The 100 byte large packet A right after it is sent. . . . . . . . 26
3.3 Packet B is sent before packet A is acknowledged, and a

bundle is performed. . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The two checks that determine if a packet contains new data

(even though the sequence number does not equal the ex-
pected one). From the 2.6.23 Linux-kernel. . . . . . . . . . . . 28

3.5 TCP output queue [2]. . . . . . . . . . . . . . . . . . . . . . . 29
3.6 The call-sequence for outgoing TCP-packets, the functions

we have implemented or modified are marked in bold. . . . 31
3.7 The call-sequence for incoming TCP-packets, the functions

we have implemented or modified are marked in bold. . . . 33
3.8 RDB - copying of linear data. uad head contains the num-

ber of unacked bytes in the linear memory area of the pre-
vious skb payload. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 RDB - copying of non-linear data. ua nr frags is the num-
ber of unacknowledged frags, and the frags has a pointer to
the page that contains the data (amongst others). . . . . . . . 38

iii



3.10 The process of removing pages from a partly acknowledged
packet. put page() decreases the number of users on a
page by one, the VMM takes care of the actual removal. . . . 39

4.1 Retransmissions versus loss rate while using RDB. 100 ms
RTT and 140 ms IAT. . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Retransmissions versus RTT when using RDB, loss = 1%,
IAT = (150 +- 10) ms. . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Retransmissions versus packet IAT when using RDB, loss =
1%, RTT = 100 ms. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 The route our packets followed to UMASS. . . . . . . . . . . 56
4.5 Transport and application layer latency differences running

WoW 24 hours to Hong Kong (19/11-2007). . . . . . . . . . . 57
4.6 Transport and application layer latency differences running

WoW 24 hours to UMASS (19/11-2007). . . . . . . . . . . . . 58
4.7 Skype application layer CDF, 2 % loss and 130 ms RTT. . . . 61
4.8 Skype application layer CDF, 5 % loss and 130 ms RTT. . . . 61
4.9 Results from the Skype user survey. . . . . . . . . . . . . . . 63
4.10 SSH application layer CDF, 2 % loss and 130 ms RTT. . . . . 66
4.11 SSH application layer CDF, 5 % loss and 130 ms RTT. . . . . 67
4.12 Results from the SSH user survey. . . . . . . . . . . . . . . . . 68
4.13 BZFlag application layer CDF, 2 % loss and 130 ms RTT. . . . 70
4.14 BZFlag application layer CDF, 5 % loss and 130 ms RTT. . . . 71

A.1 Example output from analyzeRdb. . . . . . . . . . . . . . . . 83



List of Tables

2.1 Examples of thin stream packet statistics based on analy-
sis of packet traces. Also included is one “regular” stream,
bulk data transfer. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 TCP output functions, the functions we have implemented
or modified are marked in bold. . . . . . . . . . . . . . . . . . 32

3.2 TCP input functions, the functions we have implemented
or modified are marked in bold. . . . . . . . . . . . . . . . . . 34

4.1 The worst-case packet size difference loss rate. . . . . . . . . 48
4.2 The worst-case packet size difference, RTT. . . . . . . . . . . 51
4.3 The worst-case packet size difference, IAT. . . . . . . . . . . . 53
4.4 Information gathered from our Skype-experiments, 130 ms

RTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Information gathered from our SSH-experiments, 130 ms RTT 65
4.6 Information gathered from our BZFlag-experiments, 130ms

RTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Pros and cons of RDB compared to TCP when it comes to

time dependent thin streams. . . . . . . . . . . . . . . . . . . 74

v





Acknowledgement

I would like to thank my supervisors, Andreas Petlund, Pål Halvorsen,
Carsten Griwodz, for a lot of help, comments and useful discussions. I
would also like to thank Paul Beskow, Tonje Fredrikson, Håkon Kvale
Stensland and Håvard Espeland for taking the time to read through the
thesis and provide feedback. Finally, to the guys at the lab, thank you for
the moral support.

vii





Abstract

In the last couple of years, developers have started implementing more
complex features utilizing computer networks in interactive applications,
for example, advanced and large scale multiplayer modes in games. In ad-
dition, we have seen applications using computer communication in new
ways, like IP telephony and video conference systems. Due to their in-
teractive nature, these applications have strict latency requirements. Also,
several of them have thin stream characteristics, meaning that they have
very small bandwidth requirements.
For applications to communicate over a computer network, they have

to use a transport protocol. The dominant ones today are TCP and UDP,
with TCP being preferred by the network because of the lack of fairness
mechanisms in UDP. Also, UDP is more likely to be blocked by firewalls,
and developers have to implement mechanisms that enforces e.g., relia-
bility when using UDP. Unfortunately, TCP and its retransmission mecha-
nisms are tuned for high-throughput streams without any timeliness re-
quirements, for example streams generated by applications doing bulk
data transfer. Interactive applications will often suffer from unnecessary
high latencies due to these mechanisms, which can be devastating for the
user experience.
To address the latency issues, we have developed a sender side TCP

modification that bundles potentially lost data into packets that are to be
sent or retransmitted. By doing this we hope to preempt the experience of
packet loss and improve the user experience. We have implemented and
tested this modification in the Linux kernel, and our results show that we
reduce the application latency by trading it against bandwidth.

ix





Chapter 1

Introduction

1.1 Background

In the last couple of years, developers have started implementing more
complex features utilizing computer networks in interactive applications,
for example, advanced and large scale multiplayer modes in games. We
have also seen applications using computer communication in new ways,
like IP telephony and video conference systems. Due to their interactive
nature, these applications have strict latency requirements. In [3], it is
shown that the required latency for a first person shooter is approximately
100 ms, 500 ms for role playing games, and 1000 ms for real time strat-
egy games. Audio conferencing and IP-telephony require the latency to
stay below 150-200 ms to achieve a satisfactory user experience, and be-
low 400 ms to remain usable [4].
Many interactive applications have thin stream characteristics. In this

context, a stream is considered thin if the application generates data in
such a way that: a) The packet interarrival times are so high that the trans-
port protocol’s fast retransmission mechanisms are ineffective, or b) the
size of most packets is well below the Maximum Segment Size (the largest
packet a network can transport, MSS). An example of a time-dependent
thin stream application (because of the latency requirements), is the traffic
generated by themassivemultiplayer online role-playing game (MMORPG)
Anarchy Online. When we captured network traffic from this game, we
saw an average payload size of 93 bytes and an average interarrival time of
580 ms (IAT, the time that passes between every sent packet). This type of
game usually consists of thousands of players interacting in real time. As
such, high latency can be devastating for the user experience. The player
could be killed because the data arrives too late for him to react in time,

1



or lose out on a big reward because one other player received the data
earlier and got a head start. Another example of a time-dependent thin
stream-application is IP telephony, where a delay in the delivery of data
will reduce the perceived quality of the conversation. When we had a con-
versation using the popular IP telephone Skype over the internet, we got
an average payload of 110 bytes and IAT of 24 ms.
For these applications to communicate over a computer network, they

have to use a transport protocol. The currently dominant ones are the
Transport Control Protocol (TCP) [5] and theUser DatagramProtocol (UDP)
[6], and interactive applications may prefer UDP because of it’s simplicity.
UDP’s lack of reliability and congestion control suits interactive applica-
tions well, there are no mechanisms that will reduce the send rate (thus in-
creasing latency) and the application itself decides what to dowhen data is
lost or delayed. For example, an application that streams audio can choose
to drop packets that arrive too late, thus ensuring smooth playback with
some audio corruption. Despite this, UDP has several drawbacks. It can
send at an uncontrolled data rate that pushes other traffic out of the net-
work. Additionally, it is often blocked by firewalls and also UDP’s lack of
reliability is not always positive. Several interactive applications require
reliability - for example, if you are playing a strategy game, you want your
orders to arrive in the correct order. The application developers will have
to implement reliability themselves, which will take time and make the
application more complex. UDP-middleware like UDT [7] tries to solve
some of the issues related to fairness and reliability, but they are not able
to overcome the firewall issue.
For these reasons, many interactive applications use TCP; fewer fire-

walls block the protocol, and it is fair1 to other streams. Also, TCP offers
reliable communication, so the developers do not have to implement this
as application layer functionality. However, TCP’s flow and congestion
control mechanisms are tuned for non time-critical and high-throughput
streams, and will often contribute to an increased latency. Most TCP varia-
tions assume that packet loss is due to congestion, andwill reduce the send
rate for every retransmission. In addition, if a packet is lost, the receiver
will have to wait for it to be retransmitted (and arrive) before more data
can be delivered to the application. Retransmissions are either triggered
when a timer expires, which is known as a retransmission timeout (RTO),
or after receiving multiple acknowledgments of the last packet which was
received in order. The receiver in a TCP connection acknowledges (ACK)

1The stream will not consume more than its fair share of the bandwidth, discussed in
section 2.2.2.

2



all data it has received in-order, and if a packet is lost, packets will arrive
out of order and the receiver will instead send a copy of the ACK for the
last packet that arrived in order (known as a duplicate ACK, dupACK).
After the sender receives a given number of dupACKs, a fast retransmit
is triggered. In a thin stream scenario, generating the required number of
dupACKs might take a while, and the period while waiting for a retrans-
mission will increase the latency even further. For example, in Linux, the
minimum value for the RTO timer is 200 ms.
Optimizing TCP with respect to thin streams will therefore improve

the experience for users with lossy or congested links to the sender. In
addition, when applications use TCP instead of UDP, the bandwidth is
shared fairly.

1.2 Problem definition

TCP and it’s congestion control mechanisms are tuned for applications
that want to transmit non time-critical data through a network as fast as
possible, like those doing bulk data transfer. In this scenario, it is not im-
portant when a packet arrives, but that it arrives eventually. Thus, any
lost packet can be retransmitted later. However, in a time-dependent thin
stream scenario, the perceived user experience will suffer if the application
has to wait for retransmissions. In other words, TCP’s congestion control
mechanisms are not suited for this type of traffic and will contribute to an
increased latency. The minimum RTO timer value is often so high that it
exceeds the latency requirements for some applications, and thin streams
with a high IAT will not be able to generate the required number of du-
pACKs for a fast retransmission.
As such, our goal is to find a way to improve the latency for time-

dependent thin streams, something we intend to accomplish by making
modifications to TCP. To ensure compatibility with a range of operating
systems, and to be compatible with existing applications, any modifica-
tions we make need to be transparent and compliant with existing stan-
dards.

1.3 Research method

Our latency reduction mechanisms for TCP are implemented and experi-
mentally evaluated. With Redundant Data Bundling (RDB), which will be
presented in detail in this thesis, we first spent a lot of time designing and

3



discussing different aspects of it. Then we implemented RDB in the Linux
2.6.22.1-kernel, followed by several experiments to determine if it had any
effects. We have also conducted a user survey to see if our modifications
improve the user experience.

1.4 Main contributions

RDB, the TCP modification that will be presented in this thesis, aims to
improve the latency for time-dependent thin streams. It was inspired by
the piggybacking techniques presented in [8], and functions by bundling
old data in new packets. As such, we increase the chance of having poten-
tially lost data arrive at the receiver before TCP performs a retransmit, thus
reducing the latency and in many cases improving the user experience.
The most important reason for implementing RDB as a sender side

modification, is that it remains transparent to the receiver. This has many
benefits, as no extra requirements (like patching the OS kernel) will be im-
posed on the user, and only the sender machine(s) has to be updated. In
addition, by implementing RDB in the Linux-kernel, it is made transpar-
ent to the application. To enable RDB, the applications either has to set
a socket option (which has to be done by the application and is not fully
transparent) or enable a global system variable (completely transparent
for the application).
RDB significantly reduces the latency for many time-dependent thin

streams, both at the transport layer (when the data is delivered to the
application) and the application layer (when the application can use the
data). Also, it improves the user experience for several applications gener-
ating time-dependent thin streams. Unfortunately, RDB causes the band-
width consumption to increase. The bundled packets will often be signifi-
cantly larger than those sent by standard TCP.

1.5 Outline

The document is organized as follows. Chapter 2 goes into detail on inter-
active applications, the network traffic they generate and TCP, and chap-
ter 3 describes RDB. Chapter 4 contains test results and an evaluation of
the proposed modification. Finally we summarize our findings and make
suggestions for future work in chapter 5.

4



Chapter 2

TCP performance for interactive
thin streams

Interactive applications are applications where the quality of the user ex-
perience depends on real-time input/output. Examples are games, stock
applications and video conferences. These applications’ network function-
ality generates time-dependent traffic. If you play a game, delayed data
might cause your avatar to be killed.
Normally, UDP is best suited for these applications. It has no conges-

tion control and thereby nomechanisms that will affect the latency. Its lack
of reliability allows the applications to handle lost or late packets. Video
streaming software can drop packets to ensure a smooth playback (with
some corruption), or games might do estimation to compensate for lost
data regarding the movement of a character. However, using UDP is often
not ideal or possible. For example, UDP is not considerate to other streams
(it can potentially consume the entire bandwidth of a link), and it is often
blocked by firewalls.
TCP, on the other hand, is fair to the network (what this means is pre-

sented in section 2.2.2) and more often let through firewalls. The develop-
ment of TCP has focused on improving the performance of throughput-
intensive streams, while a lot of interactive applications generate time-
dependent thin streams. Many interactive applications consume very lit-
tle bandwidth; they tend to send short packets with high IAT. We have de-
cided to call this type of low bandwidth traffic thin streams, and we will
focus on those thin streams that are time-dependent. Other thin streams
have no extra requirements compared to the streams TCP is already tuned
for.
In this chapter, wewill look at the network characteristics of several ap-

plications that generate time-dependent thin streams. Wewill then present

5



payload size packet interarrival time (ms) avg. bandwidth
application prot- (bytes) percentiles requirement

ocol avg. min max avg. median min max 1% 99% (pps) (bps)
1 Anarchy Online TCP 98 8 1333 632 449 7 17032 83 4195 1.582 2168
2 BZFlag TCP 30 4 1448 24 0 0 540 0 151 41.667 31370
3 Halo 3 - 8 players UDP 247 32 1264 36 33 0 1403 32 182 27.778 60223
4 Halo 3 - 6 players UDP 270 32 280 67 66 32 716 64 69 14.925 35888
5 Test Drive Umlimited UDP 80 34 104 40 33 0 298 0 158 25.000 22912
6 Tony Hawk’s Project 8 UDP 90 32 576 308 163 0 4070 53 2332 3.247 5812
7 World of Warcraft TCP 26 6 1228 314 133 0 14855 0 3785 3.185 2046
8 Casa TCP 175 93 572 7287 307 305 29898 305 29898 0.137 269
9 Windows remote desktop TCP 111 8 1417 318 159 1 12254 2 3892 3.145 4497
10 Skype (2 users) UDP 111 11 316 30 24 0 20015 18 44 33.333 37906
11 Skype (2 users) TCP 236 14 1267 34 40 0 1671 4 80 29.412 69296
12 SSH text session TCP 48 16 752 323 159 0 76610 32 3616 3.096 2825

13 Bulk data transfer TCP 1335 29 1460 10 0 0 1498 0 391 100.000 1247552

Table 2.1: Examples of thin stream packet statistics based on analysis of
packet traces. Also included is one “regular” stream, bulk data transfer.

TCP, before we look at how altering different parameters (like the link’s
loss rate) will affect a TCP connection.

2.1 Interactive thin stream applications

In interactive applications, the quality of the user experience depends on
real-time input/output. Several of these applications provide features that
utilize computer networks, and we will now look at the traffic generated
by different types of interactive applications.

2.1.1 Games

Games are one of the oldest forms of interactive applications, and feature
more and more complex multiplayer modes and other network function-
ality. In the last couple of years, we have gone from small-scale battles,
and to MMORPGS with thousands of players interacting with each other.
The seven first applications in table 2.1 are all games, and most of them
use UDP. We believe that their traffic pattern would be very similar if they
used TCP instead, and have therefore chosen to include them.
We can see that the different types of games generate very different

traffic. Most of the traffic from intensive games, like the first person shoot-
ers BZFlag and Halo 3, has low IATs (compared to the rest). On the other
hand, World of Warcraft and Anarchy Online, two large MMORPGs, have
a higher IAT. This is because they have a slower pace and there are fewer

6



packets to send. For example, in a shooter, the player will move around
and shoot almost constantly, thus generating several packets. When a
player in one of the twoMMORPGs attacks a monster, the player will only
intervene when he or she is going to cast a spell, use a special attack, or
similar. In other words, less packets will be sent because the time interval
between events is longer.
Independent of the type of game, we see that on average, almost all

the games send small packets (compared to bulk data transfer and most
of the other interactive applications). This is most likely caused by the fact
that not every message has to contain much information. For example,
we believe that when issuing an attack command in an MMORPG, all the
server needs to know is which attack to use onwhat enemy. The reason for
Halo 3’s large packets (compared to the rest of the games), is most likely
that the Voice over IP (VoIP) feature was enabled. Speech consists of a lot
of data, and will thus occupy more space in a packet than e.g. a command.
The latency requirement, however, varies depending on the type of

game. In [3], it is shown that to ensure a good user experience, the la-
tency can not exceed 100 ms for a first person shooter (like Halo 3), 500 ms
for role-playing games (like World of Warcraft and Anarchy Online), and
1000 ms for real time strategy games.

2.1.2 Audio conferences

Audio conferencing (VoIP) is another example of applications that gen-
erate time-dependent thin streams, and they are becoming increasingly
common. IP telephones are reaching the mass market, and many games
allow the users to audio-chat with each other. Many of the VoIP telephone
systems use one of the G.7xx formats recommended by ITU-T 1. For ex-
ample, G.711 and G.729 have bandwidth requirements of 64 and 8 Kbps
respectively, and the packet size is determined by the packet transmission
cycle. This is typically a few tens of ms, resulting in packets that are be-
tween 80 and 320 bytes for G.711 [9].
The traffic generated by Skype, a popular VoIP-software, has similar

characteristics as those described in the last paragraph. In table 2.1 we
see that the packets are small (on average 236 bytes using TCP) and the
bandwidth requirement is low (69 Kbps). To avoid that the user experience
suffers, ITU-T has specified that the latency (one way) should not exceed
150-200 ms, and it must not exceed 400 ms [4].

1http://www.itu.int/ITU-T/

7



2.1.3 Remote login

Remote login is when you log into and work on a machine remotely. For
this study, we have measured an SSH text session and Windows remote
desktop. As shown in table 2.1, they generate very similar traffic. The
packets are small and the average IAT high, which is caused by the fact
that there is no need to send data unless the user interacts with the ma-
chine. And it will often take at least tens or hundreds of ms before a user
hits a new key. According to a study presented in [10], the average com-
puter user types 33 words per minute on average (when copying from a
transcript). If every word is five characters long, the user will type an av-
erage of 2.75 characters per second, thus 360 ms will pass between each
letter.

2.1.4 Discussion

For an interactive application to send data, an event (in the application)
must occur that is of interest to the other parties involved. For example
when somebody says something into an IP telephone, the speech must
be transferred to the receivers. Or if somebody plays a game and moves
around, both the server and the players in the vicinity must be notified
about his or her new position. Otherwise, their game clients will not give
a correct view of the game world. On the other hand, if everybody is
standing still and nobody talks, no data needs to be transferred (except
maybe small updates to let others know that the connection is still alive).
This is quite different from the streams that TCP is tuned for, like the

ones generated by bulk data transfer (e.g. downloading a file). They
are only concerned with throughput and send as much data as possible
through the network. TCP’s reliability ensures that lost packets will be re-
transmitted, and that the data will be delivered to the application in order.
Since these streams have no timeliness requirements (a file is for instance
only useful once all data has been received), the delays imposed by wait-
ing for retransmission will not be critical.
In table 2.1 we present the measured network traffic of several interac-

tive applications, as well as one application generating more typical TCP
traffic. The reliance on something to happen before data is sent leads to
very distinct traffic patterns. Compared to bulk data transfer, thin streams
have a high IAT and small packet sizes. The latter is because these applica-
tions mostly send very short messages to each other. For instance, position
updates do not have to contain much more than a new (x,y,z) co-ordinate.
In addition, the applications need to send data almost instantly after the

8



events occur. E.g. an IP telephone can not store speech in a buffer and
wait until it contains a certain number of bytes, or a timeout occurs before
sending the data. If it does, the delayed delivery will reduce the quality of
the conversation; it will take a while before the other parties receive what
the sender said, thus delaying their reply.
We have decided to call these streams, identified by small packets and/or

high IATs, thin streams. In addition to these requirements, thin streams
often face strict latency requirements, like those imposed by many inter-
active applications. It is worth mentioning that not all interactive applica-
tions generate thin streams, e.g. video conferences and video-/high qual-
ity sound streaming generates packets that are as large as the network
is able to transfer. For example, in Ethernet, the MSS is 1500 bytes [11].
Thus, if a connection uses TCP, the payload can be up to 1448 bytes large
(the TCP and IP header occupy 52 bytes).

