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Abstract A large number of network services rely on IP and reliable transport pro-

tocols. For applications that provide abundant data for transmission, loss is usually

handled satisfactorily, even if the application is latency-sensitive [26]. For data streams

where small packets are sent intermittently, however, applications can occasionally

experience extreme latencies [14]. As it is not uncommon that such thin-stream ap-

plications are time-dependent, any unnecessarily induced delay can have severe conse-

quences for the service provided. It has been shown that TCP has several shortcomings

with respect to the latency requirements of thin streams because of the way it handles

retransmissions [14]. As such, an alternative to TCP may be SCTP [25], which was de-

veloped to meet the requirements of signalling transport. SCTP has subsequently been

considered more appropriate than TCP for congestion-controlled streaming, primarily

because SCTP maintains packetboundaries and intrinsically supports partial reliabil-

ity. In this paper, we evaluate the Linux-kernel SCTP implementation in the context of

thin streams. To address the identified latency challenges, we propose sender-side only

enhancements that reduce the application-layer latency in a manner that is compatible

with unmodified receivers. These enhancements can be switched on by applications and

are used only when the system identifies the stream as thin. To evaluate the latency

performance, we have performed several tests over various real networks and over an

emulated network, varying parameters like RTT, packet loss and amount of competing

cross traffic. When comparing our modifications with SCTP on Linux and FreeBSD

and TCP New Reno, our results show great latency improvements and indicate the

need for a separate handling of thin and thick streams.

1 Introduction

Supporting low rate, interactive streams in the Internet introduces huge challenges

due to packet loss. Such time-dependent, low latency applications have in recent years

greatly increased in number, and examples include stock trading, thin clients, control

systems, remote probe operations, audio conferencing and a large range of online games.

Significant characteristics of this kind of application are their stringent require-

ment for maintaining a consistently low latency in order to provide a good perceived

interactive service quality. The rigidity of the former requirement will vary from appli-

cation to application, but if the maximum tolerable value is consistently exceeded, the
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quality of experience (QoE) will degrade accordingly. A wide range of applications re-

quire latencies below 500 ms, and even the most delay-tolerant of these time-dependent

applications suffer heavily when the delay approaches one second [10,16].

Historically, distributed interactive applications have been developed for use ei-

ther with transport protocols that could provide per-stream Quality of Service (QoS)

guarantees, or with protocols that allowed the sending application to determine the

transmission timing, such as the User Datagram Protocol (UDP). However, the QoS

protocols have not become widely available, and the use of UDP has been heavily criti-

cized for its lack of congestion control mechanisms. Consequently, many time-dependent

and interactive distributed applications today are implemented using reliable trans-

port protocols like Transmission Control Protocol (TCP), and many applications us-

ing UDP, despite criticism, use a reliable transport protocol as a fall back solution,

when for example a firewall is blocking UDP. However, the inherent congestion control

and retransmission mechanisms of reliable transport protocols introduce severe latency

challenges for a large class of time-dependent distributed interactive applications with

different traffic characteristics than the targeted, highly optimized bulk transfer sce-

nario. In particular, the data streams are thin characterized by small packets and high

packet interarrival times. The existing packet loss recovery mechanisms therefore fail

to support the required timeliness of packet deliver causing extreme latencies when loss

occurs in traffic that exhibits thin stream patterns [14].

An alternative to TCP is the Stream Control Transmission Protocol (SCTP) [25],

which is developed to meet the requirements for signalling transport identified by

RFC2719 [19], and is currently on the standards track of the IETF. As such, SCTP

is a promising alternative for congestion-controlled communication for time-dependent

and interactive distributed applications, because the signalling traffic it is designed for

shares the thin-stream characteristics. In this study, we have therefore compared SCTP

to TCP for thin stream traffic using the SCTP implementation from the Linux kernel

(lksctp [2]) and FreeBSD (the Kame project [1]). The results of our examination show

that SCTP does not improve the timeliness of the reliable transport of thin stream

data traffic when compared to TCP. This is surprising, considering SCTP’s design

goals. Furthermore, we have identified the origin of the problem and have devised a

strategy to improve support for thin streams in congestion-controlled protocols. We are

able to reduce latency for thin streams by modifying timers and fast retransmit policies.

To ensure that other traffic patterns are not adversely affected by our modifications,

they are only activated in cases where the system detects that a data stream has

thin-stream characteristics. The approach is justified by our analysis of thin stream

traffic patterns, which show that signalling traffic and other thin streams hardly ever

expand the congestion window, and, as such, have very limited impact on the network

congestion. The experimental results from different test setups show that the proposed

enhancements greatly reduce the retransmission delays of SCTP. This leads to a lower

application-layer delay when delivering data, and increases the users’ QoE.

2 Related work

The problem of late retransmissions has been addressed before. For example, the op-

tional Early Fast Retransmit (EFR) mechanism1 exists in SCTP for FreeBSD and has

been used for tests in this paper. That mechanism is active whenever the congestion

1 This mechanism can be enabled in FreeBSD by using the net.inet.sctp.early fast retran

syscontrol. We have, however, not been able to find any published papers which yields further
details of the mechanism’s implementation in FreeBSD.
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window is larger than the number of unacknowledged packets and when there are pack-

ets to send. It starts a timer that closely follows Round trip time (RTT) + estimated

RTT variance (RTTVAR) for every outgoing packet, and when the timer goes off and

the stream is still not using the entire congestion window, it retransmits all packets

that could have been acknowledged in the meantime. An EFR timeout does not trigger

slow start like a normal timeout, but it reduces the congestion window by one.

In an IETF draft, Allman et al.2 suggest that measures should be taken to recover

lost segments when there are too few unacknowledged packets to trigger Fast Retrans-

mit. They propose Early Retransmit (ER), which should reduce waiting times in four

situations: the congestion window is still initially small, it is small because of heavy

loss, flow control limits the send window size, or the application has no data to send.

The draft proposes to act as follows whenever the number of outstanding segments is

smaller than 4: if new data is available, it follows Limited Transmit [4], if there isn’t

any, it reduces the number of duplicate packets necessary to trigger fast retransmit

to as low as 1 depending on the number of unacknowledged segments. It differs from

our approach in two ways. The first is the motivation. The second is that Allman et

al. try to prevent retransmission timeouts by retransmitting more aggressively, thus

keeping the congestion window open even though congestion may be the limiting fac-

tor. If their limiting conditions change, they still have higher sending rates available.

