
Kahn process networks are a flexible alternative to MapReduce

Željko Vrba, Paul Beskow, Pål Halvorsen, Carsten Griwodz
Simula Research Laboratory and University of Oslo, Norway

{zvrba,paulbb,paalh,griff}@ifi.uio.no

Abstract

Experience has shown that development using shared-
memory concurrency, the prevalent parallel programming
paradigm today, is hard and synchronization primitives
nonintuitive because they are low-level and inherently non-
deterministic. To help developers, we propose Kahn process
networks, which are based on message-passing and shared-
nothing model, as a simple and flexible tool for modeling
parallel applications. We argue that they are more flex-
bile than MapReduce, which is widely recognized for its
efficiency and simplicity. Nevertheless, Kahn process net-
works are equally intuitive to use, and, indeed, MapReduce
is implementable as a Kahn process network. Our presented
benchmarks (word count and k-means) show that a Kahn
process network framework permits alternative implemen-
tations that bring significant performance advantages: the
two programs run by a factor of up to∼ 2.8 (word-count)
and∼ 1.8 (k-means) faster than their implementations for
Phoenix, which is a MapReduce framework specifically op-
timized for executing on multicore machines.

1 Introduction

Developing applications that exploit multiple comput-
ing resources, be it multiprocessors, chip-level multiproces-
sors or co-processors is challenging. Since such systems
have become a commodity, the number of developers ex-
pected to face this challenge is increasing. Implicit com-
munication, through shared data structures, is the reigning
paradigm despite the recognition that standard concurrency
control mechanisms (e.g., mutexes, semaphores and condi-
tion variables) are difficult to use correctly [12]. Their non-
deterministic nature also makes the learning curve steeper
– for example, many newcomers to multithreaded program-
ming are surprised to learn that mutexes or condition vari-
ables wake up threads in arbitrary instead of FIFO order.
Hence, several frameworks and higher-level abstractions
(designed to ease parallelization) have been proposed, such
as software transactional memory (STM) [9], MapReduce
[6] and Dryad [10].

Each of these proposed frameworks, however, has some
drawbacks: STM has large overheads; MapReduce is very
rigid (in the sense that computation steps are predeter-
mined); Dryad supports non-deterministic constructs and
disallows cycles in the communication graph and is thus,
like MapReduce, unable to model iterative algorithms.

We therefore propose that Kahn process networks (KPN)
[11] be used for expressing parallelism in programs. KPNs
are the least restrictive message-passing model that yields
provably deterministic programs, i.e., programs that yield
always the same output given the same input, regardless of
the order in which individual processes are scheduled. De-
terminism is achieved by placing restrictions on processes;
it has been proven formally that the resulting model is no
longer deterministic if one or more of these restrictions are
removed. Using KPNs for development of parallel applica-
tions brings several benefits:

• Sequential coding of individual processes.Processes
are written in the usual sequential manner; synchro-
nization is implicit in explicitly coded communication
primitives (message send and receive).

• Composability. Connecting the output of a network
computing functionf(x) to the input of a network
computing g(x) guarantees that the result will be
g(f(x)). Thus, components can be developed and
tested individually, and later assembled together to
achieve more complex tasks.

• Reliable reproduction of faults.Because of determin-
ism, it is possible toreliably reproduce faults (other-
wise notoriously difficult), which will greatly ease de-
bugging.

While MapReduce and Dryad also have most of the
above benefits, KPNs have several additional key properties
that make them suitable for modeling and implementing a
wider range of problems than MapReduce and Dryad:

• Arbitrary communication graphs.Whereas MapRe-
duce and Dryad restrict developers to the structure of
figure 1 and directed acyclic graphs (DAGs), respec-
tively, KPNs allowcyclesin the graphs. Because of

1

this, they can directly model iterative algorithms. With
MapReduce and Dryad this is only possible by manual
iteration, which incurs high setup costs before each it-
eration [13].

• No prescribed programming model.Unlike MapRe-
duce, KPNs do not require that the problem be mod-
eled in terms of processing over key-value pairs. Con-
sequently, transforming a sequential algorithm into a
Kahn process often requires minimal modifications to
the code, consisting mostly of inserting communica-
tion statements at appropriate places.

The flexibility of KPNs allows the implementation of the
full semantics of MapReduce, so they are as easy (or hard)
to use as MapReduce. However, we and others [4] have
noticed that the structure of the MapReduce computation is
not always a good match to the task at hand, and, as we will
show in this paper, can adversely impact performance. Be-
cause a single, multi-core machine has much more limited
resources than a large cluster, we deem that it is important
to investigate MapReduce alternatives that will be more ef-
ficient on a small scale.