2.2 TCP

In the TCP/IP reference model [12], the transport layer is the second high-
est layer. It provides transparent data transfer between end nodes, i.e. the
applications do not have to worry about how the data is sent or received.
A transport layer protocol is a protocol that is located at this layer, and is
responsible for turning the simple services provided by the network layer
into something more complex. IP (the TCP/IP network layer) only deals
with the actual moving of data through the network. For example, it has
no way of knowing if a sent packet arrives, or if the payload has been
tampered with.
TCP [5] is one of the most commonly used transport layer protocols.

SMTP (e-mail), HTTP (web) and FTP (file transfers) are just some of the
application layer protocols that builds on top of it, and it is frequently
used by games and for streaming various media. The protocol has many
desirable and advanced features:

• Connection-oriented - a connection has to be established before data
can be transferred.

• Stream-oriented - the application can send a continuous stream of
data for transmission, TCP is responsible for dividing it into suitable
units for the network layer to process.

• Reliable - all sent data will arrive and be delivered in order to the
application. In addition, TCP uses checksums to detect (and reject)

9



corrupted packets.

• Flow control - throughout the connection, the receiver keep the sender
updated on how many packets he or she is able to receive. The
sender has to adjust the packet send rate to avoid exceeding this
limit, otherwise the receiver would be overwhelmed with packets.

• Congestion control - to stop the sender from consuming so much
bandwidth that it would affect the performance of other streams,
TCP limits the packet send rate. In addition, TCP assumes that all
packet loss is caused by congestion, and reduces the send rate when
loss occurs.

One of TCP’s goals is to be considerate to other streams sharing the
same link. TCP assumes that all packet loss is due to congestion, and as
long as no packets are lost the sending rate is increased. When conges-
tion occurs, the protocol follows an “Additive Increase, Multiplicative De-
crease” scheme (AIMD) to adjust the sending rate. The name of the scheme
implies that the sending rate increases linearly and decreases quadrati-
cally.
To ensure reliability, each TCP packet is marked with a sequence num-

ber. This number is the byte offset for the packet’s payload (the data con-
tained in the packet) in the file/stream that is transferred. To let the sender
know that the data is received, the receiver sends an ACK-packet contain-
ing the next expected sequence number. In other words, the receiver lets
the sender know that it has received all bytes up to this sequence number.
Should a packet arrive out of order (i.e., the sequence number is higher
than the expected one), the receiver sends a dupACK. Exactly what these
are used for, and how the sender reacts to them will be discussed in the
next section.

(a) All packets arrive in order and is delivered to the
application.

(b) The packet with sequence number 6 is lost. The
two last packets cannot be delivered to application
before the lost packet is retransmitted (and received).

Figure 2.1: Examples of a TCP receive buffer.

10



If a packet arrives out of order, it will be buffered (stored) at the receiver
until the expected packet(s) arrive (figure 2.1). The size of the receiver’s
advertised window (rwnd) says how much outstanding data the receiver
is able to store, and every ACK contains it’s size. The sender has to adjust
the send rate accordingly, and this is the flow control [13]. At the sender,
the congestion window (cwnd) determines the amount of data that can be
sent before receiving an ACK. The cwnd and rwnd change throughout the
connection, and the lowest of the two decide the transfer rate. RFC2581
[13] states that TCP is never allowed to send data with a sequence number
higher than the sum of the highest acknowledged sequence number, and
the minimum of cwnd and rwnd. In other words, the size of the payload
can never exceed the size of any of the two windows.

2.2.1 TCP congestion control

Congestion control is concernedwith howmuch network resources senders
are allowed to consume, and it’s goal is to avoid what is known as a con-
gestive collapse. This is a condition where the network is constantly over-
loaded, thus the delays will be long, the loss rate high and the through-
put low. A large number of TCP protocol variations have been devel-
oped to cater to different scenarios (very high speed links, wireless, and
so on), and what they alter is mostly related to the congestion control.
For example, TCP Westwood 2 [14] [15] [16] reduces the sending rate in
a way that is specifically tuned for WLANs. In these networks, most
of the loss is caused by corruption, and not congestion, as TCP origi-
nally assumed. Unfortunately, so far none of the variations are optimized
for thin streams. The different congestion control mechanisms are tuned
for streams with very low IAT’s and no timeliness requirements. TCP
is mostly used together with throughput-intensive applications like bulk
data transfer, where latency is not an issue.
In [1], C. Griwodz and P. Halvorsen investigated how the different TCP

variations behave when faced with a typical thin stream. They measured
the delay between the first retransmission and the delivery of the packet,
and they found out that the different TCP protocol variations performed
about the same. Still, TCP New Reno [17] was marginally better in most
cases. For this reason, we have used TCP New Reno in our tests, and
the rest of this section will focus on New Reno and the original Reno.
New Reno builds upon TCP Reno [13] and improves some of the origi-
nal’s mechanisms. We will also present TCP SACK, which is a TCP option

2http://www.cs.ucla.edu/NRL/hpi/tcpw/

11



Figure 2.2: Slow start, retransmission timeout and fast retransmit

that aims to aid the performance of both Reno and New Reno when facing
multiple packet losses.
In the rest of this thesis, unless something else is specified, when we

say “TCP” we mean TCP New Reno and “RDB” means TCP New Reno
with RDB enabled.

TCP Reno

When starting a transmission, TCP Reno uses a technique called slow start
to avoid sending more data than the network can transfer. During the ini-
tial phases of a connection, TCP determines the MSS and initializes the
cwnd to be less than or equal to 2*MSS (depending on the congestion con-
trol). The size of the cwnd is increased by one MSS for every ACK that
the sender receives, which means that the size of the congestion window
doubles for every round-trip time (the time it takes for a packet to travel to
and from a receiver, RTT [18]). Provided that there is enough data to trans-
fer and no packets are lost, the connection will first be allowed to send one
packet, then two, then four, and so on without receiving ACKs. Figure 2.2
shows how the cwnd grows, and also what happens when a packet is lost.
The latter will be discussed later in this section.
This doubling of the cwnd continues until it reaches a pre determined

threshold called the slow-start threshold (ssthresh). When this value is
passed, the connection enters the congestion avoidance phase. The cwnd
is increased by one MSS for each RTT, thus we have exponential growth

12



before ssthresh is passed and linear growth after. To avoid relying on
clocks (which are often to coarse), [13] recommends that the cwnd is up-
dated for every received ACK using the following formula:

cwnd = cwnd+ (MSS ∗MSS/cwnd). (2.1)

Even though RFC2581 [13] specifies that the cwnd is calculated in bytes,
several OS’ (including Linux) use packets instead. In other words, pro-
vided that the sequence number of the packets does not exceed the limit
enforced by the flow control [13], the connection is allowed to send one
packet, then two, then four, and so on. When the connection passes ssthresh,
the number of allowed, unacknowledged packets increases linearly (one
for each RTT). The number of sent, but unacknowledged packets is known
as the number of packets in flight.
TCP Reno uses two different techniques to discover and retransmit lost

packets. If no acknowledgments are received before the retransmission
timer expires, an RTO is triggered. Exactly how the timer is updated is
OS-specific and discussed in more depth in section 3.3.1. When a time-
out occurs, the ssthresh is set to cwnd/2 and the connection enters slow
start again, i.e. it has to start with a cwnd of 2*MSS (or less). The reason for
reducing ssthresh is that TCP Reno assumes that all loss is due to con-
gestion. The estimated share of the bandwidth was apparently too high,
and must therefore be reduced. Also, a lower ssthresh-value ensures a
slower growth rate. This stops the connection from suddenly flooding the
network with more data than it can handle.
Another important thing that happens when an RTO occurs, is that the

retransmission timer is doubled. This is called the exponential backoff and
will inflict severe delays if the same packet is lost several times. In Linux,
the minimum RTO (minRTO) value is 200 ms, meaning that if the packet is
lost three times, then the wait for the next retransmission is over a second
long (200 * (20 + 21 + 22)). This is very bad for thin streams, as will be
discussed in section 2.4.1.
Asmentioned in the previous section, when a receiver receives a packet

with a higher sequence number than the one expected (e.g. if the previous
packet was lost), it sends a dupACK. This is done to let the sender know
that it has not received all of the previous packets, meaning that it can
not deliver any more data to the application. Because of the in-order re-
quirement, data delivered to the application must form a continuous byte
range.
Until the packet with the expected sequence number arrives, the re-

ceiver will continue to send dupACKs for every received packet. After

13



N dupACKs (three in the Reno/New Reno implementation we used) are
received, the sender will retransmit the first lost packet (this is called a
fast retransmit) and enter fast recovery. In this state, ssthresh is set to
cwnd/2 (as when an RTO occurs), but the connection does not have to go
through slow start again. DupACKs tells us that the packets are buffered
at the receiver and no longer consume network resources.
Instead of 2*MSS (or less), cwnd is set to ssthresh + 3*MSS. The

latter part of the last equation is there to ensure that new data can be sent,
as long as it is permitted by the cwnd and rwnd. The three packets that
generated the dupACKs have not been “properly” acknowledged, and are
therefore occupying space in the congestion window. Thus, the cwnd has
to be artificially inflated to allow new data to be transferred. The cwnd
is increased by one MSS for every received dupACK for the same reason.
When the next ACK arrives, the cwnd is reduced to ssthresh and the
connection leaves fast recovery.
Because an ACK indicates that the network is no longer congested, it

is “safe” to start with a congestion window size of ssthresh (since this
is the estimated share of bandwidth). If the sender continues to receive
dupACKs, the fast retransmit/recovery will be repeated until the cwnd is
so small that no new packets can be sent. If the retransmitted packet is
then lost, a retransmission timeout will occur.

TCP New Reno

Unfortunately, the way TCP Reno deals with fast recovery is not ideal
when you have multiple packet losses. If the ACK that makes the sender
leave fast recovery is followed by N dupACKs, the sender will enter fast
recovery again, halving the cwnd once more. New Reno [19] modifies the
way fast recovery/retransmission works, it stays in fast recovery until all
unacknowledged data has been confirmed received.
To be able to do this, New Reno uses a partial acknowledgment con-

cept. When entering fast retransmit, the highest sequence number sent so
far is stored. Every received ACK is then compared against this value, and
if the acknowledged sequence number covers the stored sequence number,
then it is safe to leave fast recovery. Otherwise, more packets have gone
missing and the first unacknowledged packet is retransmitted (when an
ACK arrives).
The partial acknowledgment concept also allows TCP New Reno to

check for false dupACKs. The highest transmitted sequence number is
also stored whenever an RTO occurs. When three dupACKs are received,
the sender checks if they cover this sequence number. If they do, then the

14



connection enters fast recovery. Otherwise, the dupACKs are for packets
sent before the timeout, thus the lost packet is already retransmitted.
One scenario where false dupACKs may be a problem, is when you

have long RTTs. If a packet is lost and the N consecutive packets arrive, the
dupACKs might not get back before an RTO is triggered. When they are
received they will acknowledge a packet with a lower sequence number
than the highest transmitted. The sender will then detect these dupACKs
as false and not enter fast recovery.
Unfortunately, TCPNew Reno does not fix all the flaws in TCP Reno. It

could still take many RTT’s to recover from a loss (since you have to wait
for the ACK/more dupACKs), and you will have to send enough data to
get the receiver to respond with N dupACKs. Both of these are challenges
for thin streams, especially the latter. As shown in chapter 2, the IAT is
often high, and it could take several hundred milliseconds before three
new packets are sent.

TCP SACK

Selective Acknowledgment (SACK) [20] [21] is a strategy that handlesmul-
tiple packet losses better than plain TCP Reno and TCP New Reno. When
a packet arrives out of order, TCP will send a dupACK acknowledging the
last packet that arrived in order. Thus, the senderwill be informed that one
packet has arrived, but not told which one. This forces the sender to wait
at least an entire RTT to discover further packet loss (since it must wait
for a retransmission to be acknowledged), or it might retransmit packets
that have already been received (if allowed to by the flow- and congestion
control). In other words, multiple packet losses can cause a significant
reduction in throughput.
With SACK, however, the dupACKwill also contain the sequence num-

ber of those packets that have arrived out of order. SACK does this by
using something called SACK Blocks (which are stored in the option part
of the TCP header), and each block contains the start and end sequence
number of each continuous byte range that has been received. This leads
to an increased throughput, the sender no longer has to wait at least one
RTT to discover further packet loss, and only the packets that have not
arrived will be retransmitted.

2.2.2 TCP fairness

One of the most important aspects of TCP is the fairness principle. If N
TCP streams share the same link, they will each get an equal share (1/N)

15



of bandwidth. Congestion control, which was discussed in the previous
section, is used to enforce fairness by limiting the packet send rate (the
cwnd), and reducing it if needed. As previously mentioned, TCP assumes
that all loss is due to congestion, i.e., the stream has exceeded its fair share
of the bandwidth. For example, a TCP session sessions is never allowed
to send more than the congestion window allows to avoid flooding the
network, and exponential backoff tells the streams to hold back due to
congestion.
Unfortunately, the fairness principle does not apply to all streams. If

several streams with different RTT use the same link, then those with a
short RTT will have an advantage. Their send rate will grow faster (e.g., in
slow start the cwndwill double for each RTT), and they will spend shorter
time recovering from a loss. Thus, they will consume a larger share of the
bandwidth.

2.3 Thin stream experiments in a lab environment

As discussed in the previous section, interactive applications tend to gen-
erate traffic that TCP is not tuned for. In this section, we will look at what
effects altering different parameters will have on a thin stream sent over
TCP. We decided to perform three sets of tests and varied the loss rate,
the RTT, and finally the IAT. The packet size was always 120 bytes (the
average packet size generated by the interactive applications we had mea-
sured when these tests were performed), and the results are based on ten
30 minute long runs for each combination of the test parameters.
For every test, we measured the number of retransmissions, and our

findings will later be compared to those with RDB (chapter 3) enabled.
Retransmissions are one of the largest enemies of thin streams - due to
TCP’s reliability, the connection has to wait for a lost packet to be retrans-
mitted before it can deliver any more data to the application. We disabled
all our TCP modifications, so even though we have used a thin stream in
the tests (because the performance will later be compared to RDB), our
findings would apply to throughput-intensive streams as well.
In the tests, we used a constant IAT of 140 ms, RTT of 100 ms and 0.5 %

loss, unless the parameter was the one we varied. 140 ms IAT was the
average of the time-dependent thin streams we had measured when these
tests were performed, while the RTT was the average of several measure-
ments made between the University of Oslo (UiO) and different machines
around the world. The loss rate was chosen because we wanted it to be
as low as possible, while still forcing the connection to trigger retransmis-

16



Figure 2.3: Our test-network.

sions. After experimenting with different rates, we found out that 0.5 %
was ideal.

2.3.1 Test setup

To perform the tests presented in the previous section, we built a small
network consisting of three machines (figure 2.3). We ran streamzero on
the sender and receiver to create/receive traffic, this allowed us to have
full control over the generated stream. To impose loss and delay on the
links, we ran tc on the emulator. Unfortunately, tc uses a uniform loss
pattern, so we rarely saw multiple packet loss. In other words, SACK
was not able to improve the performance. All the software is described in
appendix A. By sending data to IP-address 192.168.2.2, all data from the
sender goes through the emulator (which also acts as a bridge).
All machines were Pentium 4 1.6Ghz with 512 MB RAM and Fast Eth-

ernet network cards. This ensures a 100 Mbit/s link between the sender,
emulator and receiver. The machines ran our modified 2.6.22.1 Linux-
kernel (RDB and the modifications presented in section 2.4 were switched
off).

2.3.2 Loss rate and TCP New Reno

In figure 2.4 we see that a higher loss rate resulted in a larger number of
retransmissions. This is more or less given; when packets are lost and the
connection uses TCP, they have to be retransmitted due to TCP’s reliability.
Hence, when we increase the chance of a packet being lost, the number of
retransmissions will also rise.
A high loss rate will decrease the performance of any stream. For bulk

data transfer and other “regular” TCP streams, it will lead to a lower trans-
fer speed and probably an annoyed user. But unlike those generated by in-
teractive applications, “regular” streams have no timeliness requirement
and the extra wait is therefore not critical. The user experience in inter-
active applications generating time-dependent thin streams will, on the
other hand, suffer as the loss rate increases.

17



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10  12  14  16

%
 r

e
tr

a
n

s
m

is
s
io

n
s
.

% loss in each direction.

TCP New Reno

Figure 2.4: Retransmissions versus loss rate while using TCP. 100 ms RTT
and 140 ms IAT.

Waiting for retransmissions will increase the latency. It will take longer
before a lost packet arrives and the sender is able to deliver more data to
the application. In addition, several thin streams are not able to trigger fast
retransmits due to a high IAT, as mentioned in the thin stream definition
in chapter 1. Instead, RTOs will be triggered and make the situation even
worse.

2.3.3 RTT and TCP New Reno

RTT is a measurement of the delay in the network, and figure 2.5 shows
that the number of retransmissions were independent of the RTT. This is
because the TCP-calculation of the RTO timer (presented in detail in sec-
tion 3.3.1) only cares about the RTT variance. As long as the RTT does not
fluctuate, the RTO timer adapts to the increased RTT and does not trigger
any more retransmissions than for lower RTTs.
The average transport layer (and thereby application layer) latency in-

creases along with the RTT. This is also as expected, as a higher RTT forces
the packets to spend more time traveling. Thus, it will take longer before
a packet is received, and until it is acknowledged. Both the wait for an
RTO (due to the way the RTO is calculated) and fast retransmit (due to the
longer wait for acknowledgments) will be longer, increasing the wait for a
retransmissions and potentially reducing the user experience.

18



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

RTT

TCP New Reno

Figure 2.5: Retransmissions versus RTT while using TCP, loss = 1%, IAT =
140 ms.

2.3.4 IAT and TCP New Reno

The IAT is defined as the time interval between each time the application
sends a packet. Compared to the TCP streams generated by e.g. bulk data
transfer (where the IAT is as close to zero as possible), the IAT for thin
streams are often high (as shown in table 2.1). In figure 2.6, we see how
increasing the IAT affected the number of retransmissions.
As long as the IATwas less than 200 ms, the number of retransmissions

remained more or less constant. However, when the IAT passed 200 ms,
the share of retransmissions increased significantly (and then remained
constant again). This was caused by the IAT (plus the RTT) crossing the
RTO value - when we kept the RTT constant at 100 ms, the RTO was al-
ways close to 200 ms plus the RTT. Exactly how this value is calculated,
and why it always was at least 200 ms, is presented in section 3.3.1.
Since the loss rate was constant, the same share of packets was lost

for all IATs. However, when the IAT was less than 200 ms, two or more
packets were sent between every RTO. If the acknowledgment for the first
packet was lost, the second packet would implicitly acknowledge the pre-
vious one and avoid a retransmission by timeout. When the IAT grew past
200 ms, RTOs were the only option since less than one packet was sent
between each timeout. This would increase the latency, the applications
would have to wait longer for a retransmissions, and exponential backoff
would increase the latency even more if the same packet was lost multiple

19



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  100  200  300  400  500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

interarival time

TCP New Reno

Figure 2.6: Retransmissions versus packet IAT while using TCP, loss =
0.5 % (in each direction), RTT = 100 ms.

times. In other words, a high IAT will severly reduce the performance of a
stream with regard to latency.

2.4 Modifications

In order to improve TCP’s performance for time dependant thin streams,
we at IFI/Simula have developed two modifications to TCP New Reno, in
addition to RDB. The latter will be introduced, discussed and evaluated
in the next two chapters, in this section we will give a presentation of the
two other modifications.

2.4.1 Removal of exponential backoff

As mentioned in section 2.2.1, exponential backoff will double the value
of the RTO timer every time the same packet has to be retransmitted. In
Linux, the minRTO is 200 ms, and it is at least as high as the RTT. The
RTO value is calculated using the formula presented in section 3.3.1, and
in our experiments it was always close to minRTO + RTT. Thus, if the RTT
was 100 ms, the RTO would be around 300 ms. If the same packet was
lost three times, the kernel would have to wait for more than one second
before it attempted another retransmission.