Our applications are not inhibited by congestion control. We have no motivation to

prevent retransmission timeouts in order to keep the congestion window open, but we

retransmit early only to reduce application-layer latencies. We are therefore combining

the approach with a reduced minimum retransmission timeout (RTOmin ) to handle

the worst-case situation instead of preventing the retransmission timer from firing.

ER is less frequently active than EFR, but it is more aggressive when the number of

unacknowledged packets it small.

Ekström and Ludwig [12] point out that the retransmission timeout algorithm

defined in RFC2988 [21] and used in both TCP and SCTP responds sluggishly to

sudden fluctuations in the RTT. This leads to extreme estimated RTO values in some

cases. They also point out that the RTTVAR computation does not distinguish between

positive and negative variations, and therefore increases the RTO in the case of both

RTT increases and decreases. Their proposed algorithm alleviates the consequences of

RTT fluctuations and is, as such, a good addition to the main protocol for a range of

special cases. Their findings are consistent with our observations made in [22] of high

RTO values that are worsened by the SCTP delayed acknowledgement algorithm. While

their solution leads to a more stable RTO, it is on average higher than that proposed

in RFC2988, which is not desirable for our scenario. Ekström and Ludwig also mention

that they should consider a less conservative exponential backoff algorithm, which is

one of the mechanisms that we investigated.

Brennan and Curran [8] performed a simulation study for greedy traffic and iden-

tified weaknesses in the fast retransmit procedure. However, their modifications would

increase delays for thin streams. Problems with carrying time-sensitive data over SCTP

were presented by Basto and Freitas [7]. The traffic that they considered was loss-

tolerant, and they proposed the use of SCTP’s partial reliability extensions [24]. Ladha

et al. [18] examined several methods of detecting spurious retransmissions and pro-

posed modifications that would increase throughput but also increase the latency of

individual lost packets. Grinnemo and Brunstrom [13] discuss the problem of RTOmin,

2 IETF Draft draft-allman-tcp-early-rexmt-05: Mark Allman, Konstantin Avrachenkov,
Urtzi Ayesta, Josh Blanton, “Early Retransmit for TCP and SCTP”, June 2007, expired
Dec. 2007.
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and propose a reduction to fulfil the requirements of RFC4166 [11], an RFC on the

applicability of SCTP for telephony. The RFC itself discusses problems and solution

approaches, and it proposes to choose the path within a multi-homed association that

experiences the shortest delay, an approach that may be used as a supplement to other

techniques for thin-stream scenarios. The RFC considers both reduction of the RTOmin

and removal of exponential back-off, but warns that both alternatives have drawbacks.

Removing delayed SACK is mentioned without stating any side-effects. This would

also be beneficial in our scenario. However, it is a receiver-side change, while we aim

exclusively at sender-side changes. Of the discussed options, we choose the removal of

the exponential back-off, but instead of doing it arbitrarily, we limit it to situations

where fast retransmit is impossible due to lack of unacknowledged packets (i.e. too few

packets in flight).

The removal of the exponential back-off can of course result in spurious retrans-

missions when the RTT changes. The proposed method of TCP Santa Cruz [20] uses

TCP timestamps and TCP options to determine the copy of a segment that an ac-

knowledgement belongs to and can therefore provide a better RTT estimate. Since the

RTT estimate can distinguish multiple packet losses and sudden increases in actual

RTT, TCP Santa Cruz can avoid exponential back-off. The ability of Santa Cruz to

consider every ACK in RTT estimation has minor effects in our scenario where hardly

any packets are generated. The ability to discover the copy of a packet that an ACK

refers to would still be desirable but would require receiver-side changes that we avoid.

The earlier work that has been done in the field of reducing latency upon retrans-

missions all focus on special cases of thick streams where measures can be taken to

improve throughput. Our work identifies thin streams as time-critical and latency sen-

sitive. We therefore apply several modifications upon detection of the thin stream, and

can thus improve latency for the stream in a manner not yet explored in literature.

3 Thin streams and reliable congestion-controlled protocols

Analysis reveals that applications that transmit small amounts of data over the net-

work upon user interaction have some common traits in their network traffic patterns.

We call such data streams thin streams. Because of the element of interactivity in such

applications, they are sensitive to high delays. It is shown that the traffic generated

by such applications combined with reliable protocols can experience this kind of un-

wanted latencies [14]. In this section, we will describe examples of applications that

produce such traffic patterns and show how this causes the extreme latencies for reliable

protocols3. We then, in section 4, introduce SCTP, which was designed for signalling

traffic and which has comparable traffic characteristics to thin streams.

3.1 Reliability and congestion control

The design of reliable transport protocols has historically focused on maximising through-

put without violating fairness, i.e., mainly aiming for traffic patterns from high-rate

download-like applications like file transfers. Because of this, the group of applications

that do not use what constitutes their fair share of bandwidth, such as thin stream ap-

plications, have been marginalised. A worst-case example of the outcome of this focus

can be seen in figure 1. The graph shows basic loss- and delay statistics in a one-hour

3 We have earlier shown that using middlewares adding reliability on top of UDP does not
give better results [15].
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(a) RTT versus maximum application delay.
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Fig. 1 Per stream latency and loss rate from Anarchy Online server side dump.

trace from a game-server for Funcom’s massively multi-player online game (MMOG)

Anarchy Online. In figure 1(a), we have drawn a line at 500 ms to show how many

streams experienced latencies that would degrade the players’ QoE severely [10]. The

graph shows that nearly half of the measured streams during this hour of game-play had

such latency events. When compared to figure 1(b), we can see that even connections

with a relatively low loss rate suffer such latency events.

The cause for these extreme delays can be found in the combination of certain

traffic patters (thin streams) and the reliable transport protocol’s mechanisms for re-

transmission and congestion control. The underlying cause is found in the commonly

used method for fast recovery of lost segments called fast retransmit. When a segment

is lost, the receiver responds by acknowledging the last successfully delivered data

segment until it receives the lost one. The sender will, upon receiving the third such

duplicate acknowledgement (dupACK), retransmit the segment. For streams that ex-

pand the congestion window and send a lot of data segments for each RTT, this will lead

to a much quicker recovery than waiting for the timeout to trigger. For thin streams,

which very often produce less than one packet per RTT, the lack of data to send makes

the triggering of fast retransmissions impossible (illustrated in figure 2), leading to a

Fig. 2 Fast retransmit with thin
streams.

situation where nearly all retransmissions are trig-

gered by timeout, i.e., the time before receiving the

third dupACK exceeds the RTO.