To investigate whether direct KPN modeling has ad-
vantages over modeling with MapReduce, we have imple-
mented the word count, which is the canonical MapRe-
duce example, and k-means applications. Each application
is implemented in two variants, KPN-MR and KPN-FLEX
(4 programs in total). The KPN-MR variant constructs a
MapReduce network topology, while the KPN-FLEX vari-
ant constructs a topology tailored to the problem. In our
benchmarks, KPN-FLEX outperforms KPN-MR by a factor
of up to 1.3 for the k-means program, and by a factor of up
to 6.7 in the word count program. Similarly, KPN-FLEX
runs faster by a factor of up to∼ 2.8 (word-count) and
∼ 1.8 (k-means) than their equivalents for Phoenix [13],
which is a MapReduce framework specifically optimized
for executing on multicore machines.

2 Related work

MapReduce [6] is a popular framework for processing
of large amounts of data on a cluster of machines. Its ba-
sic structure is a pipeline, but each stage consists of several
concurrent processes (see figure 1). The splitter process (S)
splits the input into roughly equal chunks and sends them to
m processes in the map stage. Processes in the map stage
apply a user-defined function to each record, consisting of
a key and a value,1 and send the resulting records ton pro-
cesses in the reduce stage. Records with identical keys are
always sent to the same reduce process, so that the final
value of the reduce function for the given key can be com-
puted without communicating with other reduce processes.

1The key-value paradigm stems from the MapReduce pattern; itis not
necessary to use it when modeling a problem as a KPN.

S

map sort,
reduce

M

Figure 1. Structure of MapReduce computa-
tion represented as a KPN. Dahsed lines rep-
resent connections between all pairs of pro-
cesses in the two stages. Merge (M) and split
(S) processes can be omitted when several
MapReduce computations are chained.

The reduce stage first sorts the data items by their key, and
then applies another user-defined function over each group
of data items with identical keys. The final stage of the com-
putation is the merge process (M) which mergesn sorted
outputs from reduce processes into a single sorted output
stream of data items.

Dryad [10] is a system for describing and executing,
in a potentially distributed manner, computations whose
communication patterns are expressed by directedacyclic
graphs. Main features, namely message-passing and se-
quential programming model of individual processes, are
shared with the KPN model. However, there are a num-
ber of differences. First, Dryad is not based on any formal
foundation. Second, Dryad introduces asynchronous inter-
faces which may, as a consequence, result in nondetermin-
istic programs (indeed, Dryad’s nondeterministic merge is
built upon these interfaces). Third, loops in the communi-
cation graph are not allowed, which makes it impossible to
model iterative algorithms such as k-means (see section 5).

While there are other parallel programming models, due
to space constraints we have been able to describe only
MapReduce and Dryad in detail. Other models cover
shared-memory models, pipelines, and unstructured point-
to-point communication, as available through the MPI pro-
gramming interface. In this taxonomy, while (parallel)
pipelines and DAGs have limited expressiveness, i.e., do
not allow cycles in the graph. This is possible with unstruc-
tured communication, but inadvertent problems – such as
non-determinism and deadlocks – occur easily. In this tax-
onomy, KPNs are the most flexible model which still guar-
antees determinism, which is the reason for our deeper in-
vestigation of their properties.

3 Kahn process networks

A KPN [11] has a simple representation in the form of a
directed graphwith processesas nodes andcommunication

channelsas edges (see Section 5 for examples). A process
encapsulates data and a single, sequential control flow, in-
dependent of any other process. Processes are not allowed
to share data and may communicate only by sending mes-
sages over channels. Channels areinfiniteFIFO queues that
store discretemessages. Channels haveexactly onesender
and one receiver process on each end (1:1), and every pro-
cess can have multipleinput andoutputchannels. Sending
a message to the channel always succeeds, but trying to re-
ceive a message from an empty channelblocksthe process
until a message becomes available. It is not allowed to poll
a channel for presence of data. These properties fully de-
fine theoperational semanticsof KPNs and make the Kahn
modeldeterministic, i.e., the history of messages produced
on the channels does not depend on the order in which the
processes are executed, provided the scheduling isfair, i.e.,
that execution of a ready process will not be indefinitely
postponed.

The theoretical model of KPNs described so far is ideal-
ized in two ways: 1) it places few constraints on process be-
havior, and 2) it assumes that channels have infinite capaci-
ties. These assumptions are somewhat problematic because
they allow construction of KPNs which need unbounded
space for their execution, but any real implementation is
constrained to run in finite memory. A common (partial)
solution to this is to assigncapacitiesto channels and re-
define the semantics of send toblock the sending process if
the delivery would cause the channel to exceed its capac-
ity. Under such send semantics, anartificial deadlockmay
occur, i.e., a situation where a cyclically dependent subset
of processes blocks on send, but which would continue run-
ning in the theoretical model. The algorithm of Geilen and
Basten [7] resolves the deadlock by traversing the cycle to
find the channel of least capacity and enlarging it by one
message, thus resolving the deadlock.