20



This is very damaging for interactive applications, waiting over a sec-
ond for an event will in many cases lead to unexpected behavior by the
applications, and an irritated user. In [1], C. Griwodz and P. Halvorsen
modified the behavior of the exponential backoff mechanism. Due to the
low number of packets sent by the application that they based their exper-
iments on (the MMORPG Anarchy Online), they saw that almost all the
retransmissions were caused by RTOs. Thus, exponential backoff was the
main cause of the occasional high latency, and they removed the effect of
this mechanism for special cases.
Provided that three or fewer packets are in flight, the exponential back-

off is disabled and the retransmission time is only increased by a smoothed
RTTmeasurement (Smoothed Round-Trip Time, SRTT)for every RTO.How-
ever, if more than four packets are in flight, the connection is able to trigger
a fast retransmit and is defined as “thick”. The modification is then turned
off, restoring regular TCP behavior.
Since the number of packets is so low (at least in their experiment), re-

moval of the exponential backoff will not cause the network to be flooded
with unnecessary retransmissions, at least not for the tested loss rates.
However, the result would be different had the loss rate been extremely
high. Several packets would be lost multiple times, and disabling the ex-
ponential backoff mechanism would ensure that they were retransmitted
both faster and more often.
Figure 2.7 shows that the gain is significant when the same packet is

lost multiple times. The first retransmission is triggered at the same time
as without the modification, since exponential backoff has not yet updated
the RTO. The second and third, on the other hand, are triggered much
faster and ensure a speedier delivery of the data.

2.4.2 Reduce number of required dupAcks

As discussed in section 2.1, a lot of applications that generate thin streams
send out packets quite rarely. The number of dupACKs is therefore lim-
ited, and the chance of triggering a fast retransmission small. Instead, an
RTO will occur, which means that the exponential backoff will double the
timer value and make the situation even worse (unless you use the modi-
fication in the previous section).
In [8], E. Paaby reduces the number of required dupACKs from three to

one, provided that less than four packets are in flight. This will make fast
retransmissions much more likely, and thus reduce the number of RTOs.
As with the removal of exponential backoff, the limit of four packets in

21



 0

 1000

 2000

 3000

 4000

 5000

v
a
r+

5
p
 3

re
tr

5
p
 3

re
tr

v
a
r+

1
p
 3

re
tr

1
p
 3

re
tr

v
a
r+

5
p
 2

re
tr

5
p
 2

re
tr

v
a
r+

1
p
 2

re
tr

1
p
 2

re
tr

v
a
r+

5
p
 1

re
tr

5
p
 1

re
tr

v
a
r+

1
p
 1

re
tr

1
p
 1

re
tr

T
im

e
 i
n
 m

s

Standard and modified timeout calculation, 100ms delay, average retransmission time

old
new

Figure 2.7: 100 ms path delay, successful 1., 2. and 3. retransmissions [1]

flight is chosen because this is the minimum number of packets needed to
trigger a fast retransmission. A streamwith four ormore unacknowledged
packets is most likely able to trigger these on it’s own.

2.5 Summary

Interactive applications with network functionality generates time depen-
dent traffic. UDP is, due to it’s simplicity, often the best suited protocol for
this kind of applications. However, UDP is not fair to other streams and is
often blocked by firewalls. Thus, it is desirable to use TCP instead.
Most of the development of TCP, however, has been focused on im-

proving the performance for throughput-intensive streams with no time-
liness requirements, like the ones generated by applications doing bulk
data transfer. These streams will try to send as large packets as possible, as
fast as possible. Many interactive applications, however, have thin stream
characteristics; the IAT is high or packet size small. In addition, they face
strict latency requirements and will thus generate time-dependent, thin
streams. If data is delayed, the application might not behave as intended
and the user experience will suffer.

22



In other words, the network characteristics ofmany interactive applica-
tions are the complete opposite of high throughput streams (which TCP is
tuned for). The high packet IAT is caused by the application’s dependency
on some event to happen before they have any data to transfer, while the
small packet size is due to the exchange of short messages (like position
updates in games). After measuring and looking at the network character-
istics for many time-dependent thin stream applications, we saw that dif-
ferent types of applications generate different traffic. They all sent small
packets, but fast paced games and the VoIP-application Skype had a much
lower IAT than the other application types.
Unlike UDP, TCP provides the applicationswith a reliable, flow-controlled,

stream- and connection-oriented way to send data over a computer net-
work. There exist several different TCP variations that cater to different
scenarios. We have chosen to focus on TCP New Reno because it has been
shown in [1] that it is the best protocol variation for thin streams. We have
presented how it deals with lost packets and retransmissions (congestion
control), which constitute a problem for thin streams. The different mech-
anisms often increase latency, which is not good when you have interac-
tivity. If the links were perfect, TCP and UDP would perform the same
when faced with this kind of network traffic.
To find out how TCP performs when faced with a thin stream, we ran

several tests inside our controlled network environment. We saw that both
a higher loss rate, RTT and IAT increased the transport (and thereby the
application) layer latency, something that might damage the user expe-
rience. In addition, many streams are so thin that they are only able to
trigger retransmits by RTOs, which will make matters worse if the same
packet is lost multiple times. Additionally, exponential backoff will dou-
ble the RTO for every loss.
We have developed two modifications that aim at making the conges-

tion control better suited to thin streams. Provided that the stream is not
able to trigger a fast retransmit (the number of unacknowledged packets
is less than four), we remove the exponential backoff and reduce the num-
ber of required dupACKs to trigger a fast retransmit to one. In the next
chapter, we will present RDB, which aims at reducing both the transport-
and application layer latency of streams with small packets and IATs less
than RTO - RTT.

23





Chapter 3

Redundant data bundling

As presented in chapter 2, interactive applications have strict requirements
when it comes to latency. Multiplayer games have a required latency be-
tween 100 ms and 1000 ms in order to be playable [3], while the (one-way)
latency for audio conferences and IP-telephony cannot exceed 400 ms [4].
As such, having to wait several hundred milliseconds (or more) for a

retransmission, which the different TCP mechanisms may do, will have
a severe impact on the user experience. As these delays occur as a result
of TCP’s congestion control mechanics (see section 2.2.1), we have in this
thesis look at a possibility for elevating this situation. With the intent of
reducing the latency to the application when exhibiting thin stream char-
acteristics using TCP.
In this chapter, we will go into details of our sender-side TCPmodifica-

tion that aims at improving the latency for thin streams. We have chosen to
call it Redundant Data Bundling, as the main idea is to include old, which
in this context means unacknowledged, data into new packets. By doing
this, lost data might be delivered earlier than with an ordinary retransmis-
sion, because it is piggybacked in the subsequent packet. An advantage
with RDB is that it is transparent to the sending application, it only re-
quires a modification of the sender’s TCP implementation. Additionally,
the receiver needs to make no changes to reap the benefits.

3.1 Utilizing free space in a packet

One of the thin stream-characteristics, as we defined them in section 2.1, is
that the packet sizes are small. When coupling this with the fact that net-
work technologies like Ethernet often have aminimum frame size, e.g., Gi-
gabit Ethernet (in half-duplex mode) sends a minimum of 512 bytes (4096

25



Figure 3.1: The minimum size of a gigabit Ethernet frame when transfer-
ring a 98 byte Anarchy Online-packet.

bit time slots), no matter the size of the payload [11]. Take, for example,
an Anarchy Online packet with a 98 byte payload (table 2.1). The Ethernet
frame carrying it will look like figure 3.1 and have a lot of unused space.
The TCP-implementation in the Linux kernel already does some lim-

ited bundling of data when sending and retransmitting. Nagle’s algo-
rithm [22] merges small user writes, and the stream control transmission
protocol (SCTP) [23] can carry more than one user message in the same
packet. In addition, SCTP and an extension to the real-time transport pro-
tocol (RTP) [24] sometimes carry unacknowledged (possibly redundant)
data in new packets. Enet, a popular UDP-middleware, also does some
limited bundling [7].
In [8], Espen Søgård Paaby suggests filling up the empty space in Eth-

ernet frames (up to the current MSS) by merging packets upon retransmis-
sion, i.e., the kernel takes two or more “small” packets and merges them
into a larger one. By doing this, he reduces the chance of additional re-
transmissions of the same packet(s), and suggests that somebody should
try doing the same when sending packets. If you bundle upon send, you
do not have to wait for a retransmission to merge packets and further in-
crease the chance of the data arriving. We tried to implement merging
on send, but experienced severe difficulties and decided to go for another
approach.

Figure 3.2: The 100 byte large packet A right after it is sent.

Inspired by the work of Paaby and the other techniques discussed here,
we implemented Redundant Data Bundling, a technique which we have

26



Figure 3.3: Packet B is sent before packet A is acknowledged, and a bundle
is performed.

found no equivalent to. Instead of merging packets, we bundle (copy) po-
tentially redundant data into unused space in the packets (up to the cur-
rent MSS), which are either to be sent or retransmitted. Take the scenario
where we have two packets of 100 bytes that are ready to be transmit-
ted. The first one is sent using TCP and has the sequence number X and
a payload length of 100 (figure 3.2). Then, when the second packet is pro-
cessed, and if the first has not yet been acknowledged, the first packet is
bundled with the second, which results in a packet that has the same se-
quence number X, but a payload length of 200 (figure 3.3). Thus, we con-
sume more bandwidth than the piggybacking mechanism in [8], because
in contrast to merging we potentially send every byte several times.
If packets are merged (as [8] suggested), you risk being left with a few

large packets. Packets sent (to the kernel) before an ACK arrives will be
merged, and if enough data for four packets is acknowledged, the kernel
might only have one new packet to send. If RDB is used, the kernel will in-
stead have packets of increasing size. This increases the chance of the data
arriving faster at the receiver, as the unacknowledged data is continuous
resent as long as there is sufficient space available.

3.2 Transparency

RDB is designed to be implemented in the OS kernel and thereby remain
transparent to the application. Because we wanted it to be as easy to
deploy as possible, we made RDB a sender side modification. TCP can
receive and process bundled packets without modifications, thus the re-
ceivers do not have to patch their systems to acquire the benefits of RDB.
However, all parties in nearly every time-dependent thin stream applica-
tion will be a sender, so it will be beneficial to use RDB on all the machines.
Consider a conversation held using IP telephony, in which both parties
will act as a sender and receiver.

27



i f ( ! a f t e r ( TCP SKB CB ( skb )−>end seq , tp−>r cv nxt ) ) {
/ / I f t h i s t e s t i s t rue , t h e p a c k e t i s a r e t r a n sm i s s i o n .
. . .

}

i f ( before (TCP SKB CB ( skb )−>seq , tp−>r cv nxt ) ) {
/ / I f b o t h t h i s and t h e p r e v i o u s t e s t i s pas s ed , t h e p a c k e t i s
what t h e k e r n e l c a l l s a p a r t i a l p a c k e t ( s e q < r c v n e x t <

e nd s e q ) , and i t c o n t a i n s new da t a .
. . .

}

Figure 3.4: The two checks that determine if a packet contains new data
(even though the sequence number does not equal the expected one).
From the 2.6.23 Linux-kernel.

Requirement

The only requirement imposed by RDB is that the receiver OS checks both
the packet sequence number and payload size. This is something most
OSes do, including Linux. After having checked if the packet belongs in-
side its rwnd, the Linux-kernel performs the two tests presented in fig-
ure 3.4 to check if the packet contains any new data. tp->rcv nxt con-
tains the next expected sequence number, while seq and end seq are re-
spectively the first and last sequence number of this socket buffer (SKB).
Each SKB represents one packet and contains meta-information like the
sequence number, length, and checksum, as well as pointers to the pay-
load.
However, if the OS does not check both the sequence number and pay-

load size, the connection will experience a severely reduced send rate. If
the IAT is lower than the RTT and the packets are small enough, bundles
will be performed and data resent before acknowledgments are received.
Bundled packets will have the same sequence number as a previously
transmitted packet, but with different payload size because of the bundled
data (as seen in figure 3.3). Thus, if a packet with the same sequence num-
ber has already been received and the payload size is ignored, the bundled
packet will be discarded. The receiver will also stop delivering data to the
application while waiting for a packet with the expected sequence num-
ber. When an ACK is received, the sender (when using RDB) removes the
acknowledged data from all bundled packets containing it. However, this
is too late to avoid a reduction of the send rate. Provided that a bundle is
possible, the earliest packet that may have the expected sequence number,

28



Figure 3.5: TCP output queue [2].

is the next one that is to be sent. If the IAT is low enough to fill up the
cwnd, the send rate reduction will be even bigger. When the cwnd is full,
no more packets can be sent and the connection must stop and wait for
a retransmission before it can proceed. Also, because of the low IAT, this
process will be repeated for every packet.

3.3 Implementation

In this section, we will examine in detail the implementation of RDB,
which was done in the Linux 2.6.22.1-kernel (and later ported to 2.6.23.8).
As we started out using the 2.6.22.1-kernel, this is the one we are most
experienced with, and all code examples originate from here. There are,
however, no differences between the two RDB-implementations, and patches
for both kernels can be found on the included CD-ROM.

3.3.1 Linux networking internals

Output queue

One of the most important parts of the Linux TCP-implementation is the
output queue, as shown in figure 3.5. Every socket has one queue, which is
represented as a linked list consisting of SKBs. sk write queue points to
the head of the output queue, while sk send head keeps track of which
SKB is the next to be sent. If all SKBs have been sent, sk send head is
NULL.

29



When an application sends data (e.g. with the send()-call), an SKB is
created and placed at the tail of the queue. If the cwnd is open, or ACKs
arrive and open it up, sk write queue is traversed from sk send head

and sends as many SKBs as the flow control allows. Since TCP is reliable
and has to hold onto data until the correct ACK arrives, the packets are
kept in the queue after they are sent [5]. When an ACK arrives, the kernel
starts at the head of the output queue and removes the SKBs that have
been acknowledged.

Sending TCP-packets

We summarize this send-call sequence in figure 3.6 and describe the dif-
ferent functions in table 3.1.
When an application calls send() to transmit data through the net-

work, tcp sendmsg() is invoked, copies the data into an SKB and adds
it to the end of the output queue. Depending on the number of packets that
remain to be sent, tcp push one() or tcp push pending forward()

is called. The difference is that tcp push one() sends one packet, while
tcp push pending frames() keeps sending as long as sk send head

is not NULL or the flow control or congestion control allows it. This is
done by a call to tcp write xmit(), which loops through the output
queue from the SKB provided as an argument.

tcp transmit skb() is called for every SKB that is going to be sent.
It completes the TCP segment by building the header, checksums the packet,
and then passes it along to icsk->icsk af ops->queue xmit() (icsk
is a struct containing information about an IP-socket), which is a pointer
to the underlying protocol’s service access point (SAP) ( in this case IP).
If the cwnd is full, no more packets will be sent until it opens up.

Packets are removed from the cwnd when ACKs arrive, these are first
handled by tcp rcv established() (provided that the connection is
established) and then sent to tcp ack(), which calls tcp data snd-

check(). The latter uses tcp push pending forward() to send data
from the send queue.
Retransmissions also use the output code. Different functions are called

depending on the type of retransmission, but they all end up in tcp-
retransmit skb(). This function retransmits one SKB by calling tcp-
transmit skb() with the SKB as a parameter.

30



Figure 3.6: The call-sequence for outgoing TCP-packets, the functions we
have implemented or modified are marked in bold.

31



Function name Description
tcp ack() Deals with incoming ACKs. Updates values related

to the send window.
tcp data snd check() Tries to send data from the send queue when the

send window opens up. It is automaticually called
when an ACK arrives.

tcp sndmsg() The entry point for data from user-space that is to
be sent using TCP. Copies the data into an SKB.

tcp trans merge prev() Attempts to bundle one SKB with the previous one
in the TCP output queue, implemented by us.

tcp push one() Called if there is only one packet on the output
queue that has yet to be sent. Checks if the send
window has enough room for this SKB, and passes
it along to tcp transmit skb() if that is the case.

tcp push pending frames() The same as tcp push one()when more than one
SKB is yet to be sent. Calls tcp write xmit(),
which traverses the output queue and send SKBs.

tcp write xmit() Writes packets to the network and advances
sk send head as long as the send window is
open. Loops through the output queue from
sk send head and till it reaches the end or the
flow- or congestion control says stop.

tcp retransmit skb() All retranssmisions end up in this function, which
checks if the send window is open, transmits the
SKB provided as an argument, and updates differ-
ent counters related to the number of retransmit-
tions.

tcp retrans merge redundant() Attempts to bundle the provided SKB with as many
of the following SKBs on the output-queue as pos-
sible. Copies only the data that the SKB does not
already contain, implemented by us.

tcp transmit skb() Completes the TCP segment by building the header,
checksums the packet and passes it to the IP-layer.

icsk->icsk af ops->queue xmit() The service access point in the IP-layer, i.e. this is
were the SKBs enter the IP-layer.

Table 3.1: TCP output functions, the functions we have implemented or
modified are marked in bold.

32



Figure 3.7: The call-sequence for incoming TCP-packets, the functions we
have implemented or modified are marked in bold.

33



Function name Description
tcp v4 rcv() The SAP at the TCP layer that deals with the pack-

ets IP passes upwards. Fills in the different val-
ues in the SKB and sends it to tcp v4 do rcv(),
or tcp v4 send reset() if the packet doesn’t be-
long to an active connection.

tcp v4 do rcv() Checks if the packet has been received correctly and
passes it on.

tcp v4 send reset() Sends a RESET-packet to instruct the sender to close
the connection.

tcp rcv established() Copies the packets’ payload to the receive memory
of the process and notifies it if the packet has arrived
in-order. If this is not the case, the packet is placed
in the out of order-queue.

tcp ack() See table 3.1
tcp clean rtx queue() Removes acknowledged packets from the output

queue.
sk data ready() Notifies the application that it has received new

data from the network.

Table 3.2: TCP input functions, the functions we have implemented or
modified are marked in bold.

Receiving TCP-packets

We summarize the receive call sequence in figure 3.7 and describe the dif-
ferent functions in table 3.2.

tcp v4 rcv() is the SAP at the TCP layer that deals with all pack-
ets that IP passes upwards. The function first determines if the packet
belongs to a connection, and calls either tcp v4 do rcv() or tcp v4-

send reset(). The latter is called if the connection is not established
and sends a RESET-packet, otherwise tcp v4 do rcv() is called.
We assume that the connection is established and tcp v4 do rcv()

sends the packet to tcp rcv established(). Data packets are then
copied to the receive memory of the process that owns the connection.
If the packet has arrived in order, it is placed on the receive queue and the
application is notified by a call to sk data ready. Otherwise, it has to
wait in the out of order-queue for the packets that have gone missing or
are delayed.
ACKs are treated by tcp ack(), as briefly mentioned in the last sec-

tion. tcp ack() updates different variables related to the cwnd, and then
calls tcp clean rtx queue() to remove acknowledged SKBs from the
output queue. When it is done, tcp data snd check() is called. It
checks if the output queue contains unsent packets, and sends as many

34



as allowed to by the flow- and congestion control.

The RTO-timer

One of the most important parts of TCP when it comes to RDB, is the RTO
timer value. This value decides how long the sender should wait for a re-
ply before triggering an RTO, and for RDB to have an effect it must “beat”
the RTO timer. The packet containing the bundled data must be sent and
acknowledged before the timeout occurs. RFC2988 [25] specifies that the
RTO must be reset whenever 1) a packet is sent and there are no other un-
acknowledged packets, 2) when an ACK/dupACK is received (and there
are still unacknowledged packets), or 3) when an RTO is triggered. The
value is updated for every ACK received.
The RTO-calculation is based on the SRTT and Round-Trip Time Vari-

ation (RTTVAR). [25] specifies that the default RTO value should be set
to three seconds and updated using the following calculation (where K=4
and G is system granularity):

RTO = SRTT+max(G,K ∗ RTTVAR) (3.1)

When the first RTT measurement R is made (done after the first ACK
is received), SRTT is set to R while RTTVAR is R/2. For each subsequent
RTT measurement R’, [25] specifies that the SRTT and RTTVAR should be
updated according to the following formulas:

SRTT = 7/8 ∗ SRTT+ 1/8 ∗ R′ (3.2)

RTTVAR = 3/4 ∗ RTTVAR+ 1/4 ∗ |SRTT− R′| (3.3)

After these calculations, the RTO-value is recalculated using formula
3.1. If a retransmission occurs, RTO is set to RTO * 2 (the exponential
backoff, presented in section 2.2.1).
Unfortunately, formula 3.1 is not perfect. After a long period of a con-

stant RTT, a small additional delay can trigger an RTO. In addition, the
calculation misbehaves with variable round-trip times. If the RTT sud-
denly drops, the last part of the RTTVAR-calculationwill give an increased
RTO-value. This is, however, intended by the developers of the formula.
The idea is that if we have lots of jitter (the RTT is fluctuating rapidly), we
should trust the RTO less and rely more on fast retransmissions. This will
protect us against spurious retransmissions and having to enter slow start
again. However, in most cases, this has turned out to be a bad idea and
the increased RTO decreases performance.