The additive increase/multiplicative-decrease

(AIMD) [5] algorithm is a feedback control algo-

rithm commonly employed in congestion avoidance

for TCP, SCTP and other reliable transport proto-

cols. Basically, AIMD represents a linear growth of

the congestion window, combined with an exponen-

tial reduction when congestion is detected. AIMD

resumes normal operation when the flow of feed-

back (ACKs) from the receiver resumes. Until that

happens, the RTO is doubled for each new retrans-

mission (by timeout) of the lost segment. For thin streams, which are non-aggressive

and non-greedy, this backoff adds penalties without warrant. Actual real-life conse-

quences are shown in figure 1(a), where the maximum observed application delay value

was 67 seconds, caused by six consecutive losses of the same segment, handled by

timeout retransmission with exponentially increasing RTO.

The combination of not being able to trigger fast retransmissions and suffering

from exponential backoffs makes thin-stream applications prone to suffering from high
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payload size packet interarrival time (ms) avg bandwidth
application (bytes) percentiles requirement

avg min max avg med min max 1% 99% (pps) (bps)

Casa (sensor network) 175 93 572 7287 307 305 29898 305 29898 0.137 269

Remote desktop(RDP) 111 8 1417 318 159 1 12254 2 3892 3.145 4497

Skype (2 users) 236 14 1267 34 40 < 1 1671 4 80 29.412 69K

SSH text session 48 16 752 323 159 < 1 76610 32 3616 3.096 2825

Anarchy Online 98 8 1333 632 449 7 17032 83 4195 1.582 2168

World of Warcraft 26 6 1228 314 133 < 1 14855 < 1 3785 3.185 2046

YouTube stream 1446 112 1448 9 < 1 < 1 1335 < 1 127 111.111 1278K

HTTP download 1447 64 1448 < 1 < 1 < 1 186 < 1 8 > 1000 14M

FTP download 1447 40 1448 < 1 < 1 < 1 339 < 1 < 1 > 1000 82M

Table 1 Examples of thin (thick) stream packet statistics based on analysis of packet traces.

latencies. In the next section, we will show how thin streams tend to be generated by

interactive applications that, as such, are sensitive to high delays.

3.2 Thin-stream applications

Applications that produce network patterns that have thin-stream properties, namely

small packets and large packet interarrival times, tend to be interactive and time-

dependent. The fact that human interaction is what generates the network traffic makes

transmissions sporadic and irregular. Messages in such situations contain often only

small position updates or control messages in gaming scenarios and a collection of a

few audio samples in voice-over-IP (VoIP) scenarios. Depending on the function, sensor

networks also tend to be triggered by natural activity or movement, and will thus

display similar characteristics. Table 1 shows a selection of applications whose network

traffic has been analysed. The identifying element for the thin stream applications, in

contrast to thick streams, is that they all have small packet sizes and high interarrival

time between the packets, and the stream keeps those properties throughout its lifetime.

Windows Remote Desktop using the remote desktop protocol (RDP) is an appli-

cation used by thin client solutions or for remote control of computers. Analysis of

packet traces indicates that this traffic also clearly show thin-stream properties. If

second-long delays occur due to retransmissions, this will result in visual delay for the

user while performing actions on the remote computer. Another way of working on a

remote computer is the common protocol of secure shell (SSH). This is used to create

an encrypted connection to a remote computer and control it, either using text console,

or by forwarding graphical content. The analysed dump presented in table 1 is from a

session where a text document is edited on the remote computer. We can observe that

this stream also displays the thin-stream properties. The interarrival times are very

similar to the RDP session, while the packet sizes are even smaller.

As an example of sensor networks we have analysed traffic from the real-time sys-

tem in the Casa project, which performs research on weather forecasting and warning

systems. Here, low-cost networks of Doppler radars are used that operate at short range

with the goal of detecting a tornado within 60 seconds [27]. Control data between the

server and a radar is typically small and sent in bursts. A packet trace (see statistics

in table 1) shows that the average packet size from the server is 241 bytes, and a burst

of four packets with an interarrival time of about 305 ms is sent every 30 seconds

(the heartbeat interval of the system). To be able to detect a tornado in time, speedy

delivery of the control data is essential.

Audio conferencing with real-time delivery of voice data across the network is an

example of a class of applications that uses thin data streams and has a strict timeliness

requirement due to its interactive nature. Nowadays, audio chat is typically included

in virtual environments, and IP telephony is increasingly common. For coding and

compression, many VoIP telephone systems use the G.7xx audio compression formats

recommended by ITU-T where, for example, G.711 and G.729 have a bandwidth re-

quirement of 64 and 8 Kbps, respectively. The packet size is determined by the packet
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transmission cycle (typically in the area of a few tens of ms, resulting in packet sizes of

around 80 to 320 bytes for G.711). Skype [3] is a well-known conferencing service, with

several million registered users, that communicates on the (best effort) Internet. Table 1

shows statistics analysing a Skype conferencing trace. The small average packet size

combined with an interarrival time between packets that averages to 34 ms qualifies it

as a thin-stream. To enable satisfactory interaction in audio conferencing applications,

ITU-T defines guidelines for the one-way transmission time [16]. These guidelines in-

dicate that users begin to get dissatisfied when the delay exceeds 150-200 ms and that

the maximum delay should not exceed 400 ms. This will be hard to achieve over reliable

protocols, given the thin-stream properties of the stream.

Finally, World of Warcraft and Anarchy Online are two examples of MMOG games,

and we can clearly see from table 1 that the traffic patterns show thin-stream prop-

erties. With respect to user satisfaction, games require tight timeliness, with latency

thresholds at approximately 100 ms for first-person shooter (FPS) games, 500 ms for

role-playing games (RPG) and 1000 ms for real-time strategy games [10]. Analysis of

other game genres (FPS and RPG) shows that they also show similar networking pat-

terns with high interarrival times and small packets, reflecting the human interaction

present in the games.

