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Abstract. The number of applications with many parallel cooperating
processes is steadily increasing, and developing efficient runtimes for their
execution is an important task. Several frameworks have been developed,
such as MapReduce and Dryad, but developing scheduling mechanisms
that take into account processing and communication requirements is
hard. In this paper, we explore the limits of work stealing scheduler,
which has empirically been shown to perform well, and evaluate load-
balancing based on graph partitioning as an orthogonal approach. All
the algorithms are implemented in our Nornir runtime system, and our
experiments on a multi-core workstation machine show that the main
cause of performance degradation of work stealing is when very little
processing time, which we quantify exactly, is performed per message.
This is the type of workload in which graph partitioning has the potential
to achieve better performance than work-stealing.

1 Introduction

The increase in CPU performance by adding multiple execution units on the
same chip, while maintaining or even lowering sequential performance, has ac-
celerated the importance of parallel applications. However, it is widely recognized
that shared-state concurrency, the prevailing parallel programming paradigm on
workstation-class machines, is hard and unintuitive to use [1]. Message-passing
concurrency is an alternative to shared-state concurrency, and it has for a long
time been used in distributed computing, and now also in modern parallel pro-
gram frameworks like MapReduce [2], Oivos [3], and Dryad [4]. However, message
passing frameworks also have an increasing importance on multi-core architec-
tures, and such parallel program runtimes are being implemented and ported to
single multi-core machines [5–8].

In this context, we have experimented with different methods of scheduling
applications defined by process graphs, also named process networks, which ex-
plicitly encode parallelism and communication between asynchronously running
processes. Our goal is to find an efficient scheduling framework for these multi-
core parallel program runtimes. Such a framework should support a wide range
of complex applications, possibly using different scheduling mechanisms, and
use available cores while taking into account the underlying processor topology,
process dependencies and message passing characteristics.



Both strategies are implemented in Nornir [8], which is our parallel processing
runtime for executing programs expressed as Kahn process networks [9], but they
are also applicable to any of the existing parallel processing frameworks.

Particularly, in this paper, we have evaluated the work-stealing load-balancing
method [10] which is designed to be used in a multi-programmed environment.
The authors have theoretically shown that the algorithm is optimal for schedul-
ing programs that are structured as fully-strict computations, also called fork-join

parallelism. Under this assumption, they have proven [11] that with P proces-
sors, 1) the parallel part of the program exhibits P -fold speedup, the and 2) that
the additionally used space is less than P times the space used by the execution
on 1 CPU. These results are also supported by experiments [12].

Saha et. al. [13] have presented a run-time system aimed towards executing
fine-grained concurrent applications, much like Nornir. Their simulations show
that work-stealing scales almost perfectly up to 16 cores, but they have not
attempted to quantify work granularity, i.e., the amount of time a process runs
before it blocks, and relate it to application performance. Explicit quantification
of this time, in absolute and relative terms, is one of the contributions of this
paper.

In our earlier paper [8] we have noted that static assignment of processes to
CPUs can achieve as good as, or, for some workloads, even better, performance
than work-stealing. In cases where static assignment performed better, there
was a significant amount of inter-CPU communication. Since static assignment
is impractical for large process networks, we have also experimented with a
scheduling strategy based on graph partitioning [14], which balances the load
across CPUs, and reduces the amount of inter-CPU communication as well as
the cost of migrating processes.

Furthermore, we compare the performance of work stealing with the two
other schedulers. Unsurprisingly, the performance of the static scheduler for
compute-intensive applications with irregular structure suffered because of load-
imbalances that occurred at run-time, but with well-known communication pat-
terns, a static hand-optimized schedule may give good performance. With respect
to the graph partitioning approach, we have observed that the graph partition-
ing scheme can compete with work stealing at certain repartitioning frequencies
and work granularities. Our main observations are that work stealing works nice
for a large set of workloads, but orthogonal mechanisms should be available to
address the limitations. For example, if the work granularity is small, a graph
partitioning scheme should be available, as it shows less performance degrada-
tion compared to the work-stealing scheduler. The graph-partitioning scheme
succeeds in decreasing the amount of inter-CPU traffic by a factor of up to 30 in
comparison with the work-stealing scheduler, but this reduction has no influence
on the application running time.