35



Because of these two issues, Linux uses a modified version of formula
3.1. To avoid the first problem, the minimum RTO is 200 ms, ensuring that
the timer will never get too close to the RTT. A large increase in the delay
is needed to trigger a retransmission. The issue of the RTO-calculation
misbehaving is resolved by changing the RTO-calculation (icsk rto) to the
following formula:

icsk rto = min((srtt >> 3) + rttvar, TCP RTO MAX) (3.4)

The weight of the RTTVAR is reduced, and the effect of a large fluc-
tuation in the RTT is reduced. TCP RTO MAX is set to two minutes, and
SRTT and RTTVAR are calculated the same way as in [25]. Both the initial
RTO and SRTT start out as the values specified in [25], while RTTVAR is
initially 200 ms. This is also the RTTVAR’s lower bound, thus the minRTO
is 200 ms. A retransmission will, as long as RTTVAR does not exceed TCP-
RTO MAX, cause the RTO to double (the exponential backoff).
The calculation is still not perfect though. Large amounts of jitter in-

crease RTTVAR and in turn icsk rto, leading to unnecessary long waits
for retransmissions. Also, icsk rto is initialized as three seconds (as
specified in [25]. In other words, losing a packet at the start of a connection
leads to a large retransmission delay.

3.3.2 Implementation details

The Linux TCP-implementation is spread out over several large files, but
we are only interested in the parts that deal with the sending and receiving
of packets. After studying the code, we found out that we only had to
modify three functions. None of these affect the congestion control, so
RDB should work with all TCP variations. We edited the following files:

• tcp.c is where packets start or end their journey through the kernel,
and contains tcp sendmsg(). We have modified this function by
adding a call to our own tcp trans merge prev(), which per-
forms the (potential) bundle.

• tcp output.c is involved in the actual sending of packets, as well as
retransmissions. We havemodified tcp retrans skb() by adding
a call to our own tcp retrans merge redundant(), which per-
forms the (potential) bundle.

• tcp input.c processes received TCP packets. All ACK packets are
treated here, and to remove data from packets containing both ac-
knowledged and unacknowledged data (i.e. a bundled packet), we

36



i f ( skb headlen ( skb ) > 0) {
memmove( skb−>data + uad head , skb−>data , old headlen ) ;

}

skb copy to l i nea r da t a ( skb , prev skb−>data +
( skb headlen ( prev skb ) − uad head ) , uad head ) ;

Figure 3.8: RDB - copying of linear data. uad head contains the number
of unacked bytes in the linear memory area of the previous skb payload.

had to modify tcp clean rtx queue(). We want to avoid waist-
ing bandwidth by transmitting already received data.

Bundling on send

When data is sent from user-space and RDB is used, tcp sendmsg() first
checks if it is possible to attempt a bundle. The criteria are that the SKB
cannot be (or contain) a SYN or FIN, it has to be smaller than the current
MSS, and it cannot be alone in the output-queue. If every test is passed,
tcp trans merge prev() is called.
Since the current SKB is the most recent, the kernel will attempt to copy

the payload from the previous SKB in the output-queue. After calculating
the amount of unacknowledged data, checks are performed to see if the
size of the bundled packet will exceed theMSS, that the packet has enough
room to store the potentially redundant data, and so on. The current SKB’s
payload is moved backwards in memory to make room for the “old” data
at the front of the packet (as shown in figure 3.3), and the bundle is per-
formed. tcp trans merge prev() also calculates a new checksum for
the SKB if the network card does not support checksum offloading (the
card will do the calculation itself). In addition, the sequence number and
payload-length are updated.
When both the current and the previous SKB contains only linear data,

meaning that the payload is stored in one continuous memory area, the
memory-operations are trivial (as shown in figure 3.8). The kernel has
to perform one memmove()-call to move the current SKB’s payload back-
ward, and one memcpy()-call to copy the unacknowledged data.
If the SKBs are non-linear, the situation becomes more complicated.

Non-linear means that the data is spread out over several pages in mem-
ory and is used in conjunction with zero-copy. Instead of copying the en-
tire payload when sending SKBs to the IP layer, the kernel sends page
references. The most important reason for doing this is to lighten the load

37



i f ( skb i s non l inea r ( skb ) ) {
memmove( skb shinfo ( skb )−>f r ags + ua nr f rags ,

skb sh info ( skb )−>f rags ,
skb sh info ( skb )−>nr f r ags * s izeof ( s kb f r ag t ) ) ;

}

/ * Copy i n f o and upda t e pag e s * /
memcpy( skb shinfo ( skb )−>f rags , skb sh info ( prev skb )−>f r ags +

( skb shinfo ( prev skb )−>nr f r ags − ua nr f rags ) ,
ua nr f rags * s izeof ( s kb f r ag t ) ) ;

for ( i =0 ; i<ua nr f rags ; i ++){
get page ( skb shinfo ( skb )−>f r ags [ i ] . page ) ;

}

Figure 3.9: RDB - copying of non-linear data. ua nr frags is the num-
ber of unacknowledged frags, and the frags has a pointer to the page that
contains the data (amongst others).

on the kernel, memory-operations take time and occupy resources [26].
A non-linear SKB is designed to start with skb headlen(skb) bytes

in the linear area, and then continues into the non-linear area for skb -
> data len bytes. This puts one additional constraint to when a bundle
can be performed - all non-linear data must be stored after the linear data.
Thus, you cannot bundle if the current SKB has linear data while the pre-
vious has non-linear data.
Information about the pages (called fragments) is stored in an array

called frags in each SKB, and RDB moves the existing fragments back-
wards in the array first. Then the fragments containing unacknowledged
data are copied, and the number of references to these particular pages
are increased by one, as shown in figure 3.9. The latter is done to make
sure that the Virtual Memory Manager (VMM) does not remove a page
too early. If we did not update the number of references, the pages (and
thereby the data) would be removed together with the original SKBs con-
taining them. This removal would occur when the data contained in the
pages is acknowledged, and cause the kernel to crash when it tries to send
a bundled packet.

Bundling on retransmission

When a retransmission is triggered, the kernel will always end up in tcp-
retransmit skb(). If the connection uses RDB, this function checks

38



i f ( skb i s non l inea r ( skb ) && remove frags > 0) {
no frags = 0 ;
da ta f r ags = 0 ;

/ * Remove unne c e s s a r y page s * /
for ( i =0 ; i<skb shinfo ( skb )−>nr f r ags ; i ++){
i f ( da ta f r ags + skb shinfo ( skb )−>f r ags [ i ] . s i z e ==
remove frags ) {
put page ( skb shinfo ( skb )−>f r ags [ i ] . page ) ;
no f rags += 1 ;
break ;

}
put page ( skb shinfo ( skb )−>f r ags [ i ] . page ) ;
no f rags += 1 ;
da ta f r ags += skb shinfo ( skb )−>f r ags [ i ] . s i z e ;

}
}

Figure 3.10: The process of removing pages from a partly acknowledged
packet. put page() decreases the number of users on a page by one, the
VMM takes care of the actual removal.

if the SKB contains a SYN or FIN, and that it is not the only SKB that
has been sent (but not acknowledged). If the tests are passed, the kernel
calls tcp retrans merge redundant(), which is very similar to tcp-
trans merge prev().
RDB wants to transmit as much unacknowledged data as possible, so

the kernel attempts to bundle with the following packets on the output
queue. Because the data is added after and before the SKBs original pay-
load, the actual bundling and the non-linear constraint are the inverse of
what was presented in the previous section. The kernel does not have
to do any memmove() calls to move data around, and will simply copy
the data or fragments into this SKB (provided that the size of the bun-
dled packet will not exceed the MSS, that there is room in this SKB, and
so on). However, if this SKB contains non-linear data and the following
linear data, a bundle is not possible due to the way SKBs are designed.

ACK with RDB

The tcp ack() function deals with incomingACKs, and calls tcp clean-

rtx queue() to remove acknowledged data from the output queue. As
long as the entire payload is acknowledged, this function behaves exactly
like with TCP and removes the entire SKB.

39



However, to avoidwasting bandwidth, we havemodified tcp clean-

rtx queue() so that it removes data from partially acknowledged SKBs
(a packet containing both acknowledged and unacknowledged data). For
example, if packet A is acknowledged (figure 3.2) after packet B is sent
(figure 3.3), the acknowledged data should be removed from B as well. If
a partially acknowledged packet is detected, our version of tcp clean-

rtx queue() calculates the number of acknowledged bytes, and how
many of them are in the linear and non-linear areas. It removes these bytes
and updates the SKB. If a non-linear packet is acknowledged, we reduce
the number of references to each of the acknowledged pages (figure 3.10),
and move the unacknowledged pages forward in the array. If the packet
is linear, we move the unacknowledged data to the front of the packet. In
both cases, a new checksum is calculated, and the sequence and payload
length are updated.

I/O Control and Proc-variables

To make RDB as dynamic as possible, we have implemented two different
ways to turn it on and off. If somebody wants to use RDB in conjunction
with a proprietary application or do not want to change the source code,
it can be enabled by setting a proc-variable.
Proc-variables are also referred to as system controllers, and are kept

in the /proc-folder at the root of a Linux file system. To set a variable, you
have to pipe a value into it, e.g. echo 1 > /proc/sys/net/ipv4/tcp-

force thin rdb. The kernel treats a proc-variable like any other vari-
able, e.g. the check to see if tcp force thin rdb is true looks like this:

if(sysctl tcp force thin rdb){...}
The proc-variables are stored in the sysctl.h-file of the kernel, and

we have added the constant NET IPV4 TCP FORCE THIN RDB. To give the
TCP code access to the variable, we had to declare an external integer
in tcp.h (which we chose to call sysctl tcp force thin rdb), and
create a mapping between the two variables. This was done by adding
an entry the ctl table ipv4 table[] in sysctl net ipv4.c, which
maps proc-variables to external integers from tcp.h.
The problem with proc-variables is that they are global and will affect

the entire OS. If no applications generate thin streams, this will not be an
issue, because RDB will not be able to bundle because the packets are to
large. However, if themachine is connected to a networkwith very limited
and/or expensive bandwidth, this might be an issue. Provided that an
application generating a thin stream is running, the increased bandwidth
usage (due to the bundling) might cause the performance to drop or lead

40



to increased costs.
We have solved this by implementing an I/O-control that allows peo-

ple to use RDB on a per-socket basis. By setting a predefined constant
when a socket is created, RDB is enabled only for this socket. For some-
body to use the I/O-control, they must have access to the source code.
End-users will rarely have this, so the I/O-control is mostly for develop-
ers.
The implementation of the I/O-control is simpler than of the proc-

variable. First, we added a constant TCP THIN RDB to the file tcp.h, and
the variable thin rdb to the tcp sock-structure (which contains various
TCP-related information about a socket). thin rdb is set by a user-space
call to setsockopt(), which calls upon do tcp setsockopt() to en-
able RDB. Just like the proc-variable, the kernel treats an I/O-control like
an ordinary variable. The check to see if the RDB-I/O-control is enabled
looks like this (where tp is the tcp sock-structure):

if(tp->thin rdb){...}

3.4 Discussion

In this section, we will discuss two important aspects related to RDB. The
increase in packet size, which might be bad for some users or network
types. In addition, in [26] it is shown that memory operations are expen-
sive. RDB performs several such operations for each bundle, and we will
discuss if this will effect the performance of the machine and the network-
part of the application.

3.4.1 Increased bandwidth usage

RDB bundles data if possible, which means that every packet might be
expanded by a certain number of bytes if there is unacknowledged data.
However, because of the increased packet size, RDB will use more band-
width than regular TCP if bundles are performed.
As table 2.1 shows, several interactive applications generating thin streams

have an average packet size of less than 100 bytes. Even if a packet is
bundled with a number of other packets, the size will still be small. In
addition, the payload cannot exceed the current MSS (e.g 1448 bytes in
Ethernet, excluding the IP and TCP header), thus a packet will never be
larger than what the network is able to handle.
We have figured out two situations where the increased bandwidth us-

age is a problem. Cellphone users that connect to the Internet (or another

41



network) with their phones, usually pay for the amount of bandwidth they
have consumed. If the current link either has a huge RTT or the IAT is
lower than the RTT, bundles will be performed because the application
sends data faster than ACKs arrive. If the link is reliable, most of the bun-
dles will be unnecessary. Thus, cellphone users will (depending on the
subscription type) pay more and get nothing in return.
One possible solution to this scenario is to check if the stream is thin

and apply RDB more dynamically. One could e.g. implement something
similar to how TCP’s exponential backoff works - every retransmission
allows the kernel to perform one more bundle (up to a pre-determined
limit), and each subsequent ACK reduces the number of allowed bundles
by one (until it reaches zero).
In another situation, the increased packet size is a problem. This is

when the physical transport medium is of poor quality. Larger packets are
more likely to be corrupted during transmission. We have yet to come up
with a solution, but have decided that this is not a critical issue. Since the
bundled packets are never larger than what the link is able to transfer, ev-
ery network application (independent of RDB) will be affected by this. In
addition, the MAC-layer sorts out any retransmissions due to corrupted
data. However, this will not always solve the problem. If there is conges-
tion at the MAC-layer, the delay before a packet is retransmitted might be
so large that TCP will trigger a retransmission. This causes a reduction of
the send rate, and the performance of the stream will be decreased even
further.

3.4.2 Copying data

When bundling packets, RDB performs several memory-operations. It has
to copy the payload from another SKB, and often has to move data inside
an SKB as well. As shown in [26], memory-operations are expensive and
a lot of research has been done to optimize them. In addition, the kernel-
versions of memcpy() and memmove() do not do any optimizations and
copy or move data byte by byte.
To reduce the number of the memory operations, RDB always works

with the largest possible chunk of data. This way we do not occupy the
different resources (CPU, memory bus, and so on) more than needed.
Also, memory operations are so fast that they will not affect the network-
performance of an application. Memory access is (at least) two orders of
magnitude faster than both the IAT and RTT (micro- vs. milliseconds). For
example, DDR2-RAM spend between 10ns and 3.75ns on one memory op-

42



eration (and can transfer between 3200MB/s and 8533MB/s) [27], the IAT
for a thin stream application is rarely below 100ms (table 2.1), and the RTT
is most of the time larger than 100 ms (RTT is independent of the type of
stream).

3.5 Summary

RDB is a TCP-modification that aims at reducing the number of retrans-
missions by bundling potentially redundant data. It is designed to be a
sender-side modification and transparent to both the sender and receiver
application. It also requires small (if we want to enable RDB on a per
socket basis) or no (if we want to enable RDB on a system-wide basis)
changes to work with existing applications.
In this chapter, we have presented the concept behind RDB and how

we decided to implemented it in the Linux-kernel. In the next chapter, we
will experimentally evaluate the performance and usability of RDB.

43





Chapter 4

Evaluation of RDB

In an ideal situation, when faced with an application generating a thin
stream, TCP and UDP will perform similarly (except for TCP overhead).
No packets would be lost due to poor link quality, and congestion would
not be an issue since the network equipment would be able to deal with
the traffic. Unfortunately, this is rarely the case.
Most networks have some loss and might struggle with congestion.

If an application uses UDP, it can do various tricks to compensate for
lost or late packets. For example, depending on the application type and
application-layer protocol, it may drop old (i.e. delayed) packets. By do-
ing this, a multimedia application will ensure a smooth playback with
some image or audio corruption, or do recovery to compensate for lost
data, e.g., predicting for the movement of characters in a game.
TCP, however, does not allow the applications to behave in this man-

ner. For data to be delivered immediately to the receiving application, it
must arrive in the correct order. If a packet arrives out of order (e.g. if the
previous one was lost), it will be put in a queue and has to wait until the
expected packet is retransmitted and received. Should more packets go
missing, only those that follow directly after one another will be passed
on to the application.
Waiting for lost packets will increase the application layer latency, i.e.,

the time it takes before an application can use the data. RDB is a TCP-
modification that aims at lowering this latency when used with applica-
tions that generate thin streams. These applications have often strict la-
tency requirements, thus having to wait several milliseconds (or seconds)
for a retransmission could be disastrous. In other words, our main goal is
to reduce the number of retransmissions.
In this chapter, we are going to present the findings from our tests of

RDB’s performance. First, we will show how the loss rate, RTT and IAT

45



affect the number of retransmissions when using RDB. Then, we will in-
vestigate how different applications behave with and without RDB. In ad-
dition, for each application, we will also present the result of a survey
conducted to determine if RDB and the mechanisms presented in section
2.4 have an effect on the user experience. Since there was a limit to how
long we could occupy the test subjects, we did not have time to perform
the user tests with only RDB. For each test, we discuss instead how much
effect RDB had (compared to the other modifications). Finally, we discuss
and summarize the results.

4.1 Thin stream experiments in a lab environment

In section 2.3, we looked at how TCP behaved under variable network
conditions when faced with a thin stream. We measured the number of
retransmissions, as these are one of time-dependent thin streams largest
enemies. Having to wait for a retransmitted packet will hurt the user
experience, especially if the connection experiences repeated loss of the
same packet. If this occurs, exponential backoff will double the current
RTO for every loss. Thus, if TCP or RDB experience repeated loss of the
same packet (or data), the delivery latency can potentially increase from
milliseconds to seconds.
In this section, we look at how RDB performs under the same condi-

tions and with the same streams as in section 2.3. We used the same setup
and a fixed payload of 120 bytes. And, unless the parameter was the one
we varied, the IAT was 140 ms, RTT 100 ms, and loss rate 0.5 % in each
direction. The reason for choosing these values is explained in chapter 2.
The values in both the graphs and tables (in this section) are the average
of ten tests run under the same settings for thirty minutes.
We started off by observing how RDB performed when the loss rate

was increased. After wards, we investigated how RDB affected the per-
formance of the thin stream when we varied the RTT and IAT. Our find-
ings from all three experiments are presented in their separate subsections,
along with tables that contain the ten worst-case average packet size dif-
ferences in the given test.
One of the trade-offs discussed in section 3.4 was that RDB generates

larger packets than TCP, because of the bundling, and we wanted to find
out howmuch larger they were compared to TCP. Because we used a fixed
payload size of 120 bytes, this was the lowest possible packet size. Thus,
the desired average packet size was as close to this size as possible.

46



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10  12  14  16

%
 r

e
tr

a
n

s
m

is
s
io

n
s
.

% loss in each direction.

TCP New Reno with RDB
TCP New Reno

Figure 4.1: Retransmissions versus loss rate while using RDB. 100 ms RTT
and 140 ms IAT.

4.1.1 Loss rate and RDB

In section 2.3.2, we showed that the number of retransmissions grewwhen
we increased the loss rate. We expected RDB to behave similarly, but with
a slower growth due to the bundling. With a constant RTT of 100 ms,
the RTO was always close to 300 ms, allowing at least two packets to be
sent and acknowledged before a retransmission timeout occurred. In other
words, the effect of RDB should at least have been noticeable for the low
loss rates.
Figure 4.1 shows that the results were as expected. The growth rate

was much slower and we hardly experienced any retransmissions when
using RDB, except for loss rates above 10 %. Unfortunately, when the loss
rate is very high, RDB has some drawbacks.
The number of packets increases because the combined size of the pack-

ets bundled into one TCP segment reaches the MSS eventually, and there
is no room for more bundling. Each retransmission would then be sent
by the standard TCP retransmission scheme as a separate packet. When a
retransmission occurs, standard TCP merges the unacknowledged data in
one packet and thereby reduces the number of packets sent. Nevertheless,
in our bundling scheme, the latency is less than in TCP New Reno even
for the high loss rates.
As shown in table 4.1, the packet size increased along with the loss

rate. Until a sent packet is acknowledged, it will occupy space in the cwnd.

47



Variable loss rate
Loss rate TCP RDB Difference, Difference,

(bytes) (bytes) packet size packets sent
(RDB - TCP) (RDB - TCP)

10% 132.0 153.0 21.0 (15.91%) 283.0 (2.26%)
5% 121.0 134.0 13.0 (10.74%) -450.0 (-3.45%)
4% 121.0 130.0 9.0 (7.44%) -388.0 (-3.00%)
3% 120.0 128.0 8.0 (6.67%) -320.0 (-2.49%)
2.5% 120.0 126.0 6.0 (5.00%) -285.0 (-2.23%)
2% 120.0 125.0 5.0 (4.17%) -236.0 (-1.85%)
1.5% 120.0 123.0 3.0 (2.50%) -145.0 (-1.15%)
1% 120.0 122.0 2.0 (1.67%) -105.0 (-0.83%)
0.5% 120.0 121.0 1.0 (0.83%) -70.0 (-0.56%)
0% 120.0 120.0 0.0 (0.00%) -2.0 (-0.02%)

Table 4.1: The worst-case packet size difference loss rate.