Compared to the thick streams shown in table 1, e.g., streaming a video from

YouTube, downloading a document over HTTP from a server in the UK or download-

ing a CD-image from uninett.no, the examples given above are a small selection of

applications where the data stream is thin. Other examples include control systems,

virtual environments (such as virtual shopping malls and museums), augmented reality

systems and stock exchange systems. All of these send small packets and have relatively

low packet rates. Yet, they are still highly interactive and thus depend on the timely

delivery of data.

In summary, the connections in the described scenarios are so thin that 1) they do

not trigger fast retransmissions often but retransmit packets mainly due to timeouts

and 2) a TCP-style congestion control does not apply, i.e., each stream have too few

packets and cannot back off. SCTP is designed for signalling traffic, and as such, should

be able to support thin streams with regard to latency. In the next section, we present

the basics of SCTP and how it relates to thin streams.

4 SCTP

In [14], we showed that TCP-variations in Linux provide poor support for thin-streams.

SCTP [25], however, was designed to support signalling traffic in Public Switched Tele-

phone Networks (PSTN), and should therefore be able to provide satisfactory support

for such traffic patterns. There is also a range of other services that SCTP aims to

provide, which makes it a viable candidate for many different kinds of applications.

Reliability is provided through acknowledged data delivery. The protocol also checks

for bit errors and ensures that duplicates are removed. It supports sequenced delivery

within multiple streams through one SCTP connection, which is often called an asso-

ciation. SCTP offers the option of bundling several messages in one packet and also

supports multi-homing for enhanced fault tolerance. There are also proposed exten-

sions, such as partial reliability [24], that can be used for time-dependent applications.

This allows for optional reliability that can enable UDP-like behaviour when requested.

A variant of this is the timed reliability option that can invalidate a message in the

reader buffer if a given timer has expired.

The messages delivered by SCTP are organised in data units called chunks . There

are chunk types for initiation and tear-down of connections, as well as other protocol
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intrinsics. A salient difference from TCP is that SCTP is message-, not byte-oriented.

Instead of retransmitting the previous packet(s) as TCP does, SCTP keeps track of the

chunks that have timed out or been reported as lost, and retransmits unacknowledged

chunks. This makes the protocol more flexible with regard to packet composition and

bundling. It does not mean that retransmitted packets are necessarily identical to the

first transmitted packet; just that the chunk(s) scheduled for retransmission is included.

The RTOmin value is set high in SCTP (1000 ms) to avoid spurious retransmissions

due to early timeouts. In a thin-stream setting, most retransmissions are caused by

timeouts since these applications does not send more than 4 packets every second,

and are thus unable to trigger a fast retransmission. This becomes a major factor in

increasing latency for retransmitted chunks.

The SCTP specification [25] states that guidelines for delayed ACKs in TCP con-

gestion control [5] should be followed. These guidelines state that an ACK should be

delayed until two data packets have arrived, or a maximum of 500 ms have passed. The

SCTP specification follows this recommendation and states that a SACK should be

generated within 200 ms, and must be generated within 500 ms after reception of a data

chunk. This delay is usually implemented with a default value of 200 ms. It is usually

possible to customise this value inside the limitations specified by the RFC. However,

the delayed SACK algorithm does influence the RTT estimation at the sender, which

in turn affects the RTO calculation. For the thin-stream scenario, this means that the

timeouts (being the main cause for retransmissions) will have unnecessarily high values

that increase the transmission latency. Like TCP, SCTP has a calculated RTO that

depends on the measured RTT and RTTVAR. The algorithm for this calculation is

vulnerable to changes in the RTTVAR in the sense that both a positive and negative

RTTVAR will raise the RTO. The combination of the RTO calculation and delayed

SACKs produce too large an RTO for much of the connection’s life.

5 Enhancements

In [22], we show that the lksctp implementation in the Linux kernel is currently not

better suited for games traffic than the TCP implementation. We have also seen that

the implementation in its current state is not able to use reliable transport to fulfil

the requirements for signalling traffic that were defined by RFC2719 [19] and avoid

error handling by the higher layers. However, advantages such as the maintenance of

message boundaries and proactive retransmission by bundling chunks still make SCTP

attractive for distributed interactive applications. We would therefore like to introduce

variations into SCTP that improve its performance regarding thin stream scenarios.

There are several ideas for enhancing SCTP latency for thin streams that should

be evaluated in addition to what is done in the comparison with TCP New Reno [22].

One is to use fewer SACKs to trigger a fast retransmission because the number of

SACKs is so small that they can rarely trigger a fast retransmission. We also consider

the suggestions in RFC4166 [11], namely reduction of the RTOmin and removal of

exponential back-off. The RFC warns that these variations have negative side-effects by

increasing the danger of spurious retransmissions and reducing the size of the congestion

window. The proposed mechanisms, however, is applied only when the stream is thin

and do not aggressively probe for bandwidth.

Next, we address the identification of a stream as thin, and then we describe our

enhancements to the SCTP implementation in the Linux kernel (lksctp).
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5.1 Thin stream detection
if

„

in flight ≤
pttfr + 1

1 − lossrate

«

{ /* thin */

apply modifications

} else { /* thick */

use normal sctp

}

Fig. 3 Determining which mechanisms to
use with thin stream detection.

For the purpose of our implementa-

tion, we define a stream as thin when

there are so few packets in flight (also

often termed in transit) that they can-

not trigger a fast retransmission, i.e.,

there are no unacknowledged packets

meaning that the packet rate is too

low. When this happens, the only way

that the stream can recover from packet loss is to wait for the retransmission timeout

(unless packet duplication occurs). We use the very conservative algorithm in figure 3

to decide when the stream is thin and thus when to apply the enhancements. Here,

in flight is the number of packets in flight (flight size), pttfr is the number of packets

required to trigger a fast retransmission (3 for Linux 2.6.16) and lossrate is the fraction

of packets that are detected as lost. As the figure shows, it relies more or less only on

counting transmitted but unacknowledged packets and uses neither packet send times

nor additional SACK information to draw further conclusions. However, the dynamic

detection algorithm also allows us to (slowly) change the number of packets in flight

needed to trigger the thin-stream mechanisms according to the loss rate which could

be useful in high (extreme) loss scenarios as described for VoIP data in [23].