2 Dynamic load-balancing

The static scheduler where the programmer (possibly manually) pins processes
to the CPU at compile time is very limited in dynamic scenarios, and our search
for more flexible scheduling and load balancing solutions reviled two promising
approaches: 1) work stealing [10], because of its experimentally proven perfor-
mance, and 2) periodically invoked graph partitioning algorithms, which reduce
amount of communication between cooperating processes.

The two methods are described below. We assume an m : n threading model
where m user-level processes are multiplexed over n kernel-level threads, with
each thread having its own run queue of ready processes.

2.1 Work stealing

We have experimented with several (enhanced) versions of work stealing (see
section 4), but in this context, the experimental results shown negligible differ-
ences, i.e., we here focus on the original idea as presented in [10]. For each CPU
(kernel-level thread), there is a queue of ready processes waiting for access to
the processor. Then, each thread takes ready processes from the front of its own
queue, and also puts unblocked processes at the front3 of its queue. When the
thread’s own run queue is empty, the thread steals a process from the back of the
run-queue of a randomly chosen thread. Both of these operations have constant-
time (O(1)) complexity, i.e., their running time is independent of the number of
processes in the queue. The original motives for accessing run queues at differ-
ent ends are, as explained in [15], two-fold: 1) it reduces contention by having
stealing threads operate on the opposite end of the queue than the thread they
are stealing from, and 2) it works better for parallelized divide-and-conquer al-
gorithms which typically generate large chunks of work early, so the older stolen
task is likely to further provide more work to the stealing thread.

The original work-stealing algorithm uses non-blocking algorithms to imple-
ment queue operations [10]. However, since others [13] have shown that even a
centralized queue protected by a single lock does not hurt performance on up to
8 CPUs, we have decided to simplify our scheduler implementation by protecting
each run queue with its own lock. Thus, our implementation does not benefit
from the first advantage of accessing run queues at different ends since we use
locks to protect the queues. However, when considering message-passing appli-
cations, another advantage arises. Since a process is unblocked by the arrival of
a message, placing it at the front of the ready queue increases probability that
it will find the required data in CPU caches once it is scheduled.

3 This is the opposite of the FIFO policy usually used in OS-schedulers, which have to
be fair over all jobs in the system. However, we are considering scheduling of tasks
within a single job, which terminates when all of its processes have terminated.



2.2 Graph partitioning

The goal of a graph partitioning algorithm over a graph with weighted vertices
(processing requirements) and edges (communication requirements) is to divide
the vertices of the graph into n (equal to the number of cores in the system.)
disjoint sets of approximately equal weights, while at the same time minimizing
the weights of edges between any two partitions. This is an NP-hard problem
and only heuristic algorithms yield solutions in reasonable time.

In our initial experiments, we have used the SCOTCH [16] graph partition-
ing library, but the results quickly showed that processes often unnecessarily
migrated, which has a detrimental effects to CPU’s caches. We have therefore
also implemented the algorithm proposed by Devine et al. [14] using the PaToH
library [17] in our scheduling component. This was one of the first algorithms
that took into account not only costs of communication, but also costs of process
migration, and we use this algorithm in our experiments presented in section 3.

The algorithm observes weights on vertices and edges, corresponding to CPU
loads of individual processes and communication volumes between them. The al-
gorithm repartitions the graph, which also includes migration of processes and
their data, whenever it detects a significant imbalance of CPU load or that com-
munication costs exceed migration costs considerably. The algorithm minimizes
the cost function αtcomm + tmig, where α is the number of computation steps
performed between two rebalancing operations, tcomm is the time the applica-
tion spends on communication, and tmig is time spent on data migration. Here,
α represents a trade-off between good load-balance, small communication and
migration costs and rebalancing overheads. Since α is just a scale factor ex-
pressing the relative costs of communication and migration, we have set α = 1
and tmig = 16 in our implementation. This value was only intended to reflect
the expected low cost of migration and serve as a starting point for further ex-
perimentation. However, based on current experiment results, we believe that
changing this value would not have a significant impact on benchmark results;
this issue is discussed in more detail in Section 4.
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Fig. 1. An example of transforming a process graph into a rebalancing graph with
α = 1. Current partitions are delimited by ovals and distinguished by nodes of different
colors.