When the loss rate increases, this window is filled up more quickly. In ad-
dition, more and more packets are stored on the output queue, waiting for
the cwnd to open up so they can be sent. Thus, when a new packet is sent
from the application, there is a large probability that there is unacknowl-
edged data. If RDB is enabled, bundles can be made (provided that the
combined packet size is less than the MSS).
The reason for TCP’s increased packet size when the loss rate exceeded

4%, was that the existing bundlingmechanisms in the Linux-kernel kicked
in. As long as there is room in the packet, Linux will try to merge packets
on retransmission, and copy data into the last packet that has yet to be
sent (if any) upon the first send of the data. When the loss rate is high, the
cwnd fills up quickly, and it takes a while before packets are removed and
new ones let in. Thus packets have to wait outside the cwnd, and bundles
can be performed.
We were a bit surprised by the packet size when we used RDB, we

expected it to generate much larger packets than it did. When for example
10% of the packets were lost, we expected the send queue to be so full that
more or less every packet would be bundled. Thus, the average packet size
would be much larger than it actually was and it would get close to the
MSS. This would eventually happen though, but not with the parameters
used in this test. You can fit 12 120 byte packets into one MSS, which
requires 12 bundles of the same data. Even with 15 % loss we did not
reach this number, and if the loss rate reaches 15 %, it can be argued that
the link is unsuitable for any application.
We expected RDB to generate even larger packets than TCP when the

loss further, but this was not the case. As seen in table 4.1, the average
packet size for 15 % loss is not there. This was most likely caused by the
high loss rate, which caused unacknowledged data to always be present,

48



as well as data waiting to be let into the cwnd. Thus, the built-in mech-
anisms were able to bundle on both retransmission and send, leading to
larger packets. RDB bundled more data at 15 % than for the lower loss
rates. The average packet size was larger than for 10 % loss, but the re-
dundancy increased the chance of data arriving and being acknowledged.
On average, it took more than 700 ms before a packet was acknowledged
without RDB, compared to 169 ms with RDB. The amount of unacknowl-
edged data and thereby potential bundles was reduced.
Even though the packet size was often larger when RDB was enabled,

the number of packets was smaller for most loss rates (even for 0 %, which
is most likely completely random). This was caused by the increased num-
ber of retransmissions - TCP had to retransmit more packets, thereby in-
creasing the number of sent packets. RDB, on the other hand, experienced
fewer retransmissions and did not generate as many additional packets
as TCP. However, with 10 % packet loss, RDB sent more packets than
TCP. Unlike the lower loss rates, most retransmissions experienced by TCP
were RTOs because of the increased number of lost ACKs. After an RTO,
the connection must enter slow start, which will reduce the send rate sig-
nificantly. In addition, the connection have to stop and wait for the RTO
timer to expire, reducing the send rate even more. RDB, again, experi-
enced fewer retransmissions and was able to maintain a higher send rate.
Hence, it sent more packets than TCP.

4.1.2 RTT and RDB

The RTT is the time it takes for a packet to travel from the sender to the
receiver and back, and different TCP-variations use the RTT-value for dif-
ferent purposes and in different ways. However, it is always used in the
calculation of the RTO-value. In the Linux-versions we used, the RTO was
always approximately 200 ms plus the RTT.
With regular TCP, the RTT did not affect the number of retransmissions

(section 2.3.3). This is because the RTO-calculation (described in section
3.3.1) is independent of the actual RTT, as it only cares about the variance.
Consequently, it adjusts the RTO-value to the increased RTT, and waits
longer before triggering a retransmission.
As shown in figure 4.2, this also applied to when we used RDB; the

RTT did not influence the number of retransmissions. The lower number
of retransmissions was caused by the IAT always being less than the RTO
minus the RTT, which enabled RDB to deliver potentially lost data and get
it acknowledged before a timeout. In our tests, the RTO was (as already

49



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

RTT

TCP New Reno with RDB
TCP New Reno

Figure 4.2: Retransmissions versus RTT when using RDB, loss = 1%, IAT
= (150 +- 10) ms.

mentioned) always equal to minRTO (200 ms) plus the RTT. For example,
when the RTT was 10 ms, the RTO was 210 ms. For RDB to be able to
bundle and deliver the data, and get the ACK before a timeout is triggered,
the packets had to be sent with less than 200 ms IAT (RTOminus the RTT).
This means that IATs of 140-160 ms, which were used in this experiment,
were small enough for the stream to benefit greatly from RDB.
RDB will also have an effect if the IAT passes the RTO, but it is much

smaller. As long as the packets are small, bundles are made and lost data
delivered in an earlier packet than it would with TCP. This is discussed in
more detail in the next section.
Still, a very small number of retransmissions occurred when the RTT

was low. This was caused by the loss of multiple packets in a row. The
RTO timer is only updated when 1) no packets are in flight and a new one
is to be sent, 2) a timeout occurs, or 3) an ACK is received (as discussed
in section 3.3.1). So, if a packet is lost, the retransmission timer is not
updated until it expires. In our experiment, if two packets were lost, a
retransmission timeoutwould occur before the third packet was sent when
the RTT was low. As the RTT increased, so did the number of packets that
were sent between each RTO (and the RTO itself), thus the chance of the
data arriving and being acknowledged before a timeout was higher. This,
combined with the low loss rate, ensured that no retransmissions were
triggered for the higher RTT values. The actual number of retransmissions

50



Variable RTT
RTT TCP RDB Difference, Difference,
(ms) (bytes) (bytes) packet size packets sent

(RDB - TCP) (RDB - TCP)
500 121.7 481.0 359.3 (295.23%) 152.8 (1.23%)
400 120.8 395.4 274.6 (227.32%) 50.4 (0.40%)
300 120.1 334.1 214.0 (178.18%) 28.0 (0.22%)
280 120.9 277.1 156.2 (129.20%) 69.0 (0.55%)
260 120.4 269.9 149.5 (124.17%) 37.0 (0.29%)
240 120.1 254.6 134.5 (111.99%) 27.6 (0.22%)
220 120.0 243.2 123.2 (102.67%) -37.7 (-0.30%)
200 120.0 241.0 121.0 (100.83%) -37.0 (-0.29%)
190 120.0 240.8 120.8 (100.67%) -70.8 (-0.56%)
180 120.0 240.4 120.4 (100.33%) -57.2 (-0.45%)

Table 4.2: The worst-case packet size difference, RTT.

was rarely larger than three, which RDBmanaged to compensate for when
the RTT was high.
Table 4.2 shows that a high RTT caused the packet size to increase sig-

nificantly when RDB was used. This was mostly due to the increased time
it took before an ACK was received. When the RTT increases and IAT is
constant, more packets can be sent before an ACK arrives and the cwnd
opens up. As a result, more packets are waiting outside the cwnd, the
number of (possible) bundles increases, and consequently the packet size.
Even though the increase in average packet size was quite large, the

packets were still small. The maximum size for a TCP packet that is to be
transferred over an Ethernet is 1448 bytes (excluding headers, [11]), and
the largest average packet was 481 byte. Another thing worth noticing in
table 4.2, is that the difference between the number of packets sent by RDB
and TCP increased alongwith the RTT. This was caused by the higher RTT,
which forced the connection to wait longer before triggering a retransmis-
sion. More time passes before dupACKs are received, and the RTO timer
increases along with the RTT. In addition, the high RTT causes the cwnd
to have a slow growth rate. In other words, when a retransmission occurs,
it takes a while before the send rate is back to normal. RDB, on the other
hand, experienced close to zero retransmissions and was able to maintain
a constant send rate. Hence, RDB sent more packets.

4.1.3 IAT and RDB

In the last section, we described how the number of retransmissions with
RDB was independent of the RTT, and that RDB reduced the number of
retransmissions for IATs between 140 ms and 160 ms. We also explained
that the IAT must be less than the RTO minus the RTT for RDB to have

51



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  100  200  300  400  500

%
 r

e
tr

a
n

s
m

is
s
io

n
s

interarival time

TCP New Reno with RDB
TCP New Reno

Figure 4.3: Retransmissions versus packet IATwhen using RDB, loss = 1%,
RTT = 100 ms.

maximum effect.
After checking how the RTT affected the number of retransmissions,

we wanted to find out what effect variations in the IAT would have with
RDB. For this test, we kept the RTT constant at 100 ms, which gave us an
RTO value of around 300 ms. Thus, we expected RDB to be better than
TCP until the IAT passed 200 ms, and then the number of retransmissions
would be equal to TCP.
This is confirmed by figure 4.3. When there were (relatively) many

packets that could be bundled, i.e., the IAT was low, no retransmissions
were triggered because a copy of the data was sent (and acknowledged)
before the potentially lost packet had to be retransmitted. However, the
gain of bundling was reduced as the IAT increased. This was due to of the
reduced amount of packets sent between each retransmission timeout.
When the IAT passed 200 ms, RDB started to retransmit as expected.

This was caused by the IAT (plus the RTT) crossing the RTO value, and
RDB was no longer able to “beat” the RTO timer and prevent retransmis-
sions. There was at least one RTO between every sent packet, thus no bun-
dles upon send were possible. Still, the connection was able to bundle on
retransmission (provided that there was unacknowledged data), so RDB
was able to deliver the data faster than TCP. However, 200 ms is longer
than the average IAT for most of the applications in table 2.1. Therefore,
RDB should be able to improve the application layer latency, and possi-

52



Variable IAT
IAT TCP RDB Difference, Difference,
(in ms) (bytes) (bytes) packet size packets sent

(RDB - TCP) (RDB - TCP)
25 121.2 477.5 356.3 (293.98%) 574.0 (1.00%)
35 121.0 361.0 240.0 (198.35%) 193.1 (0.44%)
50 121.0 251.4 130.4 (107.77%) 162.2 (0.51%)
90 120.0 241.0 121.0 (100.83%) -93.5 (-0.50%)
75 120.0 241.0 121.0 (100.83%) -104.4 (-0.47%)
60 120.0 241.0 121.0 (100.83%) 16.9 (0.06%)
100 120.0 166.7 46.7 (38.92%) -81.1 (-0.48%)
250 120.8 121.9 1.1 (0.91%) -6.0 (-0.08%)
200 120.1 121.2 1.1 (0.92%) -22.7 (-0.26%)
275 120.9 122.0 1.1 (0.91%) 0.3 (0.00%)

Table 4.3: The worst-case packet size difference, IAT.

bly also the user experience, in several thin stream applications (at least
when faced with similar link characteristics). In the next sections, we try
to determine if that is actually the case.
In table 4.3, we see that a low IAT causes RDB to generate much larger

packets than TCP. This was, as with the RTT, caused by the increased num-
ber of packets sent between every ACK. The lower IATs generated the
highest average packet size differences, which was expected, as this was
when most bundles could be performed. The average packet size was
more or less constant for TCP, which indicates that the built-in mecha-
nisms are independent of the IAT (at least when the loss rate is low) and
not very aggressive. Still, some bundling occurred for the lowest IATs.
We believe this was because the large number of packets sent increased
the chance of there being unacknowledged data at the sender. As a result,
both of the built in mechanisms were able to bundle.
As seen in table 4.3, the connections with and without RDB transferred

about the same number of packets (at least with our settings). Still, there
were some difference between the IATs. When the IATwas short, RDB sent
more packets than TCP. This was due to the larger number of packets sent
from the application. Even though the loss rate was constant for all IATs,
the interval between each retransmission was shorter with a short IAT.
Thus, the connection using TCP spent more time waiting for retransmis-
sions and the send rate was reduced more frequently. RDB experienced
close to no losses and was able to maintain a nearly constant send rate,
leading to a larger number of sent packets.

53



4.2 Perceived user latency

When faced with “typical” thin stream traffic and realistic network condi-
tions, RDB produces significantly fewer retransmissions than TCP in our
thin stream laboratory experiments. Unfortunately, the number of retrans-
missions does not say anything concrete about the user experience, it only
provides an indication. To determine if RDB actually affects the end-user
experience, we have to measure the latency at the application level.
The application layer latency says how long it takes before the received

data can be used by the application. Since TCP is reliable, it has to deliver
all the data to the application in order. Thus if a packet is lost, the appli-
cation will have to wait for one or more retransmission before it receives
more data. This wait might make the application behave unintentionally,
and reduce the quality of the user experience. In a game, for example, if a
player is under attack, delayed information from the server might lead to
him or her being killed before being able to put up a defense.
The graphs presented in this section are called Cumulative density

function-plots (CDF), and show the share of data that is delivered to ei-
ther the transport layer (the data is received by the machine) or applica-
tion layer (the data can be used by the application) within a certain time
from being sent. Delays with a value above zero, represents packets that
have been queued up at either the sender or receiver, waiting for lost data
to be retransmitted or acknowledged. Our goal is to reduce the latency,
i.e., we want to increase the share of received data at low delays.

4.2.1 Test setup

The different applications that we used when testing RDB are all non-
deterministic. In other words, two sessions never generate the same traffic.
To get directly comparable statistical results, we captured the traffic when
different tasks were executed over a perfect link. The captured traffic was
then fed to tracepump (see appendix A), and the links exposed to loss and
delay using netem. We used the same setup as in section 2.3.1 to be able
to fully control the links.
After running the “World of Warcraft”-test (section 4.2.2), we discov-

ered that the links between theUiO andUniversity ofMassachusetts, Amhurst
(UMASS) and a data center in Hong-Kong were close to perfect. This was
not the case when we measured the performance of the same links from
home, so we decided to run the rest of the tests through our emulated net-
work. After performing several measurements between machines inside
Norwegian and American access networks, we decided to use an RTT of

54



130 ms (30 ms more than in the lab environment tests) and loss rates of
2 % and 5 %. The RTT and first loss rate were the average, while 5 % was
the worst case loss rate we experienced. We used a different RTT because
100 ms (as in the theoretical tests) was never achieved from our home con-
nections, and we wanted settings as realistic as possible. Unfortunately,
we did not have time to rerun the tests presented in section 4.1 and 2.3
with the new RTT. However, only the IAT test would be affected by the
new RTT - the number of retransmissions would have increased when the
IAT crossed 230 ms (instead of 200 ms).
In addition, we did some preliminary measurements against our ma-

chine in Hong Kong. This connection had the same loss rate, but a higher
RTT. We chose not to use both RTTs in our tests because the number of
retransmissions are, as discussed in 4.1.2, independent of the RTT (pro-
vided it is close to constant). The only major difference would have been
lager packets due to the increased number of potential bundles, and all
data would have been delayed (compared to a scenario with a lower RTT).
However, since the CDFs show the relative (to the optimal delivery time)
delay for the two streams, the plots would have looked the same.
Except for “World of Warcraft”, all the replays were run in a loop for

eight hours, and we performed four replays for each application. One
for each of the two loss rates, and one with and without RDB. Since RDB
is designed to be a sender side modification, it was only enabled on the
sender (expect with SSH, as explained in section 4.2.4).
In addition tomeasuring different statistics, wewanted to find out how

RDB (and the modifications presented in section 2.4) affects the user expe-
rience. As mentioned in the introduction to this chapter, since there was a
limit for how long we could occupy the test subjects, we were not able to
single out RDB in our tests. How these tests were conducted differed be-
tween the applications, and will be described in their respective sections.

4.2.2 World of Warcraft

The test

“World ofWarcraft” (WoW) is currently themost popularMMORPG in the
world [28]. It uses TCP and generates thin streams. We therefore decided
to find out if RDB affected the end user experience (at least statistically).
We captured a one hour playing session where we focused on traveling
and fighting in the most populated areas in order to generate traffic. Our
captured traffic has an average packet size of 270 bytes and IAT of 322 ms.
We replayed the captured stream in a loop over a 24 hour period using

55



tracepump. We used the client as the sender to make sure that we had
the original traffic. If we had used the server, a packet could, for example,
originally have been a retransmission and we would not have been able to
replay the original stream. All tests were performed at the same time, but
from different (but similarly equipped) machines. When these tests were
performed, we had not yet implemented the I/O control. Because proc-
variables are global and therefore affect the entire system, we needed one
machine for the TCP tests and one for the RDB tests.

Figure 4.4: The route our packets followed to UMASS.

To get the most accurate values for the effect of RDB on the user expe-
rience, we decided to run the tests over the Internet. The sender machine
was located at the UiO, while the receivers were at UMASS (path shown
in figure 4.4) and a data center in Hong Kong.

Results

Figure 4.6 show the transport- and application layer delay to UMASS.
Both layer’s latency was lower with RDB than TCP. The receiver’s trans-
port layer latency received 99.9 % of the data within 337 ms with TCP.
For RDB, the value was 158 ms. The difference at the application layer
was more significant. With RDB, the application layer delay (for the same
share of data) was equal to the transport layer delay. TCP, however, could
not deliver 99.9 % of the data to the application before 342 ms had passed.
These results were confirmed by our Hong Kong test, shown in figure 4.5.
99.98 % of the data was received by the machine after 127 ms with RDB,

56



 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

World of Warcraft CDF, transport layer, UiO - Hong Kong 

TCP New Reno with RDB
TCP New Reno

 0.9996

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

World of Warcraft CDF, application layer, UiO - Hong Kong 

TCP New Reno with RDB
TCP New Reno

Figure 4.5: Transport and application layer latency differences running
WoW 24 hours to Hong Kong (19/11-2007).

while TCP did not reach the same share until 489 ms. The same share of
data was consumed by the application after 128 ms with RDB and 818 ms
with TCP. Because the application layer latency is the most important, we
only include graphs showing and discuss this latency in the rest of the the-
sis. What directly affects the user experience is when the data can be used
by the application, and not when it is received by the transport layer.
However, neither of the differences were large compared to the total

number of bytes transmitted. This was due to the high quality of the links,

57



 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0  500  1000  1500  2000  2500  3000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

World of Warcraft CDF, transport layer, UiO - UMASS 

TCP New Reno with RDB
TCP New Reno

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0  500  1000  1500  2000  2500  3000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

World of Warcraft CDF, application layer, UiO - UMASS 

TCP New Reno with RDB
TCP New Reno

Figure 4.6: Transport and application layer latency differences running
WoW 24 hours to UMASS (19/11-2007).

both to the US and to Hong-Kong. We had an average loss rate of 0.06%
and RTT of 122 ms to UMASS, and 0.03 % loss and 261 ms RTT to Hong-
Kong. Thus, few retransmissions were triggered and RDB did not have
that much of an effect. Even though the links were close to perfect, we
decided to present the result. If a player is killed because the final “At-
tack” command was lost, he does not care if most packets before and after
arrived quickly. In other words, we wanted to see if we could improve the
perceived user latency on high quality links as well.

58



Because RDB delivered data faster than regular TCP, it decreased the
latency. Since we do not control the server, we were not able to see if the
application behavior changed. Had we run the tests from locations with
poorer links (e.g. at home), we would probably have seen a more sig-
nificant difference between when RDB was used and not. When pinging
the two machines several thousand times at various times of the day, we
always experienced a couple percent loss when using our home connec-
tions.

4.2.3 Skype

The test

Skype1 is a popular and free VOIP-application. By using it you can call
both other Skype users and regular phones, and Skype is able to use both
UDP and TCP to transfer data. The former is default, but Skype falls back
to TCP if UDP is blocked (e.g. by a firewall). Since a lot of corporate
firewalls block UDP, TCP often is the only alternative. We were curious as
to wheter RDB would enhance the user experience.
In World OfWarcraft we had no control over the server, other receivers

or links. With Skype, however, we can fully control every aspect of a con-
nection and experience if our different TCPmodifications enhance the user
experience. To do this, we made recordings of both a podcast and two
songs when played over Skype through our emulated network environ-
ment (for 2% or 5% loss and themodifications on and off). The songswere
chosen because it is much easier to hear delays and other effects when you
have a rhythm. When the recordings were completed, we uploaded them
to a web page 2 and asked people to vote for the clips they thought were
the best. We decided to use one of the clips as a reference clip, and up-
loaded the same version twice but under different names. By doing this,
we could detect if people tended to prefer the first alternative.
One important thing that we discovered is that Skype performs unex-

pected when encoding sound for transfer over TCP. Gaps and sound cor-
ruption occur even when there are no loss or delay. Since all the record-
ings would be affected by the same sound corruption, we decided that
this would not affect the result and went ahead with the test. Unfortu-
nately, since Skype is a proprietary and thereby closed source application,
we were not able to investigate the cause of this further.

1Can be downloaded from http://www.skype.com
2A copy of the webpage is included on the attached CD-ROM.

59



Connection Share of Average Latency (in ms) Unique Total Average Number of
information, retrans. packet size number of number of IAT packets
Skype (in bytes) Min. Avg. Max. bytes bytes (in ms) sent

2% loss, TCP 1.97% 322 130 149.8 11018 195279922 199334594 37 777882
2% loss, RDB 0.03% 1154 130 132 22018 195279922 901149955 35 828250
5% loss, TCP 4.88% 381 130 182.8 22772 195279922 206132337 45 653392
5% loss, RDB 0.18% 1124 130 136.6 11015 195279922 872352828 35 824109

Table 4.4: Information gathered from our Skype-experiments, 130 ms RTT

Before we present the statistical results and the results from the rest of
our tests, we will repeat what a time-dependent thin stream actually is. In
chapter 2, we have defined thin streams as streams with high IAT or small
packet size (compared to “regular” TCP streams), thus they will consume
small amounts of bandwidth. Thin streams are often generated by appli-
cations with strict latency requirements, and TCP’s different congestion
control mechanisms will lead to an increased latency, thereby hurting the
performance of time-dependent thin streams.