SCTP identifies chunks by transmission sequence number (TSN) and bundles them

when retransmitting. The number of packets in flight is therefore not available, as it is

in TCP. Thus, we added a list that holds the highest TSN for every packet in flight, as

well as a packet counter. From the SACK, which acknowledges the highest cumulative

TSN, the sender can now know whether or not a packet has left the network. Moreover,

lksctp is not able to estimate packet loss, and therefore we implemented an algorithm for

estimating packet loss that makes use of the packet-in-flight list to determine whether

a packet is lost or not. Then, by looking at the SACKs returned by the receiver, we

mark a packet as lost if the highest TSN in a packet corresponds to a gap in the SACK,

and following the fast retransmission scheme, the packet is determined to be lost if it

is indicated as lost by a SACK on three different occasions.

5.2 Modified minimum RTO

To avoid timeouts occurring too early, which leads to spurious retransmissions and

a reduced congestion window, SCTP has a rather high RTOmin value (1000 ms).

Nevertheless, in our thin-stream scenario, we can see that almost all retransmissions

are due to timeouts. Therefore, we experimented with an RTOmin of 200 ms (equal to

the corresponding default value for TCP in Linux).

As a consequence of reducing RTOmin, the relative effect of delayed SACKs on the

RTO calculation that was described in section 4 grows, as shown in figure 4(a). When

the receiver-side SACK delay is eliminated, the calculated RTO is greatly reduced

due to a lower measured RTT, as shown in figure 4(b). Thus, although receiver-side

enhancements are more difficult to apply in some scenarios (since client machines must

be updated) , we performed measurements to see the effect on retransmission delay.

SCTP also restarts the retransmission timer with the current RTO when an in-

coming SACK acknowledges some, but not all, outstanding chunks. The benefit of this

approach lies in increasing the probability of achieving a fast retransmit in favor of

a slow start, which would be forced implicitly by a timeout retransmission. It has a
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(b) SCTP without delayed SACKs.

Fig. 4 Difference between calculated and measured RTO values for thin streams.

negative impact in our scenario, where we do not focus on throughput but need to

deliver chunks to the application as quickly as possible. We avoid the latency penalty

associated with the timer reset by adjusting the expiration time before the timer is

restarted. The new expiration time is determined by subtracting the time since the

old timer was started from the original timer value. Thus, no more than one RTO will

elapse before the oldest unacknowledged chunk is retransmitted by a timeout.

5.3 Removal of exponential back-off

Fig. 5 Difference between linear
timeouts and exponential backoff.

If there are too few SACKs to trigger a fast re-

transmission or no new packets are sent to let

the receiver discover loss, retransmissions could be

triggered by subsequent timeouts without any in-

tervening fast retransmissions. At this point, an

exponential back-off of the retransmission timer

is performed, which leads to the retransmission

delay increasing exponentially when there are oc-

currences of multiple loss. However, because the

stream is thin, it can never be aggressive, ei-

ther. Hence, it is not necessary to use exponential

back-off to prevent aggressive probing for band-

width. We therefore use linear timeouts when a

thin stream is detected as shown in figure 5.

5.4 Modified fast retransmit

Fig. 6 Fast retransmission upon
first indication of loss.

Despite the high RTOmin value, fast retransmis-

sions hardly ever appear in our thin-stream sce-

nario. The lack of fast retransmissions is because

the packet interarrival time is too large (see ta-

ble 1) for the three SACKs that are required before

the retransmission timer expires to be received. In

order to deal with this problem, we allow a fast re-

transmission to be triggered by the first indication

that a chunk is lost, as illustrated in figure 6. This is because retransmissions that are

triggered by causes other than timeouts are usually preferable with respect to latency.
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The overhead of this modification will not be serious, because the probability that

packets will be reordered in thin streams is low and the amount of data sent is small.

The modification implemented may lead to more transmissions in the low-probability

case that packets are reordered, but the gain in latency will justify the need to drop

occasional spurious retransmissions.

6 Experiments and Results

Fig. 7 Lab test setup using an emulated net-
work.

A large number of tests have been run

in order to determine the effects of

the proposed enhancements to SCTP

in Linux 2.6.16, especially to the worst

case delays that ruin the user experi-

ence in our interactive application sce-

nario.

First, a number of lab tests with the

setup shown in figure 7, using the Linux’ traffic control (tc) system network emulator

(netem) and the queueing discipline (qdisc), shows the properties and effect of each

modification. The emulated network introduced RTTs between 0 and 400 ms (0, 50,

100, 200, 250 and 400 ms). Uniformly distributed loss (1% and 5%) was introduced by

the emulator, and bursty, uneven loss patterns (with an average of 5%) by competing

web traffic. The packet interarrival time was varied from 50 to 250 ms (50, 100, 150,

200 and 250 ms). The loss rates were chosen to emulate the losses that can be experi-

enced in real-life scenarios (like illustrated in figure 1(b)). The TCP version used as a

reference in the tests was New Reno, which had earlier achieved the best results for this

scenario [14]. Each test ran for 2 hours and was repeated several times. For different

SCTP scenarios, we used exported kernel proc variables to turn our modifications on

and off. Each individual enhancement was evaluated during the lab tests.

Second, we evaluated the mechanisms under more realistic conditions using re-

played Anarchy Online game traffic between Oslo and Amherst, Massachusetts. The

Anarchy Online trace includes approximately 170 connections (players) from one of

the many game regions with statistics as presented in section 3.2 and table 1. As the

statistics show, all stream are thin, and representative examples of our target scenario.

We measured a minimum RTT of 121 ms and loss rates below 0.1%. We performed

experiments with all modifications and compared modified lksctp in Linux 2.6.16 with

unmodified lksctp on Linux 2.6.22.14 (as well as 2.6.16, which performs very similarly

for the observed situation and is not shown separately) and SCTP in FreeBSD 6.2.

6.1 Lab experiments: Artificial loss

In this test, we sent SCTP traffic over an emulated network, introducing artificial loss

and delays. As a representative example, we present the results of comparing lksctp

with our modifications in a thin stream scenario. The different tests all show the same

trends where some of the results are summarized in figure 8(a). When exponential

backoff was disabled, we observed a reduction in maximum latencies, especially for 2nd

and 3rd retransmission compared to lksctp. The 99 percentile and average latencies

were only marginally reduced. With an RTOmin of 200 ms, we saw improved average

and 99-percentile latencies as well. The results can be explained by the fact that most

retransmissions in thin stream scenarios are caused by timeouts. By reducing the RTO,

the latency for all these has been lowered. In the test modifying the fast retransmit to
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(a) Uniform loss (5%) (b) Bursty loss (≈ 5%)

Fig. 8 Effects of proposed enhancements over an emulated network (RTT=100) sending 4
packets of 100 bytes per second. For the group denoted lksctp, standard lksctp with default
settings (RTOmin =1000ms) was used. The group denoted mod exp bo represents the removed
exponential back-off, mod min rto is the lowered retransmission timeout modification, mod

FR is the fast retransmission modification and All mods denotes the result of all modifications
combined. Delayed ACKs was turned off for all experiments.

be triggered by only one duplicate SACK, we saw that the average and 99-percentile

latencies were drastically improved compared to lksctp. Maximum values were still

high, caused by exponential backoff. The combined test using all the three modifications

showed large improvements both for maximum, 99-percentile and average latencies.