4 KPN implementation

Our KPN execution environment is implemented in C++,
and it runs on Windows and POSIX operating systems (So-
laris, Linux, etc.) Our implementation2 of the run-time en-
vironment for executing KPNs consists of a Kahn process
(KP) scheduler, message transport and deadlock detection
and resolution algorithms.

To the best of our knowledge, there exist only two other
general-purpose KPN runtime implementations: YAPI [5]
and Ptolemy II [3]. YAPI is not a pure KPN implemen-
tation, as it extends the semantics and thus introduces the
possibility of non-determinism, its code-base is too largefor
easy experimentation (120 kB vs. 40 kB in our implemen-
tation), and we were unable to make it use multiple CPUs.

2Available code:http://simula.no/research/networks/
software

Figure 2. Two-level KPN scheduling

Ptolemy II is a Java-based prototyping platform for experi-
menting with various models of computation, and it spawns
one thread for each Kahn process, which is rather inefficient
for large networks. The amount of code that the JVM con-
sists of would make it prohibitively difficult to experiment
with low-level mechanisms, such as context-switch.

4.1 Process scheduler

The scheduler may be configured, at compile-time, in
two ways. In the first configuration, each KP is run in its
own OS-thread. Channels are protected by blocking mu-
texes, and notifications are done by using condition vari-
ables. However, our earlier measurements have shown that
the native mechanisms suffer from high overheads, so we
have also implemented an optimized KP scheduler.

The second configuration uses our own work-stealing
scheduler. When the KPN is started,m runner threads are
created and scheduled by the OS onton available CPUs (see
figure 2). Each runner implements a work-stealing policy
[2], i.e., it has a private run queue of ready KPs, and if this
queue is empty, it tries to steal a KP from a randomly cho-
sen runner. For simplicity, we do not use the non-blocking
queue described in [2]; instead we use ordinary mutexes.
Context-switch between KPs is implemented in user-mode.
On Solaris and Linux running on AMD64 architecture we
employ hand-crafted assembly code; on other platforms we
use OS-provided facilities, which often incur some addi-
tional overhead.

The channels are protected withpolling mutexes: if a
KP cannot obtain the channel’s lock, it will spin, explic-
itly yielding to the scheduler between iterations, until ithas
finally obtained the lock. Waiting and signaling are imple-
mented by a protocol between KPs and the scheduler. The
protocol is optimized for the case of having at most one
sleeping KP, which is possible because channels are 1:1,
and at most one process can ever be blocked on a channel.

4.2 Message transport

Channels have a two-fold role: to transport messages and
to interact with the scheduler, i.e., block and unblock pro-

cesses on either side of the channel. Message send/receive
is implemented by copying the messages to/from channel
buffers. Zero-copy transfer would require dynamic mem-
ory allocation, and we have measured that copying is less
expensive as long as messages are smaller than∼ 256 bytes.

We have also extended channels withEOF indication:
the sender can set the EOF status on the channel when it has
no more messages to send. After EOF on the channel has
been set, the receiver is able to read the remaining buffered
messages, but the next receive will immediately return false
instaed of blocking. A further attempt to receive a message
from the channel will permanently block the process.

An alternative approach to EOF signaling is sending a
message with specific contents as the last message on the
channel. The disadvantage is that all values of the channel’s
type (e.g.,int) might be meaningful in a given context,
so no value could be used to encode the EOF value. In
such cases, one would be forced to use more cumbersome
solutions that also potentially impose additional overhead.

4.3 Deadlock detection and resolution

Deadlock detection and resolution is a mechanism which
allows execution of KPNs in finite space. Since communi-
cation is 1:1, every cycle of blocked KPs is a ring; a prop-
erty which greatly simplifies detection. Whenever the cur-
rently running KP would block on send, the algorithm is
invoked to check whether an artificial deadlock occurred. If
no cycle is found, the current KP is blocked and this fact
is recorded in the blocking graph data structure. Otherwise,
the capacity of the smallest channel in the cycle is increased
by one, as suggested by [7]. If the channel belongs to the
current KP, the current KP is immediately resumed; else the
KP on the channel’s send side is unblocked, and the cur-
rent KP is blocked. Similarly, receiving from a full channel
unblocks the KP on the sending side and removes an edge
from the blocking graph.

Our current implementation uses a centralized data struc-
ture for the blocking graph, so the above operations must
run while holding a single global mutex. Despite this, we
have not noticed significant scalability issues on up to 8
CPUs on the workloads described in this paper. This is be-
cause of the interaction of the following elements:

• KPs that do not need to block or wake up another KP
continue to run undisturbed.

• Since the number of KPs is usually much larger than
the number of runners, it is to be expected that many
KPs will be ready and little work will be stalled.

• The time the global mutex is held for in the worst case
is proportional to the size of the largest potential cycle,
which is small in our examples.

5 Modeling with KPNs

Parallelizing an application with KPNs (as well as with
Dryad and MapReduce) entails three steps:

1. Identifying independent subtasks (components) and
their corresponding inputs and outputs.

2. Implementing subtasks, possibly by “filling in the
blanks” in off-the-shelf components (e.g., Reduce and
n-way merge).