Statistical results

Skype is a typical thin stream application, it generates small packets and
sends them out with short IATs. In addition, Skype does not use a pop-
ular technique called “noise suppression” when UDP is blocked, which
means that the application transfers data even when nobody is talking. In
the original dump (the one that was fed to tracepump), we had an IAT
of 19 ms, which is very low and ideal for RDB (together with the small
packets).
Table 4.4 summarizes our findings from the Skype-experiments when

using our emulated network. As we can see, RDB reduced the number
of retransmissions significantly, but at the cost of bandwidth. The pack-
ets were close to four times larger than with TCP, both for 2 % and 5 %
loss, and around 700 MB more data was transferred for each loss rate (an
increase of 361 % and 323 % respectively). This quite significant increase
was due to the low IAT and small packet size, which combined with the
RTT allowed several bundles to be performed before an ACKwas received
or retransmission occurred.
The number of packets sent did not increase as significantly as the

amount of bytes when we used RDB. For 2 % and 5 % loss, the increase
was 6 % and 26 %. This increase was caused by the low IAT, as discussed
in section 4.1.3. TCP has to stop and wait for retransmissions more fre-
quently than RDB, which together with the effects of a retransmission led
to a lower send rate.

60



 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  200  400  600  800  1000  1200  1400

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

Skype CDF, 2% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.7: Skype application layer CDF, 2 % loss and 130 ms RTT.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  500  1000  1500  2000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

Skype CDF, 5% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.8: Skype application layer CDF, 5 % loss and 130 ms RTT.

61



RDB also reduced the transport layer latency. For example, with TCP
we saw an average latency of 149.8 ms when we had 2 % loss, compared
to 132 ms when RDB was used. The application layer latency was also
reduced, as shown in figure 4.7 and 4.8. With 2 % loss, 98 % of the data was
delivered to the application almost instantly (i.e., the only delay was the
RTT).With TCP, it took 221ms before the same share of datawas delivered.
The difference was even larger in the tests with 5 % loss. With RDB, 98 %
was delivered within 46 ms, while TCP did not reach the same level before
388 ms had passed.
Since the datawas delivered faster, we expected the quality of a conver-

sation performed over a link with the same characteristics to increase. Due
to the reliability of TCP, a connection have to stop and wait for retransmis-
sions if packets are lost. When talking to someone in real-time, we believe
this leads to delayed speech and decrease the quality of the conversation.
For instance, the person at the other end of the line might have started
talking about something else, or be annoyed because he or she has to wait
so long for a reply. When RDB is used, our statistical results indicate that
the number and length of the delays are going to be reduced. Hence, the
speech arrives faster, leading to a better user experience.
The high maximum latency values were caused by multiple losses of

the same packets. The captured data from the experiments tells us that
most of the retransmissions have been timeout retransmissions, thus ex-
ponential backoff have kicked in and doubled the RTO for every loss. This
is something that RDB is not able to compensate for. If data does not arrive
or ACKs are lost, then it is impossible to do anything. In other words, the
maximum latency will be the same as TCP.

User experience

Figure 4.9 shows the results of our Skype survey. We got 88 people to vote,
and they preferred the clips with the modifications. At least for the third
clip, the majority voted for the version with the modifications turned on.
According to the comments we got, the differences in the first clip were
much more difficult to hear. Still, over half of the people that voted chose
the version with the modifications enabled.
The votes for the reference clip indicate that users tend to prefer the

first version they hear, and this might have affected the results for clip one.
If people went through the test linearly, then the version with the modi-
fications was the second they heard. With clip three, the order was the
opposite of clip one, but the tendency to vote for the first version would
most likely not matter. As shown in figure 4.9, over 90 % said the version

62



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
o

d

N
o

m
o

d

E
q

u
a

l

M
o

d

N
o

m
o

d

E
q

u
a

l

V
a

r1

V
a

r2

E
q

u
a

l

C
h

o
s
e

n
 s

e
le

c
ti
o

n
 (

%
)

Clip 1 Clip 3 Clip 2

Comparative tests mod/nomod
Reference test:

Same clip played twice

Figure 4.9: Results from the Skype user survey.

with the modifications switched on was the best.
The effects of running Skype over a connection with both loss and de-

lay were not as severe as we thought (see the second to last paragraph
in the previous section). Most of the people that took the test commented
that the sound quality tended to be worse without the modifications (more
background noise) and the sound often sped up. The latter we suspect was
caused by Skype trying to regain some of the time spent waiting for a re-
transmission. With the modifications enabled, people reported that even
though the sound was not perfect, the overall quality was much better.
Unfortunately, 88 persons are not enough to draw a reliable conclusion

to whether the modifications have an effect or not. But, due to the vast
majority voting for “our” clips, we believe that the trend would continue
if we asked more people. Thus, we got a strong indication that the modi-
fications actually improve the user experience.
When we looked at the captured network traffic from when we made

the recordings, it had the same characteristics as those presented in table
4.4 and discussed in the previous section. As our statistical results show,
RDB reduces the latency when faced with traffic generated by Skype (at
least with our network settings), thus it is most likely contributed a lot to
improving the user experience. The other modifications, as discussed in
section 2.4, only kick in when less than four packets are unacknowledged
at a time. If one packet was lost, the low IAT indicates that more than
four packets were sent before any of the other modifications would have

63



been activated. Also, as shown in section 4.2.3, when we enabled RDB we
hardly had any retransmissions, making the other modifications more or
less redundant. In other words, they did not contribute very much to the
result.

4.2.4 SSH

The test

SSH, or Secure Shell, is a popular application level protocol that allows
data to be exchanged over a secure channel between two computers. It
is built upon TCP, and the applications that use it, SSH clients, are most
commonly used for logging into Unix/Linux-machines remotely. When
logging into a machine, you have access to a console and, providing the
remote machine supports it, the X window system. Thus, if the applica-
tion has a GUI, you can opt to use that instead of the text only version.
Captured traffic from different SSH sessions shows that when we use only
the command line, we have a typical thin stream. When X comes into play
(the user starts a program that has a GUI), the stream is still thin but the
packets are so large that RDB is not able to bundle. We have therefore only
focused on the command line and applications that can be run directly in
the console.
As with Skype, we have access to both the sender and receiver, and

can experience any possible enhancements our self. We decided that both
ourselves and 25 users should perform some specific tasks to determine if
RDB (and the other modifications) had an effect. For the theoretical tests,
we logged into a machine, changed directory, used “ls” to show the con-
tent of a large directory, and finally typed a small text into the a text editor.
We captured the network traffic when we performed these tasks, and re-
played it as described in section 4.2.1.
The user’s tasks differed from ours in that they focusedmore on typing.

As typing is interactive it was much easier to notice differences in quality.
Due to time constraints we had only time to test for 2 % loss, 130 ms RTT
and with/without all the modifications (no specific RDB test). After the
test was done, the user was asked if the first or second sessionwas the best.
He or she was not aware of which session was with the modifications, and
we changed the order before every test.
Since both machines acted as senders, we activated the modifications

on both. “Local echo”was switched off by default, so onemachine sent the
input, while the other transmitted what was to be shown/updated on the
screen. All key presses were transmitted to and returned from the other

64



Connection Share of Average Latency (in ms) Unique Total Average Number of
information, retrans. packet size number of number of IAT packets
Skype (in bytes) Min. Avg. Max. bytes bytes (in ms) sent

2% loss, TCP 2.25% 167 130 148.7 22930 17547400 18018736 166 178360
2% loss, RDB 0.48% 223 130 136.6 10800 17547400 27886416 166 177218
5% loss, TCP 5.53% 171 130 181.9 21739 17547400 18743912 166 178030
5% loss, RDB 1.38% 228 130 146.5 10954 17547400 28992248 166 177921

Table 4.5: Information gathered from our SSH-experiments, 130 ms RTT

machine before being displayed.

Statistical results

Asmentioned briefly in the introduction, SSH is another typical thin stream
application. In our “perfect” packet dump, the average IATwas 83 ms and
packet size 116 bytes. With a constant RTT of 130 ms, we had an RTO of
around 330 ms. Thus close to four packets would be sent between every
RTO. In other words, RDB should be able to reduce both the latency and
number of retransmissions.
Unfortunately for RDB, table 4.5 shows that the average IAT increased

by over 30 ms when we introduced some loss and delay. With an IAT
of 166 ms on average, only one packet would be sent before an RTO oc-
curred. Still, RDB should be able to improve both the average application
layer latency and reduce the number of retransmissions. If the packet sent
between the first packet and the RTO contained the lost data, it would be
acknowledged before a timeout occurs (provided that neither it nor the
ACK is lost).
As shown in table, 4.5, RDB improved the average latency with 8%

(12 ms) for 2% loss and 33% (35.4 ms) for 5% loss, which should make the
application behave more pleasantly. In addition, the share of retransmis-
sions dropped with 1.77 % and 4.15 % respectively.
The maximum latency was, as with Skype, extremely high and had the

same reasons (multiple, consecutive packet losses). As shown before, the
cost of reducing the latency is increased bandwidth. The average packet
size when using RDB was around 50 bytes larger, and in total the RDB
connections transferred close to 10MB more than TCP for both loss rates
(an increase of 49 % and 56 % for 2 % and 5 % loss). If somebody uses
SSH over a connection where they have to pay for the amount of data
transferred, this might be an issue. But unless somebody has a long and
very active session, the increased cost will be slim.
Unlike Skype, the connections using RDB transfered fewer packets than

the ones without (a decrease of 0.6 % and 0.1 % for 2 % and 5 % respec-

65



tively). The IAT was close to constant in all the tests, so the only thing
that differed was the loss rate. As discussed in section 4.1.1, RDB trans-
fers fewer packets than TCP for most lower loss rates (like 2 % and 5 %).
The high number of retransmissions forces TCP to send additional packets
containing the lost data, something that RDB most of the time manages to
avoid. For example, the share of retransmission with 2 % loss was 1.97 %
with TCP and 0.03 % with RDB.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0  500  1000  1500  2000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

SSH CDF, 2% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.10: SSH application layer CDF, 2 % loss and 130 ms RTT.

Figure 4.10 and 4.11 show that the application layer latency gains from
using RDB. The connection received 97 % of the data instantly with 2 %
loss, and 94 % with 5 % loss. TCP did not reach the same levels before
400 ms had passed for both loss rates. This reduced application layer la-
tency should lead to a better user experience. If the latency is high, it
takes a while before the keyboard strokes arrive and the remote machine
reacts. Also, if a packet is lost, a connection using TCP has to wait for a
retransmission before it can process more commands. Hence, we expect
characters to arrive more bursty when RDB (and the other modifications)
are switched off.

User experience

In our user tests, the test subjects were, as mentioned in the introduction,
asked to perform different tasks focusing on interactivity. The modifica-
tions were run on both the local and remote machine, and the connec-

66



 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  500  1000  1500  2000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

SSH CDF, 5% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.11: SSH application layer CDF, 5 % loss and 130 ms RTT.

tion faced 130 ms RTT and 2 % loss in each direction (emulated through
netem). After we had set up an emulated network with these settings, we
had 25 people perform the tasks.
The results in figure 4.12 show that the test subjects clearly preferred

to have the modifications switched on. They commented that the input
was smoother. When the modifications were switched off they noticed
the effects described in the last paragraph of section 4.2.4. The input was
burstier, for example, the remotemachine did not immediately noticewhen
a key was released.
As with Skype, we captured the network traffic from the different test

sessions. This traffic had the same characteristics as in table 4.5, and we
believe RDB contributed a lot to improving the user experience. In our
statistical experiment, RDB reduced both the share of retransmissions and
the average latency. However, unlike in the Skype test, the other modifi-
cations were able to affect the connection positively as well. This was due
to the low number of packets in flight (because of the high IAT).

67



Figure 4.12: Results from the SSH user survey.

4.2.5 BZFlag

The test

BZFlag3 is short for BattleZone capture the Flag, and is a popular open-
source multiplayer shooter game. The goal is to capture the other team(s)
flag and bring it back to your base as many times as possible. The game
can use both TCP andUDP, and asmost first person shooter games it is fast
and intense. In other words, you want the packets to be sent and arrive as
fast as possible to get the most accurate positions of the other players, and
make sure that your actions are quickly pleased.
All clients are connected to a central server, which is responsible for

broadcasting messages sent from the different players. If you fire a shot or
move, the packet is first sent to the server, and then to all the other players.
If the server has a lossy connection to the network, it affects all the players
in the game. Shots are delayed, the difference between the perceived and
actual position of another player might be quite large, and so on.
To generate the dump used to get our statistical results, we decided to

pit one player against 20 computer controlled opponents (the maximum
our machines could handle). The opponents were located on another ma-
chine to force packets through the server, and the play sessions lasted for
30 minutes. We captured the data and then replayed the stream between
the server and the human client through our emulated network (as de-
scribed in section 4.2.1).
Unlike Skype and SSH, we did not have time to perform any formal

surveys to find out if RDB (and our other TCP modifications) enhanced

3http://www.bzflag.org

68



Connection Share of Average Latency (in ms) Unique Total Average Number of
information, retrans. packet size number of number of IAT packets
Skype (in bytes) Min. Avg. Max. bytes bytes (in ms) sent

2% loss, TCP 1.98% 112 130 150 21930 35482101 36223120 38 771646
2% loss, RDB 0% 267 130 131.5.6 10989 35482101 233969911 25 1159202
5% loss, TCP 4.91% 129 130 182.9 22050 35482101 37497492 50 593143
5% loss, RDB 0.02% 269 130 133.5 22061 35482101 235372004 25 1154273

Table 4.6: Information gathered from our BZFlag-experiments, 130ms RTT

the user experience. Instead, the user experience section is based on how
we felt that the game behaved with the modifications turned on. Since we
always knew if the modifications were enabled or not, our opinions were
colored. Still, we have been as objective as possible. The impressions are
gathered from several sessions with different loss rates (either 2 % or 5 %)
and 130 ms RTT. Since the modifications are intended to be sender (i.e.,
server) side to avoid imposing any requirements on the clients, they were
only enabled on the server.

Statistical results

As mentioned above, BZFlag (and other shooter games) are very sensitive
to latency [3]. If packets are lost/delayed, the built-in movement predic-
tion has to cover a longer time period. When the lost packets finally arrive,
the tanks in the game have to jump into the correct position. This differ-
ence between the perceived and actual position of the other players leads
to a less than optimal user experience. Even though the bullet flies right
through the opponents tank and he appears to be hit, he might in fact be
somewhere else on the map and the player misses.
In the sample dump that we fed to tracepump, the average IAT was

25 ms. As in the other tests, an RTT of 130 ms gave us an RTO of 330 ms,
hence, several packets were sent between each RTO and bundles could be
made. Due to the low IAT, we expected RDB to reduce the latency quite
significantly, something the results in table 4.6 show. With 2% loss, the
average latency was close to 14% lower, while with 5% loss it was reduced
by 37%. Unfortunately, as with Skype, the bandwidth use increased quite
significantly. The packets were on average close to 2.5 times larger than
when RDB was switched off, and close to 200 MB more data was sent for
both loss rates (an increase of 528 % and 546 % respectively).
The connections using RDB also sent more packets than the others, but

the increase was not as significant as for sent bytes. With 2 % and 5 %
loss, RDB caused, 50 % and 94 % more packets to be sent respectively.
This was, as in the Skype test, because of the low IAT (discussed in section

69



4.1.3). Packets are lost more frequently, forcing TCP to stop and wait for a
retransmission. In addition, a retransmission reduces the send rate signif-
icantly (because of the congestion control mechanisms). RDB, on the other
hand, experienced close to zero retransmissions and was able to maintain
a much higher send rate, thus sending more packets.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  200  400  600  800  1000  1200  1400  1600

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

BZFlag CDF, 2% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.13: BZFlag application layer CDF, 2 % loss and 130 ms RTT.

Figure 4.13 and 4.14 show that the application layer latency also im-
proved, i.e. data was delivered to the application faster when using RDB.
With 2% loss, over 99% of the data was delivered almost instantly, some-
thing TCP did not achieve until 283 ms had passed. For 5% loss, TCP did
not manage to deliver 98% until 393 ms, while RDB reached the same level
almost at once. Because the data was delivered faster, we expected the dif-
ference between the actual and perceived position to decrease (under the
same network conditions). This should in turn lead to less erratic tank
movement and an improved hit ratio. It is more likely that the other tanks
actually are where they appear on the screen. This will, in turn, lead to a
more pleasant user experience.
Most games do all the logic on the server, and RDB would be most effi-

cient if used on this machine. However, in BZFlag, the clients themselves
are responsible for deciding the outcome of all actions and then reporting
back to the server. If one of the clients has to deal with a link of poor qual-
ity, it hurts the experience for all the other players because of the delayed
reporting. Hence, it would be useful if the clients enabled RDB as well,
but due to time constraints, we did not have time to look at how large the

70



 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  500  1000  1500  2000

C
D

F
 (

b
y
te

s
)

Latency after lowest observed value (ms)

BZFlag CDF, 5% loss, 130ms RTT

TCP New Reno with modifications
TCP New Reno

Figure 4.14: BZFlag application layer CDF, 5 % loss and 130 ms RTT.

(possible) improvement might be.

User experience

Unlike Skype and SSH, we did not have time to perform a proper user
survey for BZFlag. Instead, we gathered several people, and played a
number of matches against each other with different network settings and
the modifications on and off. We tested both 2 % and 5 % loss, and the RTT
was kept constant at 130 ms. The modifications were only enabled on the
server.
Our impression was that the modifications made it much easier to hit

the opponents, as expected. The difference between actual and perceived
position was apparently much smaller with the modifications. In addi-
tion, we saw less erratic tank movement because BZFlag did not have to
estimate so much.
The traffic showed similar characteristics as the one in table 4.6, and

we believe RDB played a major part in improving the experience. The low
IAT and small packet size were ideal conditions for RDB. With an RTT
of 130 ms, several packets were sent for every RTT and before an RTO.
Hence, bundles were possible, and the chance that the data arrived sooner
than with TCP increased.
Sincewe knew all the settings andwhen themodificationswere switched

on, we were not fully objective. However, we felt that the modifications

71



improved the user experience. It was easier to hit the opponents, and the
tanks moved more smoothly. The modifications, in our perception, made
playing BZFlag over a lossy link more pleasant.

4.3 Discussion

In this chapter, we have presented the results of several tests performed to
find out if RDB improves the latency for thin streams. Since most of the
applications generating thin streams are interactive and therefore non de-
terministic, we captured the network traffic (with tcpdump) from a sample
session, and then replayed it through our controlled network environment
(see section 2.3.1) using tracepump. Finally, we compared the results for
each loss rate when RDBwas and was not enabled. To impose loss and de-
lay on the links, we used the netem module of the tc application, using a
uniform loss pattern. In other words, loss did not occur at the same places
in our experiments, but the results shows the average scenarios.
As the statistical results show, RDB improves the latency of certain ap-

plications that generate thin streams. If the IAT is less than the RTT, bun-
dles can be performed because the next packet is sent before the previous
packet is acknowledged (provided that the combined packet size is less
than half the MSS). If the previous packet (or ACK) is lost and a bundle is
made, the data is delivered faster to the receiver than with a retransmis-
sion. If the IAT is less than the RTO minus RTT (see section 4.1.2), using
RDB also reduces the number of retransmissions (as long as the packet size
criteria is met). The following packet is both received and acknowledged
before an RTO is triggered. The smaller the IAT, the more bundles can be
made, further reducing the number of retransmissions.
In addition to improving the latency, RDB (together with two other

TCP modifications) also improves the user experience for some typical
thin stream applications. The results from our survey indicates that there
is a noticeable difference between when the modifications are switched
on and off. Unfortunately, RDB is not able to aid all applications. For
instance, we did tests with different video- and audio streaming servers/-
clients, but they sent so large packets that bundles were impossible. An-
other problem was that some applications, most typically slower games
like strategy games, had such a high IAT that the RTO expired before the
next packet was sent.
Unfortunately, the benefits of RDB do not come for free. The packet

size increases due to the bundling, and RDB consumes more bandwidth
than TCP. As shown in both the Skype and some of the theoretical tests,

72



the average packet size is almost four times as large. Thus, if somebody
uses for example Skype over UMTS or GPRS and pay for the consumed
bandwidth, they can only talk for about one fourth of the time. For people
that are connected through “regular” networks, the increased bandwidth
usage is not that much of an issue. The packets never grow beyond the
MSS, hence, the network should be able to handle them without any per-
formance or cost penalty (unless the person is connected to a very slow
link or network). If many concurrent connections made across the inter-
net enable RDB, the ISPs might start to complain though. Their equipment
has to transfer more data, and in some cases also more packets. This might
lead to higher costs for them.
Another problem that RDB is not able to fix, is if the connection ex-

periences several losses in a row (bursty loss). If no packets arrive at the
receiver, then no packets are acknowledged, and RTOs will be triggered.
RDB does still help though, due to the bundling on retransmissions, the
first retransmitted packet contains as many of the following packets as
possible. Hence, the data is delivered faster than with TCP, which only
merges the lost packet with the next packet on the output queue. In other
words, RDB improves the latency and user experience when a retrans-
mission occurs. Unfortunately, due to time constraints and technical dif-
ficulties with netem we were not able to simulate bursty loss. The lack of
bursty loss also significantly reduced any effect of SACK, due to the lack
of multiple packets losses it was not able to improve the performanc. In
addition, when using RDB, lost data would most of the time arrive with
the next packet, resulting in almost no gaps in the received byte range.
As discussed in section 2.2.2, one important aspect of TCP is the fair-

ness principle. If N TCP streams share the same link, then they should
each get an equal share (1/N) of the link capacity. Unfortunately, RDB
does not uphold this principle. When competing with other TCP streams,
it potentially uses a larger share of the link. This is because it will not be
as severly affected by packet losses. A lost packet forces TCP to retrans-
mit, hence, forcing it to stop sending new packets (while waiting for the
retransmission to be triggered) and the packet send rate is reduced. RDB
does not experience this if the next (or one of the following) packet con-
tains bundled data, and is received and acknowledged before a retransmit
is triggered. Thus, the packet rate may be higher than with regular New
Reno, and a larger share of the link may potentially be used. Therefore,
it is not fair to other streams. This lack of fairness is visible in the results
from both the BZFlag- and Skype-experiments (table 4.6 and 4.4 respec-
tively). In the BZFlag-experiment, the average IAT was almost half that
of the IAT when RDB was switched off with both 2 % and 5 % loss, while

73



TCP RDB
Latency - +
Bandwidth consumption + -
Fairness + -
User experience - +
Friendliness + ?