For the purposes of rebalancing, the process graph is transformed into an
undirected rebalancing graph in 4 steps (see also figure 1):

1. The process and channel accounting data is used to set weights on the original
graph.

2. All edges between the same pair of nodes are transformed into a single edge
whose weight is the sum of weights of individual collapsed channels multiplied
by α.

3. n new nodes, u1 . . . un, representing the n CPUs to which processes can be
assigned, are introduced and fixed to their respective partitions.

4. For each node uk, a migration edge is created between uk and every node vi

representing a task that is currently assigned to CPU k. The weight of the
migration edge is set to the cost of migrating data associated with process
vi (in our case, 16, as explained above).

For the initial partitioning phase, which is done before the network starts
running, the process graph is transformed into an undirected graph as described
in the previous section, but with small differences: 1) since the actual CPU
times and communication intensities are not known, unit weights are assigned
to channels and vertices, and 2) the additional CPU nodes and migration edges
are omitted. Partitioning this graph gives an initial assignment of processes to
CPUs and is a starting point for future repartitions.

Since our test applications have quickly shifting loads, we have implemented
a heuristic that attempts to detect load imbalance. The heuristic monitors the
idle time collectively accumulated by all threads, and invokes the repartitioning
algorithm when the idle time has crossed a preset threshold. After the algorithm
has finished, it resets process and channel accounting data to 0, in preparation for
the next partitioning. When a thread attempts to take a process from an empty
run-queue, it updates the collective idle time and continues to check the run-
queue with exponentially increasing sleep times (up to 32µs) between attempts.
Whenever any thread succeeds in dequeuing a process, it sets the accumulated
idle time to 0.

After repartitioning, we avoid bulk migration of processes. It would require
locking of all run-queues, migrating processes to their new threads, and unlock-
ing run-queues. The complexity of this task is linear in the number of processes in
the system, so threads could be delayed for a relatively long time in dispatching
new ready processes, thus decreasing the total throughput. Instead, processes
are only reassigned to their new threads by setting a field in their control block,
but without physically migrating them. Each thread takes ready processes only

from its own queue, and if the process’s run-queue ID (set by the rebalanc-
ing algorithm) matches that of the thread’s, the process is run. Otherwise, the
process is reinserted into the run-queue to which it has been assigned by the
load-balancing algorithm.



3 Comparative evaluation of scheduling methods

The load-balancing methods have been evaluated on several process networks
with different topologies: an H.264 encoder topology, a MapReduce topology, a
scatter/gather topology and two randomly generated directed graphs, i.e., one
without cycles, and another containing 13 cycles. The acyclic graph has 239
nodes and 364 edges, while the cyclic graph has 213 nodes, 333 edges and 13
cycles. In the presentation of results, we designate work stealing, graph parti-
tioning methods by 2-character strings WS and HP, respectively. For the graph
partitioning load-balancer, we have used the state of the art PaToH library [17].

The test programs have been compiled as 64-bit with GCC 4.3.2 and max-
imum optimizations (-m64 -O3 -march=opteron). Since PaToH is distributed
in binary-only form, these flags have no effect on the efficiency of the partition-
ing code. The benchmarks have been run on an otherwise idle 2.6 GHz AMD
Opteron machine with 4 dual-core CPUs, 64 GB of RAM, and running linux ker-
nel 2.6.27.3. Each experiment has been repeated 10 consecutive times. We have
configured our run-time system to collect detailed accounting about all aspects
of operation, such as number of messages towards the same or other CPUs.
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Fig. 2. Topology of the machine used for experiments. Round nodes are cores, square
nodes are NUMA memory banks. Each CPU has one memory bank and two cores
associated with it.

3.1 Description of workloads

Figure 3(a) shows a process network implementing an H.264 video-encoder, and
it is only a slight adaptation of the encoder block diagram found in [18]. We have
used cachegrind to profile x.264, an open-source H.264 codec, and mapped the
results to the process graph. We have found that the P, MC and ME stages use
together over 50% of the CPU, so we have parallelized each of these by attaching
512 processes by a pair of channels (request-response) to each block.
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Fig. 3. Process networks used for benchmarking.