3. Determining the number of subtasks and communica-
tion between them; the latter will be largely dependen-
dent on the previous step.

We demonstrate this methodology on the word count and
k-means programs. Even though word count is the “canon-
ical” MapReduce example, its implementation via MapRe-
duce is rather inefficient, in terms of the amount of unneces-
sary extra work done. k-means is an example of aniterative
data-parallel algorithm, and is because of that a rather bad
match for MapReduce, as is also noted in [13].

5.1 Word count

The word count program counts the number of occur-
rences of each word in a given text and outputs them sorted
in the order of decreasing frequency.

The MapReduce and KPN-MR solutions requiretwo
MapReduce instantiations connected in series, such that the
output of the Reduce stage is sent directly to the input of the
Map stage of the second instantiation, without an interven-
ing merge stage. Schematically, the network looks like this
(note the pipeline structure):

S → MR1 → MR2 → M

where each MapReduce has a structure corresponding to the
one shown in figure 1.

The output ofMR1 is a list of word-count pairs sorted al-
phabetically by word.MR2 then reverses word-count pairs
to count-word pairs, count now being the key, in order to
sort them by frequency. The reduce function ofMR2 is
identity and the only role of this stage is sorting.

The subtasks of our KPN-FLEX solution (see Figure
4) are operationally identical to those of the KPN-MR so-
lution: splitting the (memory-mapped, copy-on-write) in-
put file into chunks, counting word frequency in individ-
ual chunks, summing and sorting partial word frequencies
of chunks, and finally merging partial counts into a single
sorted list.

The code that implements the count stage is shown in
Figure 3; note that this isreal code, taken from a work-
ing program (see appendix of [6] for Google’s implemen-
tation). Kahn processes are in our framework implemented

1 void count::parse_word(text_chunk &chunk)
2 {
3 char *b = get<0>(chunk), *e = get<1>(chunk);
4 char *w;
5

6 // Skip leading non-letters.
7 while((b < e) && !inword(*b)) ++b;
8

9

10 // Parse word and convert to uppercase
11 for(w = b; (w < e) && inword(*w); ++w)
12 *w -= ((*w >= ’a’) && (*w <= ’z’))*(’a’-’A’);
13

14 // Insert new word, or increase count
15 if(b != w) {
16 std::pair<count_hash::iterator,bool> rv =
17 counts_.insert(count_hash::value_type(
18 word(b, w), 1));
19 if(!rv.second)
20 ++rv.first->second;
21 }
22 get<0>(chunk) = w;
23 }
24

25 void count::behavior()
26 {
27 text_chunk chunk;
28 boost::hash<word> h;
29 count_hash::iterator it;
30

31 in(0).recv(chunk);
32 while(get<0>(chunk) != get<1>(chunk))
33 parse_word(chunk);
34 for(it = counts_.begin();
35 it != counts_.end(); ++it)
36 out(h(it->first) % out_count()).send(it);
37 eof_all();
38 }

Figure 3. C++ code for the count stage of the
word count program in KPN-FLEX implemen-
tation (see also figure 4). The code in slanted
font (lines 31 and 34–37) are the only nec-
essary additions to the sequential version of
the algorithm.

as classes which must derive from theactor class and im-
plement the pure virtualbehavior method, which is the
entry point.

Thecount process initially receives a text chunk which
is represented as a (start, end) tuple of pointers. The fol-
lowing while counts individual words in the text chunk:
it keeps calling theparse word routine which extracts
the next word from the chunk and updates the hash table
of counts. When all words from the chunk have been ex-
tracted, the hash table is iterated and iterators to each (word,
count) pair are sent to the sum process. To distribute the
load approximately evenly, the destination output is calcu-
lated by taking the hash of each word modulo the number
of outputs. Finally, theeof all() statement sets an EOF
indication on all output channels.

5.2 k-means

k-means is an iterative algorithm used for partitioning a
given set of points in multidimensional space intok groups;

S

count
(hashed)

sum,
sort

M

Figure 4. KPN-FLEX for solving the word
count problem.

I MR

Figure 5. KPN-MR for solving the k-means
problem. We had to introduce additional pro-
cess (I) to iterate the MR block, whose con-
stituent parts are shown in Figure 1.

it is used in data mining and pattern recognition. The algo-
rithm consists of the following steps:

1. Make initial guess for the center of gravity (centroid)
of each of thek groups.

2. Assign each point from the dataset to the group which
centroid is closest to the point.

3. Recalculate new centroids based on the new assign-
ment of points to clusters.

4. Repeat from step 2, now with new centroid coordi-
nates, until the process converges (i.e., the centroids
do not move by more than a preset threshold).