Table 4.7: Pros and cons of RDB compared to TCP when it comes to time
dependent thin streams.

with Skype, it was reduced by almost 10 ms for both loss rates. Also, the
connections with RDB enabled tended to send more packets than the ones
who used TCP.
Fortunately, the violation is not that great. We do not alter the different

congestion control mechanisms, so when a packet loss is detected, RDB is
struck just as hard as any other stream by, e.g., exponential backoff. In ad-
dition, even though RDB generates larger packets and therefore transfers
larger amounts of data, it is still limited by the congestion window and
has to go through slow start and congestion avoidance.
Another interesting scenario that we did not have time to test properly,

was if RDB had any effect on other TCP streams (known as TCP Friendli-
ness). For example, the increased number of packets might consume too
much resources in the routers and decrease the performance of other con-
nections, or reduce the performance of other streams in the sender ma-
chine, and so forth. Preliminary tests showed that even though RDB was
not fair, other streams were not affected by it. We ran two instances of
a replayed dump containing several hundred connections between two
machines at the same time (using the same setup as in 2.3.1), and they per-
formed similarly as to when they had the machines and the network to
themselves. Thus, we at least have an indication on that TCP New Reno
with RDB is TCP friendly.
We have summarized this discussion in table 4.7. Here, we see that if

somebody wants a reduced latency and provide a better user experience,
he or she should use RDB (at least if the application has similar network
characteristics to the ones we used). On the other hand, if bandwidth is an
issue or the person is worried about fairness/friendliness, TCP would be
the preferred choice.

74



4.4 Summary

In this chapter, we have presented our findings from several experiments
to measure the performance of RDB. We have shown that the modification
were able to decrease the latency for several thin stream applications, both
statistically and when it comes to the actual user experience. Unfortu-
nately, this comes at a cost. When using RDB a TCP connection consumes
more bandwidth and often sends more packets, and is not fair to other
TCP streams. By using RDB, you trade-off bandwidth for latency, which,
depending on the scenario, may or may not be acceptable.
In the next chapter, we conclude our work, as well as provide some

ideas for further work and interesting experiments.

75





Chapter 5

Conclusion

5.1 Summary

In this thesis, we have addressed the challenges present in TCP for sup-
porting interactive, time-dependent thin stream applications. In this con-
text, a thin stream consists of small packets or high IATs, something TCP
is not tuned for [1]. This comes as a result of TCP development focusing
on improving performance for throughput intensive streams, with little
regard for timeliness requirements. The protocol’s congestion control will,
as such, inadvertently contribute to an increase in latency when a packet
loss occurs, which is particularly harmful for time-dependent traffic.
As a remedy we have implemented RDB in the Linux 2.6.22.1-kernel

and it has been evaluated experimentally and compared with TCP New
Reno, which was shown in [1] to be the TCP protocol variation that per-
forms best in a thin stream scenario. We looked at how varying the loss
rate, IAT and RTT affected the number of retransmissions (and thereby the
latency), and how RDB (and TCP) performed when faced with traffic from
several applications generating time-dependent thin streams. In addition,
we conducted a user survey to determine if our TCP modifications (RDB
and those presented in section 2.4) improved the actual user experience.

5.2 Main contributions

Time-dependent thin streams generate packets that are several times smaller
than the MSS. RDB takes advantage of this fact, as it is a modification to
TCP that utilizes free space in the packets and reduces the latency. By
bundling as much unacknowledged data as possible, without leading to
fragmentation, into each packet that is to be sent, we hope to deliver lost

77



data quicker than if the connection had to wait for a retransmission. Since
this data may have been received already (the ACK might be lost or de-
layed), it is potentially redundant.
As shown in chapter 4, RDB is able to reduce the latency, provided that

the combined packet size never exceeds the MSS. Also, if the IAT plus the
RTT is less than the RTO, it also reduces the number of normal retrans-
missions. Reducing the number of normal retransmissions is desirable
because TCP’s congestion control mechanisms often contribute to an in-
creased latency. For example, exponential backoff will double the time it
takes before a packet is retransmitted for the second time. Likewise, of-
ten having a high IAT, many thin streams will never be able to trigger a
fast retransmit, at least not until the RTO timer exceeds the time it takes to
receive the required number of dupACKs.
By reducing both the transport- and application-layer latency, when

the data is received and when it is ready for use by the application, RDB
(along with the two modifications presented in chapter 2.4) also improves
the user experience for a number of applications generating time-dependent
thin streams. We conducted a survey in which we asked people how they
experienced the behavior of two interactive applications that generated
time-dependent thin streamswith andwithout the modifications. Thema-
jority answered that the experience was best when the modifications were
enabled. An analysis of the traffic showed that RDB contributed signifi-
cantly to this result.
Unfortunately, the reduced latency comes at a cost to bandwidth. Be-

cause of the bundling, the packets would be larger than those sent with
TCP. However, in our experiments, the increase in number of packets was
never as large as the increase in average packet size. Thus, even though
we send more bytes, the network would not have to deal with that many
more packets. In addition, RDB would often generate fewer packets, as
shown in table 4.1, 4.2 and 4.3.

5.3 Future work

Even though we have performed extensive tests with RDB, there are some
areas that we have not investigated properly. The most important are re-
lated to TCP fairness. We have determined that RDB is not fair since it
is able to maintain a higher send rate than TCP when loss occurs (as dis-
cussed in section 4.3), but we have not looked at how bad the violation
of the fairness principle is and how it is affected by the different settings
(like the IAT). In addition, we need to perform more tests to determine if

78



RDB is TCP friendly or not. Also, currently we have only looked at how
the modification aid the performance of TCP New Reno. We believe that
it would be interesting to see how the other protocol variations perform
with RDB enabled.
Another thing that we would like to do, is to implement a more dy-

namic bundling scheme. Currently, RDB bundles as long as the combined
packet size is less than the MSS, which might lead to unnecessarily large
packets (e.g., if loss rate is low, but RTT high). Instead, it might, for exam-
ple, be better to do something more similar to exponential backoff. If one
packet is lost, the kernel would be allowed to bundle with one packet, and
then double the number for every loss. For every ACK that is received, the
number of permitted bundles would be reduced by one.
Finally, it would be interesting to see if RDB (and the other modifica-

tions) can improve the user experience for other applications than the ones
that we have tested.

79





Appendix A

Software

In this appendix we will present the various pieces of software used in our
different experiments.

A.1 Netem

To introduce loss and delay to the network, we needed some way to con-
trol the link’s performance. TC is an application that enables us, through
its netem module, to do this. The program is used to configure the Traf-
fic Control in the Linux kernel, and allows us to change different aspects
of the link(s) connected to the machine. An example of the use of tc and
netem is:

tc qdisc add dev eth0 root netem delay 50ms loss 10%

This command tells the kernel that all packets sent on network inter-
face eth0 should be exposed to a 50 ms delay, and that 10% of them should
be dropped. Netem uses a uniform loss pattern by default, meaning that
every tenth packet will be dropped in this example .

A.2 Streamzero

Streamzero is developed by us at Simula and consists of a sender and re-
ceiver. The receiver only receives data and optionally stores it in a file,
while the sender generates a stream based on the command line argu-
ments supplied. It can generate any type of stream, but we have used
it to create the thin streams needed for our theoretical experiments. The

81



sender is started like this:

streamzero client -s 192.168.101.220 -p 9998 -d 120 -i 200 -n 100 -t rto-
200-rdb.txt -eg

-s and -p specify the receiver’s IP address and port, while -d is the
duration of the connection. -i is the IAT and -n the size of the packet’s
payload (the amount of data in a packet). To get more information about
the connection, the -t <file> tells streamzero to write the contents of the
TCP INFO-struct to file before each packet is sent. This struct contains
different variables that describe the current state of the connection (such
as the RTT and RTTVAR) and is updated for every ACK.
-e and -g are probably the most interesting command line options.

They tell Streamzero to use a negative exponential distribution of IATs
and packet sizes, respectively. Thus, the two variables tells Streamzero to
generate more random and therefore realistic traffic.

A.3 Tcpdump

Tcpdump is a program that listens on a network interface and captures
either all packets or the ones that match a specific filter. You can also tell
it to only store a certain number of bytes of each packet. An example for
using tcpdump is:

tcpdump -i eth0 -w rdb 1.pcap tcp

In this example, tcpdump listens on interface eth0 for any TCP-packets
(the last parameter is the filter). By providing the -w <file> option, tcp-
dump writes the packet headers to the specified file. If the user wanted to
store the entire packet, he or she would have to provide the -s0 option as
well.

A.4 AnalyzeRdb

AnalyzeRdb is also created by us at Simula, and is a program that analyzes
the files created by tcpdump and prints out certain statistics. An example
of the verbose output is shown in figure A.1, which was generated by the
following command:

82



Src por t : 55850 Dst port : 12000
Tota l packets sent : 828250
Tota l bytes sent ( payload ) : 901149955
Average packet s i z e : 1088
Number of re t ransmiss ions : 253
Number of packets with bundled segments : 816401
Estimated lo s s r a t e : 0.0305463%
Number of unique bytes : 195279922
Redundancy : 78.3299%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Bytewise la tency − Conn : 55850
Maximum la tency : 22018ms
Minimum la tency : 130ms
Average la tency : 132 .068ms
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure A.1: Example output from analyzeRdb.

./analyzeRdb -s 192.168.1.2 -r 192.168.2.2 -p 12000 -f logger-kort/noalgo-
1%-4%-140-0-16 -v

The -s and -r options are respectively the sender and receiver IP, and
-p is the destination (receiver) port. We believe that the output presented
in figure A.1 should be quite self explanatory, but some of the lines still
deserve a mention.
In line 3 we have the total number of bytes sent, which is used to see

how much more bandwidth our modifications consume compared to reg-
ular TCP. The number of bytes is used in the computation of the redun-
dancy share (line 9), which says howmuch of the data was sent more than
one time. The number of packets with bundled segments (line 6) is the
number of packets modified by RDB, while the three last lines contain the
maximum, minimum and average latencies experienced by the packets,
i.e. the time it took from data was sent and until it was acknowledged.
The CDF-plots of the application layer latency (used in section 4.2)

were generated using AnalyzeRdb. By providing -g <receiver dump>
to the application, AnalyzeRdb calculates the latency and the output can
be fed directly into e.g. gnuplot1.

1http://www.gnuplot.info/

83



A.5 Tracepump

Tracepump replays a connection captured by tcpdump. It removes all ac-
knowledgments and retransmissions, and then sends the “original” pack-
ets in the dump file with the same IAT. Just like streamzero it consists of
a sender and receiver, and you start the receiver with the following com-
mand:

tracepump –recv

This tells tracepump to run in receiver mode and listen to connections
on the default port (12000). To run the program in sender mode, you will
have to write:

tracepump –send [Options] <receiver IP> <file>

The sender reads <file> and then tries to replay the TCP stream in
real-time. The first detected connection connects to<receiver IP> on port
12000, and the port number is increased by one for every subsequent de-
tected connection. All connections are established before the transmission
of data starts.
tracepump allows us to get an impression of how applications would

behave under different network conditions and with different TCP mod-
ifications. Since we feed the program with the same captured traffic in
all tests, we can directly compare the results because we control all vari-
ables that affect the result (like the loss rate). All applications that we have
tested are non-deterministic, so two sessions will never be the same. For
instance, in an MMORPG, it is impossible to have the exact same game-
play experience twice. The area you are in might suddenly be flooded by
other players, you might be attacked, and so on.

84



Appendix B

Contents of CD-ROM

Included on the provided CD-ROM are our two kernel patches (for the
Linux 2.6.22.1 and 2.6.23.8 kernel), and a copy of the web page referred to
in section 4.2.3. The patches and web page are stored in the patches/ and
usertest/ folder respectively (located at the root of the CD-ROM).
To apply the patch, you first have to copy the desired patch to the folder

that contains the matching kernel’s source code. Then you execute the fol-
lowing command:

patch -p0 < <patch filename>

85





Appendix C

Published papers

This appendix contains the papers we have published as a result of our
workwith RDB. The papers are presented in the same order as they appear
in this appendix, and they are:

• Redundant Bundling in TCP to Reduce Perceived Latency for Time-
Dependent Thin Streams. Published in IEEE Communications Let-
ters 12(4):334 – 336, 2008.

• TCP Enhancements For Interactive Thin-Stream Applications. To
appear inNOSSDAV 2008, Braunschweig, Germany, 28-30May 2008,
2008.

87





SUBMITTED TO IEEE COMMUNICATIONS LETTERS 1

Redundant Bundling in TCP to Reduce Perceived
Latency for Time-Dependent Thin Streams

Kristian Evensen, Andreas Petlund, Carsten Griwodz, P̊al Halvorsen

Abstract—TCP and UDP are the dominant transport
protocols today, with TCP being preferred because of the
lack of fairness mechanisms in UDP. Some time-dependent
applications with small bandwidth requirements, however,
occationally suffer from unnecessarily high latency due to
TCP retransmission mechanisms that are optimized for high-
throughput streams. Examples of such thin-stream applications
are Internet telephony and multiplayer games. For such inter-
active applications, the high delays can be devastating to the
experience of the service. To address the latency issues, we ex-
plored application-transparent, sender-side modifications. We
investigated whether it is possible to bundle unacknowledged
data to preempt the experience of packet loss and improve the
perceived latency in time-dependent systems. We implemented
and tested this idea in Linux. Our results show that we can
reduce the application latency by trading it against bandwidth.

Index Terms—retransmission latency, thin streams

I. Introduction

TCP is designed to carry variable traffic from sources
that demand a lot of bandwidth (greedy sources),

and a lot of work has been done to increase throughput
without losing control of congestion. It is assumed that
a sender will always try to send data as quickly as
the flow- and congestion control mechanisms permit.
A challenge then is to support the many applications
that consume very little bandwidth (thin data streams).
These thin-stream applications may also have stringent
latency requirements. Many time-dependent applications
use TCP, due to the need for reliability and because of
firewall policy issues. Important examples of interactive,
thin-stream applications are multiplayer online games,
audio conferences, sensor networks, virtual reality systems,
augmented reality systems and stock exchange systems. As
representative examples that have millions of users world
wide, we examine online games and audio conferencing.
In a packet trace from Funcom’s massively multiplayer
online role playing game (MMORPG) Anarchy Online,
the average packet payload size was 93 bytes and the
average interarrival time (IAT) 580 ms. For the online first-
person shooter (FPS) game Counter Strike, the average
payload size was 142 bytes, and the packet IAT was about
50 ms. Standard-compliant voice-over-IP (VoIP) telephony
systems using the G.7xx audio compression formats have
an average payload size of 160 bytes and a packet IAT of
20 ms [1]. In a sample packet trace of Skype, we found
average payloads of 110 bytes and packet IATs of 24 ms.

The authors are affiliated with both Simula Research Laboratory,
Norway and Department of Informatics, University of Oslo, Norway,
e-mail: {kristrev, apetlund, griff, paalh}@ifi.uio.no

These applications are also highly interactive and thus
depend on the timely delivery of data. Different appli-
cations have different latency requirements. For example,
the required latency is approximately 100 ms for FPS
games, 500 ms for role playing games (RPGs) and 1000 ms
for real-time strategy (RTS) games [2]. Latency in audio
conferences must stay below 150-200 ms to achieve user
satisfaction and below 400 ms to remain usable [3]. TCP
variations that assume greedy sources do not accommo-
date thin-stream needs. It is unlikely that a separate
transport protocol that addresses these needs will succeed
any time soon, and it is also undesirable to make this
distinction because applications may, at different times, be
both greedy and interactive. It is, therefore, important to
find solutions that react dynamically and use appropriate
mechanisms according to the stream characteristics [4].

To address the low latency requirements of thin streams
and the problems posed by the TCP retransmission
mechanisms, we aim for application-transparent, sender-
side modifications so that neither existing applications nor
various multi-platform (OS) clients will need modifica-
tions. In particular, we propose a dynamically applicable
bundling technique that includes unacknowledged data in
the next packet if there is room. It is similar to several
existing mechanisms. For example, TCP merges small user
writes using Nagle’s algorithm [5], and the stream control
transmission protocol (SCTP) [6] has a multiplexing
operation whereby more than one user message may be
carried in the same packet. Thus, the number of sent
packets is reduced.

Sending redundant data has been proposed both for
latency reduction and error control. TCP and SCTP
already bundle unacknowledged packets in some retrans-
mission situations. For conferencing systems, the real-time
transport protocol (RTP) packets may carry redundant
audio data [7]. This allows a lost packet to be recov-
ered earlier at the receiving side, because the data is
also included in the next. However, to the best of our
knowledge, no system performs such dynamic bundling
for thin streams by packing unacknowledged data in a
fully TCP-compatible manner before a loss is detected.
We implemented a bundling mechanism and tested it in
the Linux 2.6.19 kernel. The test results show that we
can reduce the application latency experienced due to
retransmissions by trading bandwidth for lower latency.



SUBMITTED TO IEEE COMMUNICATIONS LETTERS 2

II. Redundant Bundling

Supporting time-dependent thin streams over TCP is
a challenge, because current loss recovery and congestion
control mechanisms are aimed at greedy streams that try
to utilize the full bandwidth as efficiently as possible.
To achieve this with TCP’s set of mechanisms, it is
appropriate to use buffers that are as large as possible
and to delay packet retransmission for as long as possible.
Large buffers counters the throttling of throughput by flow
control, allowing huge application layer delays. Delayed
transmission strives to avoid retransmissions of out of
order packets, promoting these delays actively as a desired
feature. Both methods come with an associated cost of
increased delay, which means that interactive thin-stream
applications experience greater delays in the application.

In our redundant data bundling (RDB) technique for
TCP, we trade off space in a packet for reduced latency
by reducing the number of required retransmissions. For
important protocols such as gigabit Ethernet, this may
be performed without exceeding the minimum slot size
in our target scenarios, which means that RDB does not
waste link bandwidth. It is implemented as a sender-side
modification that copies (bundles) data from the previous
unacknowledged packets in the send/retransmission-queue
into the next packet. For example, assume that two packets
of 100 bytes each should be sent. The first is sent using
TCP sequence number X and a payload length of 100.
Then, when the second packet is processed and the first
is not yet acknowledged, the two packets are bundled,
which results in a packet that has the same sequence
number X but a payload length of 200. This scheme
creates packets that could also appear with multiple lost
acknowledgments (ACKs) and is fully TCP-compatible.
An unmodified receiver should be able to handle streams
with redundant data correctly.

The results of our experiments show that by sacrificing
bandwidth (increasing packet size) without increasing the
number of packets, time dependency can be supported
better because a lost packet can be recovered when the
next packet arrives. The approach has no effect at all
on greedy sources that fill packets to their maximum
transmission unit (MTU) size.