Generally, we saw that improvements from the modifications got more pronounced on

the 2nd and 3rd retransmission.

We also wanted to compare the results with the de facto choice for reliable trans-

port, namely TCP. For the 1st and 2nd retransmission, TCP performs better than the

original lksctp. On the 3rd retransmission, lksctp has a better average value, although

the 99 percentiles and maximum latency are still better with TCP. However, our mod-

ified lksctp performs better than TCP except for maximum values of the 1st. and 2nd.

retransmission. In the third retransmission, however, TCP displays much higher max-

imum latencies than the modified lksctp. The reason why the difference between TCP

and modified SCTP is not larger is that the delayed SACKs introduced extra applica-

tion layer delays for SCTP. TCP will, however, perform worse for each retransmission

due to exponential backoff.

6.2 Lab experiments: Congestion loss

Uniform loss will emulate some network scenarios, but there are many situations where

the loss patterns are bursty. The burstiness can increase latency because there is a

greater probability that several retransmissions of the same chunk will be lost. There-

fore, to compete for resources with a more realistic load, we sent web traffic over the

same emulated network to introduce congestion and thereby loss. Since the induced

loss was generated by the emulated HTTP traffic, the total loss varied slightly from

test to test.

With respect to emulating real Internet HTTP-traffic, a lot of work has been done

to define parameters such as file-transfer size and mean interarrival time, as well as

the number of concurrent clients [6,9]. Most studies agree on a heavy-tail distribution

to describe the file size [9]. The studies show that there are many small files, and few

large ones, but the greater sizes can become almost arbitrarily large. Thus, we used a
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Pareto distribution with a minimum size of 1000 bytes4 giving us a mean transfer size

of approximately 9200 bytes per connection. Furthermore, we had 81 concurrent web-

client programs running, where the number was determined by the number of different

delays that one netem instance can assign to connections. Each of the client programs

started new streams continuously. An exponential distribution with a mean of 655 ms

was used to decide the request interarrival time per client process. On the bottleneck,

the bandwidth was limited to 10Mbps with a queue length of 100 packets. Using these

settings, we experienced an average packet loss of about 5% in the emulated network.

Using the same representative example as in section 6.1, the performance of each

individual modification in a congested network is shown in figure 8(b). The results

are very similar to the ones presented for artificial loss in figure 8(a). Each individual

modification improves upon lksctp where the relative magnitude of the improvements

tends to increase with the number of retransmissions.

Furthermore, figure 9 shows the distribution of retransmissions types and the re-

spective experienced latencies. For lksctp, we can see that fast retransmission is the

dominant cause of the first retransmission. Bundled chunks are the second most com-

mon, but the majority of these are spurious. Timeouts represent a little more than

20%. For the second retransmission, the share of retransmissions due to timeouts in-

creases. These are responsible for around 75 percent of the retransmissions, and most

of these are spurious. The share of spurious retransmissions due to fast retransmis-

sions and bundled chunks is also large. Although the number of samples for the third

retransmission is low, the data indicate that timeouts are still dominate.

The results from the experiments with a modified SCTP (using all modifications)

are summarised in figures 9(a) and 9(b). Compared to lksctp, we can see that there

is a slight reduction in the share of timeouts for the first retransmission. The per-

centage of fast retransmissions is also somewhat reduced, with bundling as the major

retransmission factor. For the second retransmission, timeouts still dominate. There is,

as expected, an increase in the share of spurious transmissions. The latencies, on the

other hand, show that there is a large improvement for all retransmissions. There is

also a significant improvement with respect to maximum latency.

4 The maximum size was limited to approximately 64 MB in our cross-traffic environment.
If we were to allow arbitrarily large file sizes, given the configured bandwidth limitation, the
large files would, over time, dominate the traffic, and the desired effect would be lost.
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Fig. 9 Summary of retransmission types and latency results for the (RTT=100) for lksctp and
modified SCTP. The bar denoted TO represents timeouts, FR represents fast retransmissions,
and B are bundled chunks. The bars also show what portion of the retransmissions is made
up of spurious retransmissions.
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Fig. 10 Average latency and 99th percentiles
for the tests when the interarrival time in-
creases (RTT = 100)

To show the effect of the packet in-

terarrival time, figure 10 shows average

latency and 99th percentiles for the sec-

ond retransmission. When studying the

lksctp results, we can see that the 99th

percentiles are far above the other val-

ues, but the distance to the 99th per-

centiles for the minimum RTO modifi-

cation decreases as the interarrival time

increases. However, we can see that the

99th percentile for all modifications is

stable and remains below the average

value for standard SCTP, i.e., for all

tested packet rates between 4 and 20 packets per second.

When we vary the RTT, the results are very much the same. Lowering the RTT

reduces the latency only for the smallest interarrival times because timeout retrans-

missions cannot occur before RTOmin. Increasing the RTT increases retransmission

times and the number of retransmissions due to fast retransmit.

6.3 Fairness

A major concern when modifying a transmission protocol like SCTP is whether the

principle of fairness for congestion-controlled protocols is preserved.
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Fig. 11 CDF of throughput on 100 ms intervals (connection
RTT) for lksctp vs. lksctp and lksctp vs. modified SCTP.

This is especially im-

portant in our case,

in which more ag-

gressive retransmis-

sion measures are im-

plemented. To deter-

mine the degree to

which the new mech-

anisms affect fairness,

we set up a range

of tests where reg-

ular SCTP (lksctp)

streams competed with

modified SCTP. For

reference, we also tested

two competing lksctp

streams. We used the

testbed shown in fig-

ure 7, introduced a 50 ms delay in each direction and limited the bandwidth to 1 Mbps.