In the KPN-MR implementation, the Map stage com-
putes the indexi of the nearest mean for each pointp and
emits(i, p) as the intermediate key-value pair. The Reduce
stage computes the new mean values from the itermediate
key-value pairs. Since MapReduce alone cannot model iter-
ative algorithms, we construct the KPN shown in Figure 5.
The MapReduce implementation is optimized in the same
way as for word count: the Map stage and Reduce stage
send out pointers to vectors instead of individual points.

KPN-FLEX that executes the k-means algorithm is
shown in Figure 7. The I (iterate) process has two phases:
initialization and iteration. The initialization phase gener-
ates a vector of random points, selects newk random points
as the starting centroids, and partitions the point vector into
as many approximately equal parts as there are worker pro-
cesses (unlabeled in the figure). Then, it sends a partition
of the point set to each worker as a pair of (start, end) it-
erators, and sends allk centroids, each in own message, to
every worker. When the initialization phase has finished,
the iteration phase, described below, begins.

A worker receives on its input the current location of the
means and computes the new cluster assignment for its part
of the point set; each time a point is assigned to a new clus-
ter, the centroid corresponding to the partial point set as-
signed to the worker is updated. When a worker has fin-
ished with its points, it sends partial sums for centroids to
the iteration process (I). Since mean is a linear operation,
the iteration process can take the partial sums and counts to
compute the new locations of the centroids. If the new loca-
tions are equal to the locations from the previous iteration,
the process has converged and the program terminates.

The full code executed by the worker process is shown
in Figure 6. The additional code necessary to transform
the sequential algorithm into a Kahn process is shown in
slanted text. Also note how the code in slanted font resem-
bles programming withordinary files: a process reads its
input, item by item, from input ports (files opened for read-
ing), does some processing, writes results to its output ports
(files opened for writing), and exits when EOF is detected
on some input port (file).

6 Evaluation

To evaluate advantages of modeling with KPNs, we
have implemented the word count and k-means pro-
grams as KPN-FLEX and KPN-MR networks (see Sec-
tion 5). All test programs have been compiled as 64-bit
with GCC 4.3.2 and maximum optimizations (-m64 -O3
-march=opteron). We have run them on an other-
wise idle 2.6 GHz AMD Opteron machine with 4 dual-core
CPUs, 64 GB of RAM running linux kernel 2.6.27.3. Each
program has been run 10 times on 1, 2, 4 and 8 CPUs with
differing number of worker processes. We present the av-
eragewall-clock (real) timeof 10 runs together with error
lines showing the standard deviation. Note that we compare
theunoptimized(in terms of the number of exchanged mes-
sages) KPN implementations with theoptimizedMapRe-
duce (over KPN) implementations.

The wall-clock time metric is most representative be-
cause it accurately reflects the real time needed for task
completion, which is what the end-users are most inter-
ested in. We have also measured system and user times
(getrusage), but do not use them to present our results
because 1) they do not reflect the reduced running time with
multiple CPUs, and 2) resource usage does not take into ac-
count sleep time, which nevertheless may have significant
impact on the task completion time.

6.1 Implementation considerations

Our unoptimizedMapReduce implementation of the
word count program was slower by an order of magnitude
than the optimized implementation, for which we present

1 void kmeans::behavior()
2 {
3 size_t i;
4

5 // Receive the point set.
6 in1.recv(points_);
7

8 while(1) {
9 point_vec partial_sums(cur_means_.size(),

10 ZEROPOINT);
11

12 // New iteration: get recalculated means
13 for(i = 0; i < cur_means_.size(); ++i)
14 if(!in2.recv(cur_means_[i]))
15 return;
16

17 point_vec::iterator it;
18 for(it = get<0>(points_);
19 it != get<1>(points_); ++it)
20 {
21 // Recompute point’s cluster.
22 int c = std::min_element(
23 cur_means_.begin(), cur_means_.end(),
24 bind(&distance, *it, _1) <
25 bind(&distance, *it, _2))
26 - cur_means_.begin();
27

28 // Assign point to the new cluster and
29 // update cluster’s partial sum
30 it->c = c;
31 for(int k = 0; k < DIM; ++k)
32 partial_sums[c].v[k] += it->v[k];
33 ++partial_sums[c].c;
34 }
35

36 // Send partial sums to the I process.
37 for(i = 0; i < partial_sums.size(); ++i)
38 out.send(partial_sums[i]);
39 }
40 }

Figure 6. C++ code for the worker processes
of the k-means program in KPN-FLEX imple-
mentation. The code lines typeset in slanted
font (lines 13–15, 37–38) are the only neces-
sary additions to the sequential algorithm.

the results. In the unoptimized case, each key-value pair
was sent in its own message, and the number of sent mes-
sages was dominated by thetotal number of words in the in-
put file. TheoptimizedKPN-MR implementation allocates
as many vectors holding key-value pairs as there are out-
puts from the Map and Reduce stages. Individual pairs are
distributed across the vectors, taking care that pairs withthe
same key are placed in the same vector. Afterwards, asingle
message with a pointer to the vector is sent to each output.
We could have optimized the KPN-FLEX implementations
in a similar way, but we decided against it because it would
somewhat obscure similarity with the sequential algorithm.