In the ring benchmark, n processes, 0 . . . n−1, are created and connected into
a ring topology (see figure 3(e)). Process 0 sends an initial and measures the time
it takes to make m round-trips. Other processes just forward messages and do
no other processing otherwise. We have chosen for our workload n = m = 1000.



k-means is an iterative algorithm used for partitioning a given set of points
in multidimensional space into k groups; it is used in data mining and pattern
recognition. To provide a non-trivial load, we have implemented the MapReduce
topology as a process network (see Figure 3(b)), and subsequently implemented
the Map and Reduce functions to perform the k-means algorithm. The number
of processes in each stage has been set to 128, and the workload consists of
300000 randomly-generated integer points contained in the cube [0, 1000)3 to be
grouped into 120 clusters.

The two random networks (see figure 3(d) for an example) are randomly
generated directed graphs, possibly containing cycles. To assign work to each
process, the workload is determined by the formula nT/k, where n is the number
of messages sent by the source, T is a constant that equals ∼ 1 second of CPU-
time, and k is the work granularity. In effect, each single message sent by the
source (a single integer) carries w = T/k seconds of CPU time. The workload w
is distributed in the network (starting from the source process) with each process
reading ni messages from all of its in-edges. Once all messages are read, they
are added together to become the t units of CPU-time the process is to consume
before distributing t to its no forward out-edges. Then, if a process has a back-
edge, a message is sent/received (depending on the edge direction) along that
channel. As such, the workload w distributed from the source process will equal
the workload w collected by the sink process. Messages sent along back-edges
do not contribute to the network’s workload; their purpose is solely to generate
more complex synchronization patterns.

The scatter/gather network has a single central process (p0) connected to
n worker processes. The central process scatters m messages to the workers, each
which performs a set amount of work w for each message. When complete, a mes-
sage is sent from the worker process to the central process (see Figure 3(c)). The
process is repeated for a given number of iterations. This topology corresponds
to the communication patterns that emerge when several MapReduce instances
are executed such that the result of the previous MapReduce operation is fed as
the input to the next.

3.2 Results

Table 1 summarizes experiments that have been run. The designations from the
left column will be used in further presentation of results. The running times are
presented as wall-clock time. This is the most representative metric, because it
accurately reflects the real time needed for task completion, which is what the
end-users are most interested in. We have also measured system and user times
(getrusage), but do not use them to present our results because 1) they do not
reflect the reduced running time with multiple CPUs, and 2) resource usage does
not take into account sleep time, which nevertheless may have significant impact
on the task completion time.

The k-means program, which executes on a MapReduce topology, turned
out to be a pathological case for load-balancing based on graph partitioning.
Experiments have shown that, if the repartitioning interval is too small, the



Workload Description

H264 512 processes per stage, 120 encoded “frames”, with ∼ 0.25s total
work per frame.

RING 1000 processes, 1000 round-trips.

RND-A{1,7} Random graph, 239 nodes and 364 edges. w ∈
{1, 10, . . . , 10000, 50000, 90000}

RND-B{1,7} Random graph, 213 nodes, 333 edges and 13 cycles. w ∈
{1, 10, . . . , 10000, 50000, 90000}

SG Scatter-gather on 1000 workers, with w ∈ {103, 104, 105, 106, 2 ·
106, . . . , 107} on 1 and 8 CPUs.

K-MEANS k-means on MapReduce topology. 128 workers, 120 clusters, 300000
points.

Table 1. Summary of benchmark workloads (18 in total).

Method Description

WS Work-stealing (see Section 2.1) on 1 and 8 CPUs.

HP,n Graph-partitioning with accumulated idle time parameter set to n,
which is multiplied by the number of CPUs used to run the benchmark
(see section 2.2). This is the total number of unsuccessful dequeue
attempts by all threads, and is varied from 32 to 256 in steps of 8.
Performed on 8 CPUs only.