III. Experiments

To test our bundling scheme, we modified the 2.6.19
(and, later, 2.6.22) Linux kernel and transmitted thin
data streams over 1) an emulated network, using the
netem emulator in Linux to create loss and delay, and
2) over the Internet from Oslo to the Universities in
Amherst, UMASS, (USA) and Hong Kong. Each test in
the emulated network setting had a fixed round-trip time
(RTT) (between 50 and 250 ms) and a fixed packet-loss
rate (between 0 and 10 %). The packet size was 120 bytes
for all experiments and we used packet IATs between
25 and 500 ms. These parameters match our analysis of
packet traces from the thin-stream applications that were
described briefly in section I. For the real Internet test

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500

%
 r

et
ra

ns
m

is
si

on
s

interarrival time (ms)

Redundant data bundling, 1% loss and 100ms RTT

TCP New Reno with RDB
TCP New Reno

Fig. 1. Retransmissions versus packet IAT, loss = 1%, RTT =
100 ms

where the RTTs and loss rates varied, we used real game
traffic from World of Warcraft (WoW). For comparison,
we used TCP New Reno with selective acknowledgement
(SACK) because it performed the best out of the existing
TCP variants in the thin-stream scenario [4]. We also
turned off Nagle’s algorithm [5].

Fig. 1 shows the percentage of retransmissions experi-
enced using the emulator when we vary the packet IAT
using an RTT of 100 ms and a packet loss rate of 1%
each way. The retransmission percentage for traditional
TCP adheres to the packet loss rate and the retrans-
mission scheme. At packet IATs below the minimum
retransmission timeout (minRTO) value, the number of
retransmissions depends on the number of lost packets.
A lost ACK will not trigger a retransmission because
the next one implicitly ACKs the previous packet before
the timeout. However, when the packet IAT increases,
packets are also retransmitted because of lost ACKs. This
explains the jump from 0.5% to 1% for regular TCP in
Fig. 1. On the other hand, Fig. 1 also shows that our
bundling enhancement requires very few retransmissions,
which again reduces the perceived latency. When there
are (relatively) many packets that can be bundled, i.e.,
when IATs are low, no packets are retransmitted because
a copy of the data arrives in one of the subsequent packets.
However, the bundling gain lessens as the IATs increase.
The reason for this is the reduced amount of data sent
between the timeouts. Since less than one data segment
is unacknowledged, there is no opportunity to bundle.
Fig. 1 shows that the stream starts to retransmit at an
IAT of roughly 200 ms (which is higher than in most
of the applications we have analyzed). At this point, the
performance of TCP with RDB quickly converges to that
of the unmodified TCP because the minRTO is 200 ms.
The results using other RTTs and loss rates show the same
pattern.

Fig. 2 shows the percentage of retransmissions when the
RTT increases. For these tests, we have varied the IAT
randomly between 140 and 160 ms to reflect the traffic that
we want to emulate. We can see that a very small number
of retransmissions occurs, and as the RTT increases
towards 500 ms, the tests stabilize at no retransmissions.
The change from occasional retransmissions to none at all
may be caused by changes in the retransmission timeout
(RTO). In summary, the reduction in the number of



SUBMITTED TO IEEE COMMUNICATIONS LETTERS 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500

%
 r

et
ra

ns
m

is
si

on
s

RTT (ms)

TCP New Reno with RDB
TCP New Reno

Fig. 2. Retransmissions versus RTT, loss = 1 %, IAT = (150±10) ms

 0.998

 0.9985

 0.999

 0.9995

 1

 0  500  1000  1500  2000  2500  3000

C
u
m

u
la

tiv
e
 d

e
n
si

ty
 f
u
n
ct

io
n
 o

f 
d
e
liv

e
re

d
 b

yt
e
s

latency (ms)

UiO - UMASS

TCP New Reno with RDB
TCP New Reno

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0

 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

 3
5
0
0

 4
0
0
0

UiO - Hong Kong

TCP New Reno with RDB
TCP New Reno

Fig. 3. Application latency differences running WoW 24 hours
(19/11-2007).

retransmissions by timeout in TCP with RDB increases
with the number of packets that are in transit and, thus,
the ability to ACK data before a timeout occurs.

Of course, the performance gain of the bundling tech-
nique depends on the packet loss rate. This claim is
confirmed in our experiments. The number of timeout
retransmissions in TCP increases as the loss rate increases.
In our tested scenarios, TCP with RDB hardly experiences
retransmissions. However, for (unrealistically) high loss
rates (such as 10%), the number of packets sent using
our technique increases because the packets do not have
room for more bundling. Each retransmission will then
be sent by the standard TCP retransmission scheme
as a separate packet. Here, standard TCP bundles the
unacknowledged data in one retransmission and thereby
reduces the number of packets sent. Nevertheless, in our
bundling scheme, the latency is still less than in TCP New
Reno.

Finally, the latency at the application level, which
influences the end-user satisfaction directly, is the most
important measure. Fig. 3 shows the measured application
latencies using real WoW game traffic over the Internet
when RDB and New Reno are used back to back to have
equal conditions. In general, the data recovery latency is
reduced when using TCP with RDB compared to plain
New Reno (both to Amherst and Hong Kong), but we also
see some few large latencies for both mechanisms which
are due to larger burst losses. However, there are vital
differences in the latency where we see that RDB usually
delivers lost data much faster, i.e., normally in the next
packet, compared to Reno’s retransmitted data.

Using TCP with RDB, we make a tradeoff between
bandwidth and latency. In the tests for which the results

are presented in Fig. 1 and 2, we used the maximum
bundling limit, such that we try to bundle as long as
there is available space in a packet (up to 1448 bytes
for Ethernet). To determine whether we could achieve
the same gain by reducing the bandwidth in terms of
transmitted bytes, we have also reduced the bundling
limit to approximately half the gigabit Ethernet slot
size (240 bytes bundling maximum one data element).
For a scenario with uncorrelated losses, we did not see
any differences. The bundling limit can in many cases
be lowered while retaining a reduction in the perceived
latency compared to New Reno.

IV. Dynamic behaviour

The experimental results show that we can reduce appli-
cation latency for thin streams by introducing redundant
bundling in TCP. RDB is efficient when packet sizes are
small and IATs are less than the retransmission timeout
value. In these cases, the number of packets remains
the same; the overhead is in the number of transmitted
bytes. Two issues that need to be addressed are when the
technique should be applied and how the bundling limit
should be chosen. In the current prototype, the bundling
scheme is dynamically applied successfully (in terms of the
results) when the data stream is thin, i.e. when the data
stream has a low rate, small packets, and a low number
of packets in transit. However, other factors should also
be considered. For example, in a low loss rate scenario, a
single loss can often be corrected by the next packet (as
shown in Fig. 3). As the loss rate increases, the probability
of a burst of losses increases. To compensate for this, and
to increase the probability that the data will arrive before
a retransmission occurs, it may be necessary to increase
the bundling limit.

RDB performs best when it can preempt the retransmis-
sion timer with an ACK from a bundled packet. However,
there is an intermediate stage in which spurious retrans-
missions due to timeouts may be experienced, but in which
the latency of the application layer can still be improved.
This happens when the IAT exceeds the minRTO value.
When loss occurs, a timeout will be triggered before
the ACK for the bundled packet is received. When the
IAT exceeds minRTO + RTT, there is no gain, and the
mechanism should be turned off completely. Thus, the
RDB mechanism is turned on and off and the bundling
limit should be set dynamically on a per connection basis
according to the packet size, packet IAT, measured RTT,
and estimated loss rate.

V. Conclusions and further work

Many current applications are highly interactive and
depend on timely delivery of data. For applications
characterized by thin streams, TCP can not guarantee
delivery times, and newer variations worsen the problem
because they rely on a greedy source. This being so,
we implemented a redundant data bundling scheme to
reduce the retransmission latency for such scenarios. Our



SUBMITTED TO IEEE COMMUNICATIONS LETTERS 4

experimental results, both in a lab setting and in real
Internet tests, show that we can trade off some bandwidth
to greatly lower the perceived latency at the application
level in these scenarios.

References

[1] M. Hassan and D. F. Alekseevich, “Variable packet size of ip
packets for voip transmission,” in Proceedings of the IASTED
International Conference conference on Internet and Multimedia
Systems and Applications (IMSA). ACTA Press, 2006, pp. 136–
141.

[2] M. Claypool and K. Claypool, “Latency and player actions in
online games,” Communications of the ACM, vol. 49, no. 11, pp.
40–45, Nov. 2005.

[3] International Telecommunication Union (ITU-T), “One-way
Transmission Time, ITU-T Recommendation G.114,” 2003.

[4] C. Griwodz and P. Halvorsen, “The fun of using TCP for an
MMORPG,” in Proceedings of the International Workshop on
Network and Operating System Support for Digital Audio and
Video (NOSSDAV). ACM Press, May 2006.

[5] J. Nagle, “Congestion control in IP/TCP internet-
works,” RFC 896, Jan. 1984. [Online]. Available:
http://www.ietf.org/rfc/rfc896.txt

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson,
“Stream Control Transmission Protocol,” RFC 2960 (Proposed
Standard), Oct. 2000, updated by RFC 3309. [Online]. Available:
http://www.ietf.org/rfc/rfc2960.txt

[7] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley,
J. Bolot, A. Vega-Garcia, and S. Fosse-Parisis, “RTP Payload for
Redundant Audio Data,” RFC 2198 (Proposed Standard), Sept.
1997. [Online]. Available: http://www.ietf.org/rfc/rfc2198.txt



TCP Enhancements for Interactive Thin-Stream
Applications

Andreas Petlund, Kristian Evensen, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory, Norway

Department of Informatics, University of Oslo, Norway
{apetlund, kristrev, griff, paalh}@simula.no

1. INTRODUCTION

TCP is frequently used for interactive multimedia appli-

cations like online games and voice-over-IP (VoIP) because

it avoids firewall issues. However, traffic analysis shows that

these streams usually have small packets and a low packet

rate, and that in case of loss, severe latency penalties occur

for all existing TCP variations in Linux [5]. In this demon-

stration, we show how small TCP enhancements greatly im-

prove the perceived quality of such low latency, interactive

applications.

2. INTERACTIVE THIN STREAMS

Many interactive applications have thin stream charac-

teristics. In this context, a stream is considered thin if the

application generates data in such a way that: a) The packet

interarrival times are so high that the transport protocol’s

fast retransmission mechanisms are ineffective, and b) the

size of most packets is well below the Maximum Segment

Size (MSS).

Audio conferencing with real-time delivery of voice data

across the network is an example of a class of applications

that uses thin data streams and has a strict timeliness re-

quirement due to its interactive nature. Nowadays, audio

chat is typically included in virtual environments, and IP

telephony is increasingly common. Many VoIP telephone

systems use the G.7xx audio compression formats recom-

mended by ITU-T. G.711 and G.729 have a bandwidth re-

quirement of 64 and 8 Kbps, respectively. The packet size

is determined by the packet transmission cycle (typically in

the area of a few tens of ms, resulting in packet sizes of

around 80 to 320 bytes for G.711). A similar example is

Skype which boasts millions of registered users. We have,

as an example, analyzed Skype sessions and seen that this

application shares the characteristics of IP telephony. The

packets are small (payload of approximately 110 bytes in av-

erage) and the bandwidth low (about 40 Kbps). To enable

satisfactory interaction in such applications, ITU-T defines

guidelines for the one-way transmission time. These guide-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’08 Braunschweig, Germany
Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

lines state that users begin to get dissatisfied when the delay

exceeds 150-200 ms and that the maximum delay should not

exceed 400 ms [6].

Distributed online games are examples of thin-stream ap-

plications as well. We have analyzed game traces of several

titles including Anarchy Online, World of Warcraft, Counter

Strike, Halo 3 and Gears of War with respect to their net-

work traffic characteristics. These games have packets sizes

far below 250 bytes and rates below 20 packets per second.

Occasionally, gamers experienced extreme worst-case delays.

When considering user satisfaction, this class of applica-

tions requires tight timeliness, with latency thresholds at ap-

proximately 100 ms for first-person shooter games, 500 ms

for role-playing games and 1000 ms for real-time strategy

games [3].

With these characteristics and strict latency requirements

in mind, supporting interactive thin-stream applications is

challenging. The data streams in the described scenarios are

poorly supported by the existing TCP variations in Linux.

Their shortcomings are 1) that they rarely trigger fast re-

transmissions, thus making timeouts the main cause of re-

transmissions, and 2) that TCP-style congestion control does

not apply because the stream cannot back off. Since im-

provements for TCP have mainly focused on traditional thick

stream applications like web and ftp download, new mecha-

nisms are needed for the interactive thin stream scenario.

3. TCP ENHANCEMENTS

The results of our earlier investigations of TCP [4, 5, 7]

show that it is important to distinguish between thick and

thin streams with respect to latency. They also show that

there is potential for a large performance gain by introducing

new mechanisms in the thin-stream cases. In short, if the

kernel detects a thin stream, we trade a small amount of

bandwidth for latency reduction and apply:

Removal of exponential backoff: To prevent an expo-

nential increase in retransmission delay for a repeat-

edly lost packet, we remove the exponential factor [5].

Faster Fast Retransmit: Instead of waiting for 3 dupli-

cate acknowledgments before sending a fast retrans-

mission, we retransmit after receiving only one [7].

Redundant Data Bundling: We copy (bundle) data from

the unacknowledged packets in the send buffer into the

next packet if space is available [4].

As mentioned above, these enhancements are applied only if

the stream is detected as thin. This is accomplished by defin-



1) Unmodified TCP

2) Modified TCP

(a) A 20 second “audio spectrum” of a representative clip

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700

C
D

F
 (

b
y
te

s
)

latency (ms)

skype CDF, 5% loss, 130ms RTT

TCP with modifications
Regular TCP

TCP with no loss

(b) CDF of data arrival latency

Figure 1: Results from a Skype session.

ing thresholds for packet size and packets in flight. Also,

we consider the redundancy introduced by our mechanisms

acceptable because the streams are so thin that normal con-

gestion mechanisms do not come into effect. Tests run so

far indicate that fairness is indeed preserved.

4. RESULTS

We have performed several experiments with thin-stream

applications like games and audio conferencing systems. All

tests show improvements in user-perceived quality due to

the reduced application layer latency when using our TCP

enhancements. In this demo, we demonstrate the effects us-

ing the Skype audio conferencing system [2] and the BZFlag
distributed game [1] as examples of interactive thin-stream

applications.

We first demonstrate the performance gain of our enhance-

ments in an audio conference. We have used Skype [2] which

provides VoIP functionality, and which falls back to TCP

when UDP is blocked (e.g., by ISP firewalls). The human ear

is very sensitive to audio delays, and lost or delayed packets

will quickly reduce the user-perceived quality. Figure 1(a)

shows the received audio waves, and figure 1(b) shows the

arrival latency of the received audio stream in a 2 % loss and

130 ms RTT scenario (UiO - UMASS) with and without our

enhancements1. The figures show that the faster recovery

of lost packets using our enhancements reduces the size and

the number of gaps in the audio stream.

In the game demonstration, we show that, using our en-

hancements, we can achieve a better perceived gameplay.

BZFlag [1] is a first person shooter, multi-user tank game.

The game predicts movement, which has to cover a longer

time period when packet loss delays delivery. In case of an

erroneous prediction, tanks will jump to the correct position

when the (retransmitted) position update arrives. Figure 2

shows the results from an example where the game is played

for 5 minutes in a 5 percent loss and 100 ms RTT scenario

with and without our enhancements. As we can see, the

payload of lost packets is recovered faster when the server

applies our enhancements.

Both examples will be set up for the demo session where

we dynamically turn on and off our enhancements. Thus,

1To be able to reproduce and compare the results, one of
the audio conference participants played back different au-
dio clips. The respective (received) audio clips can be down-
loaded from http://home.ifi.uio.no/apetlund/nossdavdemo

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  200  400  600  800  1000  1200  1400

C
D

F
 (

b
y
te

s
)

Latency above minimum value

BzFlag CDF, 5% loss, 100ms RTT

TCP with modifications
Regular TCP

Figure 2: CDF of data arrival latency in BZFlag.

the participants can interact with the applications and see

and hear the increased quality of the service when our thin

stream modifications for TCP are enabled.

5. REFERENCES

[1] BZFlag, March 2008. http://bzflag.org.

[2] Skype, March 2008. http://www.skype.com.

[3] Claypool, M., and Claypool, K. Latency and

player actions in online games. Communications of the
ACM 49, 11 (Nov. 2005), 40–45.

[4] Evensen, K. R., Petlund, A., Griwodz, C., and
Halvorsen, P. Redundant bundling in tcp to reduce

perceived latency for time-dependent thin streams. to
appear in IEEE Communication Letters (2008).

[5] Griwodz, C., and Halvorsen, P. The fun of using

TCP for an MMORPG. In International Workshop on
Network and Operating System Support for Digital
Audio and Video (NOSSDAV) (May 2006), ACM

Press, pp. 1–7.

[6] International Telecommunication Union
(ITU-T). One-way Transmission Time, ITU-T

Recommendation G.114, 2003.

[7] Pedersen, J., Griwodz, C., and Halvorsen, P.
Considerations of SCTP retransmission delays for thin

streams. In IEEE Conference on Local Computer
Networks (LCN) (Nov. 2006), pp. 1–12.



Bibliography

[1] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an
MMORPG. In International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV), pages 1–7. ACM
Press, May 2006.

[2] David S. Miller. How the Linux TCP output engine works, February
2008. http://vger.kernel.org/˜davem/tcp_output.html.

[3] Mark Claypool and Kajal Claypool. Latency and player actions in
online games. Communications of the ACM, 49(11):40–45, November
2005.

[4] International Telecommunication Union (ITU-T). One-way Transmis-
sion Time, ITU-T Recommendation G.114, 2003.

[5] J. Postel. Transmission Control Protocol. RFC 793 (Standard), Septem-
ber 1981. Updated by RFC 3168.

[6] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[7] Szabolcs Harcsik, Andreas Petlund, Carsten Griwodz, and Pål
Halvorsen. Latency evaluation of networking mechanisms for
game traffic. In Workshop on Network and System Support for Games
(NETGAMES), pages 129–134, September 2007.

[8] Espen Søgård Paaby. Evaluation of TCP retransmission delays. Mas-
ter’s thesis, Department of Informatics, University of Oslo, Oslo, Nor-
way, May 2006.

[9] Mahbub Hassan and Danilkin Fiodor Alekseevich. Variable packet
size of ip packets for voip transmission. In IASTED International Con-
ference conference on Internet and Multimedia Systems and Applications
(IMSA), pages 136–141. ACTA Press, 2006.

89



[10] C.M. Karat, C. Halverson, D. Horn, and J Karat. Patterns of en-
try and correction in large vocabulary continuous speech recognition
systems. In CHI 99 Conference Proceedings, pages 568–575, 1999.

[11] IEEE. IEEE 802.3-2005 - Section One, 2005.

[12] Andrew S. Tanenbaum. Computer Netowrks. Prentice Hall, 2003. ISBN
0-13-038488-7.

[13] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control .
RFC 2581 (Proposed Standard), April 1999. Updated by RFC 3390.

[14] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP congestion
control. ACM Computer Communication Review, 34(2):25–38, 2004.

[15] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, and
Ren Wang. TCP Westwood: end-to-end congestion control for
wired/wireless networks. Wireless Network, 8(5):467–479, 2002.

[16] A. Dell’Aera, L.A. Grieco, and S. Mascolo. Linux 2.4 implementation
of westwood+ tcp with rate-halving: a performance evaluation over
the internet. In Communications, 2004 IEEE International Conference
on, pages 2092–2096, Washington, DC, USA, 2004. IEEE Computer
Society.

[17] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard),
April 2004.

[18] G. Malkin. Internet Users’ Glossary. RFC 1983 (Informational), Au-
gust 1996.

[19] S. Floyd and T. Henderson. The NewRenoModification to TCP’s Fast
Recovery Algorithm. RFC 2582 (Experimental), April 1999. Obso-
leted by RFC 3782.

[20] V. Jacobson and R.T. Braden. TCP extensions for long-delay paths.
RFC 1072, October 1988. Obsoleted by RFCs 1323, 2018.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgement Options. RFC 2018 (Proposed Standard), October
1996.

90



[22] J. Nagle. Congestion control in IP/TCP internetworks. RFC 896, Jan-
uary 1984.

[23] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Tay-
lor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control
Transmission Protocol. RFC 2960 (Proposed Standard), October 2000.
Updated by RFC 3309.

[24] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C.
Bolot, A. Vega-Garcia, and S. Fosse-Parisis. RTP Payload for Redun-
dant Audio Data. RFC 2198 (Proposed Standard), September 1997.

[25] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer.
RFC 2988 (Proposed Standard), November 2000.

[26] Tom Anders Dalseng. Evaluering av datastiimplementasjoner for
nedlasting og streamingapplikasjoner (in Norwegian). Master’s the-
sis, Department of Informatics, University of Oslo, Oslo, Norway,
November 2005.

[27] JEDEC Solid State Technology Association. JESD79-2C: DDR2
SDRAM specification, May 2006.

[28] MMOGCHART.COM. Mmog active subscriptions, 200,000+, April
2008. http://www.mmogchart.com/Chart1.html.

91


	main.pdf
	petlund_CL2007-1957
	nossdav-2008-thin-demo
	main