We have furthermore optimized the KPN-MR k-means
implementation by introducing the extra process that iter-
ates the MapReduce block (see Figure 5), thus avoiding
KPN startup and shutdown costs which Phoenix suffers in
each iteration.

I

Figure 7. KPN-FLEX for solving the k-means
problem. Edges with double arrows repre-
sent two channels, one in each direction.
“Parallel” channels are carrying messages of
different types.

6.2 Word count

We have run the word count program on files of size 10,
50 and 100MB, which is also the dataset used to benchmark
Phoenix. Both implementations have been run on 1, 2, 4
and 8 CPUs, and with the number of runners in each stage
varying from 8 to 128 in steps of 8. Figure 8 shows running
time of the KPN-FLEX solution for the three datasets in the
left column, and of KPN-MR solution in the right column;
our findings are also summarized in Table 1.

We can see that the running time decreases as more
CPUs are used and that the KPN-FLEX version has sev-
eral timesbetter performance than the KPN-MR version.
The variation in running times is rather small between ex-
periments, except for the KPN-MR solution with 2 runner
threads; as of now we cannot explain this variation. With
respect to the number of workers, the situation is more
complicated: the running timedecreasesas the number of
workersincreasesup to a certain point. Word count is a
communication-intensive task and having more workers im-
proves performance by more evenly distributing the load
among CPUs and reducing contention in the work stealing
scheduler: the more processes there are in the system, the
smaller probability that a runner will need to steal a process
from another runner.

Furthermore, as described in Section 4, processes ac-
quire locks by busy-waiting and yielding between succes-
sive attempts. When there are enough ready processes,
waiting on a lock will yield to another ready process which
will be able to perform some useful work. When the num-
ber of processes increases even more, the performance starts
dropping again for two reasons: 1) context-switch over-
heads (which also increase pressure on CPU caches), and
2) we conjecture that an even more important factor is con-
tention over the single deadlock detection lock.

Table 1 gives an insight into scalability of KPN-MR and
KPN-FLEX implementations with respect to the number of
CPUs, which turns out to be approximatelylogarithmic: the
running time decreaseslinearly with eachdoublingof the

Size KPN-MR KPN-FLEX
n t α n t α f

10/1 96 1.24 1.00 8 0.36 1.00 3.41
10/2 64 0.80 1.55 16 0.21 1.71 3.80
10/4 48 0.46 2.70 16 0.14 2.57 3.24
10/8 32 0.32 3.88 16 0.11 3.27 2.95
50/1 120 8.57 1.00 8 1.54 1.00 5.57
50/2 128 5.14 1.67 16 0.87 1.77 5.91
50/4 64 2.92 2.93 24 0.52 2.96 5.57
50/8 48 1.86 4.61 24 0.37 4.16 5.06
100/1 128 20.00 1.00 8 3.17 1.00 6.30
100/2 88 12.22 1.64 32 1.81 1.75 6.74
100/4 104 6.65 3.01 32 1.08 2.94 6.14
100/8 56 4.23 4.73 32 0.74 4.28 5.69

Table 1. Word count experiment summary:
number of workers n that achieves the best
running time t (in seconds), relative speedup
over one CPU (α) and speedup factor of KPN-
FLEX over KPN-MR (f).

Points Groups Iterations
A 100000 100 97
B 200000 50 140
C 200000 100 139

Table 2. k-means problem sizes and number
of iterations until algorithm converges. The
amount of work performed in each iteration
is proportional to the product of the number
of points and groups.

number of runner threads. We see also that KPN-FLEX is
consistently faster than KPN-MR, by a factor of 3 – 6.7, and
that the speedup isproportional with the problem size.

6.3 k-means

The k-means program generates a number of 3-
dimensional points with random integer coordinates from
the cube[0, 1000)3. The random number generator is al-
ways initialized with the same seed, so each run executes
the same number of iterations. We have measured perfor-
mance of the program on three problem instances differing
in the number of points and groups (see Table 2) and on 1,
2, 4, and 8 CPUs. Since this is a CPU-intensive benchmark
with little communication, we have set the number of work-
ers to be equal to the number of runner threads; very little
experimentation was needed to establish that this was the
optimal choice.