The streams’ achieved throughput was compared as a metric for fairness.

Figure 12(a) shows the aggregated throughput of the lksctp stream and the modified

SCTP stream when trying to achieve different send rates in competition with a greedy

lksctp stream. The figure shows no noticeable difference at the “thin-stream” rates.

When bit rates increase, and the modifications are no longer active, the regular lksctp

actually achieves a little higher throughput than the modified SCTP. This can be

explained by small delays in the modified SCTP code that are introduced by the

data structures for handling loss and packets in transit. In addition, there are tests to

establish whether a stream is thin that are not present in regular lksctp.
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(a) Increasing bandwidth stream throughput. (b) Greedy stream throughput.

Fig. 12 Comparison of throughput as an indication of fairness.

In figure 12(b), the throughput of the greedy streams competing with modified and

unmodified SCTP is shown. The graph shows also here that the throughput is nearly

identical. As previously explained, the stream competing with the modified SCTP has

slightly higher throughput in the 400, 500 and 1000Kbps experiments. Furthermore,

measurements were performed to calculate the average throughput every two seconds

to see the short term variations. An example of this is shown in figure 11 where only

very small differences can be seen between the throughput of the stream that competes

with regular lksctp and the stream that competes with the modified SCTP.

The tests indicate that fairness is preserved when a modified SCTP stream com-

petes with an lksctp stream; actually, the stream competing with our modified lksctp

achieves slightly higher aggregated throughput. When few packets are sent per RTT,

few resources are consumed whether our modifications are in use or not. When the

number of packets per RTT grows, the consumption of resources is almost identical.

The reason is that our modifications are switched off when the number of packets in

transit exceeds the threshold for thin streams.

6.4 Internet tests

To see if our modifications also could improve the latencies observed at the application

layer in a realistic, real-world scenario over the Internet, we replayed game traffic from

Funcom’s massively multiplayer online role playing game Anarchy Online between ma-

chines in Oslo and a machine located at the University of Massachusetts (MA, USA).

We ran 12-hour tests both from our university network and from three Norwegian ISPs

(Get, NextGenTel and Telenor). As can be seen in figures 13 and 14, we observed dif-

ferent loss rates and loss patterns that provided different conditions for SCTP, and the

results show that the proposed modifications generally improved the application-layer

latency, and thus the QoE, when loss occurs and retransmission becomes necessary.

Figure 13 shows the results of replaying the Anarchy Online game traffic between

University of Oslo and UMass. In these tests, we compare lksctp and SCTP in FreeBSD,

with and without the early fast retransmit (EFR), to our modified SCTP. To get equal

network conditions, we had four machines, one for each setup, concurrently sending

game traffic to a machine running unmodified lksctp at UMass. We used tcpdump on

both sides and calculated the delay between the first transmission of the packet until

the packet was received.
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spurious average maximum
loss rate retransmissions latency latency

(%) (%) (ms) (ms)

mod. lksctp 0.0855 6.708 302 1725
lksctp 0.0690 0.032 304 3521
FreeBSD 0.0765 0.006 303 5326
FreeBSD EFR 0.0831 0.038 304 2664

Table 2 Relative arrival time statistics for about 2.650.000 packets.
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Figure 13 shows a cumulative den-

sity function (CDF) of the arrival

times, i.e., the amount of data (in num-

ber of bytes) that has arrived within a

given latency (in milliseconds). Large

deviations from the average occur only

when retransmissions are necessary. In

this test, we experienced a packet loss

rate below 0.1% which means that the

setups perform more or less equally up

to a CDF of 0.999. This is also con-

firmed by the statistics shown in table 2

which shows that all tests have similar average latencies. As shown in figure 1, higher

loss-rates can be expected in a game-server setting, and even low loss rates can cause

QoE-degrading latency events.

When loss is experienced, the differences is clearly shown. lksctp achieves lower la-

tencies than FreeBSD for a small but relevant number of packets that are retransmitted

by fast retransmit. FreeBSD with EFR follows unmodified FreeBSD closely for most

situations. It has however clear benefits over both lksctp and unmodified FreeBSD for a

relevant number of packets that are early-fast-retransmitted (in the CDF range 0.9992

to 0.9995). That these benefits do not have a larger effect on the CDF is most likely

caused by the small number of packets that are concurrently in-flight in our scenario.

That inhibits the re-opening of the congestion window when it has collapsed, which in

turn prevents EFR from being triggered at all because the condition is that flight size

must be smaller than the congestion window size.

Modified lksctp delivers a considerable number of packets with shorter latency, and

also looking at the maximum latencies experienced (shown by the arrows in figure 13

and in table 2), we see large improvements. The latency improvement is mainly due

to removal of the reset for the retransmission timer after reception of a partial SACK,

which forces all other SCTP variations to wait RTOmin before retransmitting lost

packets in idle phases of the sender application. Considering that the minimum RTT

for the connection was 121 ms, this demonstrates that the modifications can reduce

the application-layer latency of a relevant number of lost packets by several RTTs.

As shown earlier (for example in figure 9), the latency improvement comes at the

cost of a slightly increased bandwidth requirement. Table 2 shows that the modifica-

tions increase the number of spurious retransmissions immensely compared to all the

other tested mechanisms. Nevertheless, for the interactive thin-stream applications of

our scenario, both the increase in bandwidth and the collapse of the congestion window

are negligible disadvantages compared to the latency reduction that can be achieved.

The tests above were performed at our university and may thus not represent the

network conditions of a typical user. We validated the results in typical home user

settings by running the Internet tests also from three typical access networks provided

by Norwegian ISPs. As lksctp and SCTP in FreeBSD (with and without EFR) had

similar performance, we compared only modified and unmodified lksctp. The results are

shown in figure 14. We see the same trends. Our modifications reduce the application-
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layer latency in case of loss, and as shown by the arrows in the plot, the devastating

worst case delays are reduced on order of seconds.

6.5 Summary

In summary, our modifications improve the application-layer latency performance for

thin streams over the original lksctp and FreeBSD implementations of SCTP (and

Linux variants of TCP), regardless of loss pattern and RTT. While the average latency

is nearly unchanged, we are able to handle a large number of those problematic cases

that are caused by multiple packet losses and that cause severe application-layer delays

for interactive applications. The effect is that users of time-dependent applications like

interactive games, VoIP or remote desktops experience disruptions much less frequently

than before. The improvements, however, come at a price. We see an increased number

of retransmissions and more frequently collapsed congestion windows. However, our

modifications are meant for applications that mark streams explicitly as being thin,

meaning that they require few network resources (small and few packets). For these

cases, we consider the extra overhead negligible compared to the reduced latency at the

application level where the QoE is increased for the users of the thin stream services.