Table 2. Summary of tested scheduling methods (30 in total).

partitioning algorithm runs very often, and the total running time is several

minutes, and if it is too large, the partitioning runs only once, at network startup.
The transition between the two behaviors happens for the values of idle time
parameter around 40; the exact value is hard to determine because the graph
partitioning algorithm is non-deterministic, and on each run it may produce
different load-imbalances which trigger repartitioning. However, for the values
of n ≥ 48, the program always exhibits the “good” behavior. In the case, the
program finishes in 10.2 seconds under the HP method. Under the WS method, the
program finishes in 9.4 seconds. Because of this anomaly, we will not consider
this benchmark in further discussions.

Figures 4, ??, and ?? show how median, minimum and maximum running
time depend on the scheduling methods. More precisely, each run of the ex-
periment (see Table 1) is run under scheduling methods summarized in Table
2. For each scheduling method, 10 experiment runs are performed. Then, for
each set of 10 measurements, the median (resp., minimum and maximum) value
is found; now every method is represented by a single value. Then, over this
new set of values, the method having the minimum (resp. minimum, maximum)
value is selected. For the selected method, shown on the x-axis together with the
workload, two box-plots4 are shown. The upper figure shows the distribution of

4 Also called box and whiskers plot. This is a standard way to show the distribution
of a data set. The box’s span is from the lower quartile to the upper quartile, with
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all 10 measured running times, while the lower figure shows the distribution of
log(vl/vr), vl being the number of messages sent locally (between processes on
the same CPU) and vr being the number of messages sent remotely (between
processes on different CPUs).

From figures 4 and ?? it can be seen that the WS has the least median and

minimum running time for all workloads except the ring, and RND-B5 to RND-
B7 workloads, where the graph-based load-balancing (HP) wins. Common for
them is that every process in the network performs very little work per message;
ring is the extreme case where each process does no processing and just forwards
the message. This creates heavy contention on run-queues and, consequently,
decreases performance. The HP method accesses another thread’s run-queue only
after encountering processes that have been reassigned to other threads, i.e., it
accesses its own queue most of the time.

From Figure ?? it is clear that the HP method achieves the worst running

time on all workloads except the ring benchmark. Interestingly, it is also the
best method for scheduling RND-B5 to RND-B7 workloads, just with different
idle time between two repartitionings. From figures ?? and ?? we see also that
there is no correlation between the value of the idle time parameter and the
running time.

From figures 4, ?? and ?? we see that the HP method consistently achieves
better ratio of local to remote traffic on random graph benchmarks than the WS

method. The improvement is by a factor of ∼ 10–30 (note that the ratio graphs
have logarithmic scale). From figure ?? we also see that, under the HP method,
the median ratio of the amount of local and remote traffic is ∼ 3. This ratio is
approximately the same in cases where the HP method exhibits both the best
and the worst running time (workloads RND-B5 to RND-B7 in figures ?? and
??).

Figure 6 shows distributions of relative speedups of all workloads relative to
the running time on one CPU. It shows that WS method achieves nearly perfect
linear speedup on random networks for moderate work granularities. For small
granularities, the speedup is limited by having too few active processes, and for
high granularities the speedup is limited by high contention over run-queues,
similarly to the ring benchmark. In H.264 workload, the speedup is limited
by data dependencies in the process graph. We can also see that the HP method
never achieves a speedup greater than 6. In bad cases (bad choice of the idle time
parameter) the speedup can be barely a bit better than sequential performance
(see the bottom graph in Fig. 6 for RND-B workloads).

Figure 7 shows how the running time of the SG benchmark depends on differ-
ent work granularities on 1 and 8 CPUs. For each work granularity w, process p0

(see Figure 3) sends a message to 1000 worker processes, each message containing
work amount of 1/w CPU seconds; this process is repeated in 1000w iterations.

the bold bar denoting the median. Whiskers extend to the lowest (from the bottom
edge) and to the highest (from the top edge) measurement that is not an outlier.
Circles denote possible outliers, i.e., data points that are more than 1.5 times the
box’s height (interquartile range) below the lower or above the upper quartile.