Again, the KPN-FLEX solution outperforms the KPN-
MR solution, although the speedup is not as drastic as in
the word count example. The main reason for this is that,
unlike with word count, very little unnecessary work is per-
formed by KPN-MR, namely only sorting before comput-

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

10MB, KPN−MR

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

10MB, KPN−FLEX

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

20 40 60 80 100 120

0
5

10
15

50MB, KPN−MR

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

20 40 60 80 100 120

0
5

10
15

50MB, KPN−FLEX

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

20 40 60 80 100 120

0
5

10
15

20
25

30

100MB, KPN−MR

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

20 40 60 80 100 120

0
5

10
15

20
25

30

100MB, KPN−FLEX

number of workers

ru
nn

in
g

tim
e

(s
)

Number of CPUs

1 2 4 8

Figure 8. Running times for the word count program run on thre e different input files (10, 50 and
100 MB), implemented as KPN-FLEX and KPN-MR; vertical lines represent standard deviation. The
number of workers for the KPN-MR version is per stage, so there are four times as many processes in
total (two MR blocks, each consisting of two stages, each sta ge having the same number of workers).

ing the new means for the next iteration. Table 3 shows
speedup of the KPN-FLEX solution over KPN-MR. We see
that the speedup is∼ 1.2 (20%) for the benchmarks with
100 groups, and∼ 1.4 (40%) for the benchmark B with 50
groups. Since KPN-MR is recalculating means in parallel,
this leads us to believe that the single I process which recal-
culates new means is the bottleneck in the KPN-FLEX so-
lution. Nevertheless, unlike the word count example, the k-

means program showsalmost perfect linear scalabilitywith
the number of CPUs.

6.4 Comparison with Phoenix

We have also benchmarked our KPN-FLEX and KPN-
MR against Phoenix [13], which is a MapReduce imple-
mentation designed specifically for multicore machines.

1 2 4 8

Problem size A

Number of CPUs

R
un

ni
ng

 ti
m

e
(s

)
0

2
4

6
8

10
12

14

KPN−MR
KPN−FLEX

1 2 4 8

Problem size B

Number of CPUs

R
un

ni
ng

 ti
m

e
(s

)
0

10
20

30
40

KPN−MR
KPN−FLEX

1 2 4 8

Problem size C

Number of CPUs

R
un

ni
ng

 ti
m

e
(s

)
0

10
20

30
40

KPN−MR
KPN−FLEX

Figure 9. Benchmark results for the k-means
program run on three different problem sizes,
implemented as KPN-MR and KPN-FLEX. Ver-
tical lines (barely visible) represent standard
deviation. KPN-FLEX solution has as many
worker process as the number of runners that
were used in the benchmark. Similarly, the
KPN-MR solution has the same number of
workers as CPUs in each stage.

Phoenix is implemented with pthreads and uses by default
as many threads in each of the Map and Reduce stages
as there are CPUs on the machine. We had to compile
Phoenix programs in 32-bit mode because their code uses
non-portable casts between pointers and integers, which
causes crashes in 64-bit mode. This is certainly to Phoenix’s
advantage because it allocates arrays of pointers, which
would take twice as much space in the 64-bit mode, which

Size KPN-MR KPN-FLEX
t α t α f

A/1 13.37 1.00 11.45 1.00 1.17
A/2 6.82 1.96 5.79 1.98 1.18
A/4 3.49 3.83 2.93 3.91 1.19
A/8 1.83 7.31 1.51 7.58 1.21
B/1 22.64 1.00 16.74 1.00 1.35
B/2 11.80 1.92 8.44 1.98 1.40
B/4 6.07 3.73 4.35 3.85 1.40
B/8 3.20 7.08 2.24 7.47 1.43
C/1 38.68 1.00 32.83 1.00 1.18
C/2 19.84 1.95 16.39 2.00 1.21
C/4 10.11 3.83 8.35 3.93 1.21
C/8 5.19 7.45 4.26 7.71 1.22

Table 3. k-means experiment summary: mean
running time (t), relative speedup over one
CPU (α) and and speedup factor of KPN-FLEX
over KPN-MR (f).

Size Phoenix KPN-MR KPN-FLEX
t (σ) t f t f

Word Count
10 0.30 (0.02) 0.32 0.94 0.11 2.73
50 0.98 (0.02) 1.86 0.53 0.37 2.65
100 2.04 (0.05) 4.23 0.48 0.74 2.76

k-Means
A 2.39 (0.05) 1.83 1.31 1.51 1.58
B 3.92 (0.21) 3.20 1.23 2.24 1.75
C 5.43 (0.22) 5.19 1.05 4.26 1.28

Table 4. Mean running times in seconds (t)
of the word count and k-means programs for
Phoenix, KPN-MR and KPN-FLEX; in case of
KPNs, the smallest time on 8 CPUs is shown.
σ is standard deviaton and f is speedup fac-
tor over Phoenix.

causes fewer cache and TLB misses than in 64-bit mode.
Table 4 shows Phoenix, KPN-MR, and KPN-FLEX run-

ning times for word count and k-means programs on all
problem sizes. All Phoenix experiments have been run on
the same machine 10 times, and the mean and standard de-
viation has been calculated.