7 Observations and discussion

Changing the retransmission mechanisms of a transport protocol may have conse-

quences for many aspects of fair and reliable networking. In this section, we discuss the

choices and alternatives that we have explored and issues that require a more in-depth

investigation.
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7.1 Improving QoE for thin-stream applications

Many applications which are time-dependent greatly suffer from large retransmission

delays using existing variations of TCP and SCTP. Our results show that some sim-

ple modifications can greatly improve the latency of retransmitted packets. This im-

plies that time-dependent applications (such as those listed in section 3) can be sup-

ported better, which in turn will improve users’ experience of the service. Hence, time-

dependent thin-stream applications will benefit from our enhancements.

7.2 Thin stream detection

To detect when a stream is thin, we use the formula given in figure 3, which considers

the current number of packets in flight and the loss rate. Modifications are switch on

and off depending on this detection. This ensures that only streams with a low packet

rate use the enhancements with their more aggressive retransmission behaviour. Thus,

if a stream oscillates between thick and thin, the modifications are turned on and off

according the the characteristics of the current point in the stream. The Internet tests

also show that this works in practise with varying loss and RTT values.

7.3 Per-stream enabling of modifications

In the current prototype, we can turn the different mechanisms on and off using ex-

ported kernel (/proc) variables, but this implies that the system administrator must

enable the modifications system-wide. To make the use of the protocol modifications

more flexible, the code must be extended with per-socket options. The application

should be able to turn the modifications on through I/O control function calls (ioctl).

7.4 Fairness

One major issue for modified transport protocols is whether the principle of fairness

is preserved. Our modifications of SCTP retransmit more aggressively and consume

more resources, depending on packet rate, packet size and loss. However, the results

of the small-scale lab experiments presented in section 6.3 show that fairness is pre-

served because our modifications are only active when very few packets are in flight.

Whenever a stream marked ”thin” by the application competes for higher bandwidth,

the modifications are switched off. Due to the more frequent collapse of the congestion

window, our implementation actually backs off more than unmodified lksctp.

A different fairness issue arises when the number of streams that compete for a

bottleneck is so large that their congestion windows are too small to allow fast retrans-

mit. In this case, our modified SCTP would behave more agressively than unmodified

SCTP because of the removed exponential backoff. It would, however, still be less ag-

gressive than a TCP variation that keeps the congestion window open, such as Limited

Transmit [4] and Allman et al.’s proposed Early Retransmit. In the future, we want

to conduct extensive simulations to map the effect of our proposed transport protocol

modifications to different network scenarios.

7.5 Linux versus FreeBSD

There exist several implementations of SCTP. To be sure that lksctp does not have any

implementation flaws with respect to latency and to have another system to compare

with, we also tested SCTP in FreeBSD. In general, our tests in section 6.4 show that the

performance of plain SCTP is more or less equal in both systems. However, FreeBSD

has also the EFR latency modification which basically runs an EFR timer (based
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on the estimated RTT and variance) when there are less packets in flight than the

congestion window would permit. Our results show that the EFR modification improves

the retransmission delays. Nevertheless, neither of the tested SCTP systems, Linux

2.6.16/2.6.22.14 and FreeBSD 6.2 (with and without EFR), can compete with the

latency performance of our proposed modifications. As we also have tested several

different implementations on two systems, we believe that our modifications are of

general interest for SCTP and not only an lksctp specific improvement.

8 Conclusions

We investigated the use of SCTP for thin streams, a type of low-bandwidth stream that

is generated by many interactive distributed applications. Our investigation started

with the assumption that SCTP should perform better than TCP with regard to la-

tency, because it was designed with time-critical signalling traffic in mind. We found

that this was not the case and explored, in some detail, the mechanisms that are re-

sponsible for the high latencies. Subsequently, we explored changes of SCTP in order

to overcome the problem with modifications that require modifications only on the

sender side.

We came up with SCTP modifications that reduce application-layer latencies dras-

tically but are paid for with congestion window size reductions and a large increase

of spurious retransmissions. Since the modifications are only meant for streams that

require low application-layer latency but consume hardly any bandwidth, we looked

at a test that disables the modifications for other situations. This thin-stream test

checks whether enough packets are in flight to trigger a fast retransmit, and enables

the modifications only if this is not the case. The check ensures that the modified

SCTP is fair when it competes for bandwidth on a congested link. We suggest further

that applications should make the decision of switching our modifications on for indi-

vidual streams. The reason for this is that the modifications, while very well suited for

thin streams that require low latency, are not well-suited for streams with oscillating

bandwidth demand that require quick ramp-up of their throughput. These goals are

contradictory, and only the application can make the choice.

We have also seen that the computation of the RTO value is highly unstable,

and that it remains unstable after our proposed changes. The reason is that the first

acknowledgement to arrive for a sample chunk that contributes to the RTO estimation

is taken into account without any means of detecting whether it is an acknowledgement

of the original transmission. For our situation, where retransmission latency matters,

this should definitely be addressed; Karn’s algorithm [17] would be a sender-sided

remedy, timestamped ACKs [20] or retransmission flags two-sided solutions. We do see

benefits in SCTP’s aggressive bundling and the unsolicited retransmission of chunks

when latencies are high and we consider an even more aggressive variation, but the

instability of the RTO value should be addressed in conjunction with these changes.

In general, we share other researchers’ concern about spurious retransmissions, but

such concerns do not apply to our specific scenario. Various proposed fixes increase the

average end-to-end message latency in thin streams. Adding Allman et al.’s proposed

Early Retransmit would reduce waiting times slightly more when at least two packets

per RTT are expected and the RTT is below RTOmin, but the first condition is rarely

fulfilled in our scenario. The partial ordering and partial reliability extensions to SCTP

do, of course, provide other means of overcoming the latency problem. However, we

would like to recall that SCTP was designed for signalling and that increased latency

is counterproductive in this scenario. Given that it is easy to distinguish between thin
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and thick streams, we propose to consider the high-bandwidth and low-bandwidth

applications of SCTP separately.
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