In the word count benchmark, the KPN-MR program is
consistently slower than Phoenix, by a factor of 1.06 on the
10MB file, and by a factor of∼ 2 on 50MB and 100MB
files. This result is not very surprising since Phoenix is op-
timized for running MapReduce programs, while our KPN
runtime assumes nothing about the network topology. How-
ever, the KPN-FLEX program, by having the ability to use
data structures that are more suited to the given task (hash
tables) and avoiding unnecessary work that MapReduce se-
mantics requires (extra sort), achieves 2.6 times better per-
formance than Phoenix.

Somewhat more surprisingly, both our KPN-MR and
KPN-FLEX solutions outperform Phoenix on the k-means
benchmark, by factors of 1.05 – 1.3 and 1.28 – 1.75, respec-
tively. The KPN-FLEX solution performs better because it

avoids doing unnecessary work. However, we are as of yet
unsure about the reasons for the unexpectedly good perfor-
mance of the KPN-MR solution. We believe that the main
reason for good performance of the KPN-MR solution is the
elimination of framework (de)initialization that Phoenixhas
to perform on each iteration.

7 Conclusion and future work

In this paper we have reviewed in detail MapReduce and
Dryad frameworks and KPNs. We have identified KPNs
as the most flexible abstraction that presents a sequential
programming model, while still ensuring deterministic ex-
ecution of programs. We have also demonstrated that the
MapReduce paradigm, widely recognized for its simplicity,
is only a specially crafted KPN with fixed communication
patterns.

To investigate advantages of KPN models, we have im-
plemented the word count and k-means programs using
two KPN topologies: one closely implementing the seman-
tics of MapReduce (KPN-MR), and another which is spe-
cially crafted to the problem at hand (KPN-FLEX). In our
benchmarks, on a 64-bit 8-core machine, KPN-FLEX im-
plementation always outperforms the KPN-MR implemen-
tation (up to a factor of 1.3 for the k-means program and
up to a factor of 6.7 for the word count program). Com-
pared with Phoenix [13], KPN-FLEX implementations of
word count and k-means programs are faster by a factor of
up to 2.7 and 1.7. KPN-MR implementation of the word
count program is about 2 times slower than Phoenix, but
the KPN-MR implementation of the k-means program is,
surprisingly, up to a factor of 1.3 faster than Phoenix.

Our future work includes performing more extensive
tests to better understand performance characteristics of
KPNs, especially in relation to the total number of pro-
cesses and increasing scalability on machines with many
CPUs. Work on scalability can be done by experimenting
in three areas: using lock-free queues for channel communi-
cation (e.g., the one described in [8]), evaluating trade-offs
between using lock-free queues or locks with exponential
backoff in the work stealing scheduler, as well as imple-
menting a distributed (as opposed to the current centralized)
deadlock detection and resolution algorithm [1].

Acknowledgments

We thank to Håvard Espeland for constructive discus-
sions during writing of this paper.

References

[1] G. Allen, P. Zucknick, and B. Evans. A distributed deadlock
detection and resolution algorithm for process networks.

IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2:II–33–II–36, April 2007.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. InPro-
ceedings of ACM symposium on Parallel algorithms and ar-
chitectures (SPAA), pages 119–129, New York, NY, USA,
1998. ACM.

[3] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous concurrent modeling and design
in java (volume 1: Introduction to ptolemy ii). Technical
Report UCB/EECS-2008-28, EECS Department, University
of California, Berkeley, Apr 2008.

[4] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on
large clusters. InProceedings of ACM international confer-
ence on Management of data (SIGMOD), pages 1029–1040,
New York, NY, USA, 2007. ACM.

[5] E. de Kock, G. Essink, W. J. M. Smits, R. van der Wolf,
J.-Y. Brunei, W. Kruijtzer, P. Lieverse, and K. K.A. Vissers.
Yapi: application modeling for signal processing systems.
Proceedings of Design Automation Conference, pages 402–
405, 2000.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. InProceedings of Symposium on
Opearting Systems Design & Implementation (OSDI), pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[7] M. Geilen and T. Basten. Requirements on the execution
of kahn process networks. InProgramming Languages and
Systems, European Symposium on Programming (ESOP),
pages 319–334. Springer Berlin/Heidelberg, 2003.

[8] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastfor-
ward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. InPPoPP: Proceedings of the
ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 43–52, New York, NY, USA,
2008. ACM.

[9] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. InPPoPP: Proceedings of the
ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 48–60, New York, NY, USA,
2005. ACM.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. InProceedings of the ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems, pages 59–72, New
York, NY, USA, 2007. ACM.

[11] G. Kahn. The semantics of a simple language for parallel
programming.Information Processing, 74, 1974.

[12] E. A. Lee. The problem with threads.Computer, 39(5):33–
42, 2006.

[13] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and
multiprocessor systems. InProceedings of the IEEE Inter-
national Symposium on High Performance Computer Archi-
tecture (HPCA), pages 13–24, Washington, DC, USA, 2007.
IEEE Computer Society.