R
N

D
−A

 speedup over 1 C
P

U

w
ork division

speedup factor

2 4 6 8

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

2

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

4

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

6

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

8

G
P

W
S

R
N

D
−B

 speedup over 1 C
P

U

w
ork division

speedup factor

2 4 6 8

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

2

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

4

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

6

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

8

G
P

W
S

H
.264 speedup over 1 C

P
U

w
ork division

speedup factor

0.0

0.5

1.0

1.5

2.0

2.5

128

256

512

1024

2

128

256

512

1024

4

128

256

512

1024

6

128

256

512

1024

8

G
P

W
S

F
ig

.
5
.
R

ela
tiv

e
sp

eed
u
p

o
f
W

S
a
n
d

G
P

p
o
licies

ov
er

1
C

P
U

.



R
N

D
−A

 local to rem
ote ratio

w
ork division

ratio (log)

10^−
0.5

10^0.0

10^0.5

10^1.0

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

2

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

4

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

6

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

8

G
P

W
S

R
N

D
−B

 local to rem
ote ratio

w
ork division

ratio (log)

10^−
0.5

10^0.0

10^0.5

10^1.0

1
10

100
1000

10000
20000
30000
40000
50000
60000
70000
80000
90000

2

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

4
1

10
100

1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

6

1
10
100
1000
10000
20000
30000
40000
50000
60000
70000
80000
90000

8

G
P

W
S

H
.264 local to rem

ote ratio

w
ork division

ratio (log)

10^−
1

10^0

10^1

10^2

128

256

512

1024

2

128

256

512

1024

4

128

256

512

1024

6

128

256

512

1024

8

G
P

W
S

F
ig

.
6
.
L
o
ca

l
to

rem
o
te

ra
tio

o
f
W

S
a
n
d

G
P

p
o
licies.



On 1 CPU, for w = 1000, the total real running time of the benchmark is 1
second.
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Fig. 7. Performance of work-stealing method for varying work divisions. Note that the
scale on the x-axis is non-linear and non-uniform.

It can be seen that WS on 8 CPUs shows speedups over 1 CPU of 6.6, 6.5, and
4.9 for work granularities w ∈ {103, 104, 105} respectively. Thus, we can say that
the WS performs well as long as each process uses at least 100µs of CPU time per
message. The steepest fall is between w = 105, and w = 106, where the speedup
is only 1.6; after this point the speedup continues to decrease slowly to 1.1 for
w = 107. The main source of this performance degradation is contention over
run-queues. This in turn is caused by frequent process block/unblock operations
which are a result of little work done per message.

3.3 Summary

We can summarize our findings as follows:

– The WS method is the scheduling method that gives best performance, i.e.,
almost linear speedup with the number of CPUs compared to performance
on 1 CPU, provided that processes use at least ∼ 100µs of CPU time between
each unblock and block.

– Smaller work quantities have negative impact also on the HP method, but
much less so than on the WS method. Thus, the HP method should be selected
for such workloads, even though it never achieved speedup comparable to
that of WS, and sometimes much worse.

– There is no clear correlation between application performance and the idle
time parameter of the HP method. Also, the HP is non-deterministic, which
results in widely varying execution times between runs of the same workload.



– The HP method consistently results in more local than remote traffic, by a
factor of up to ∼ 30 compared with the WS method. However, this improve-
ment in locality has no influence on application performance.

Thus, work-stealing should be the algorithm of choice for scheduling general-
purpose workloads. However, specific applications, especially those that use very
fine-grained parallelism, could benefit of specialized methods such as HP. How-
ever, we deem that the main problem with the HP method is the big spread of
speedups that it achieves in consecutive runs (see figure 6). This is a significant
finding also for the distributed case, and developing methods that give a nar-
rower distribution of speedups, i.e., make performance more predictable, is one
possible research direction in this area.

From the above considerations, we have also concluded that the source of
pathologically bad performance of the ring workload under WS is not the amount
of inter-CPU synchronization, but the frequency with which the processes are
blocking.

4 Discussion

4.1 NUMA effects and distributed process networks

Since a context-switch includes a stack switch and is performed often with many
processes and messages in the network, it is to be expected that cached stack
data will be quickly lost from CPU caches. We have measured that the cost of
re-filling the CPU cache through random accesses increases by ∼ 10% for each
additional hop on our machine (2-dimensional hypercube with 2 cores attached
to each memory bank; see figure 2). Due to an implementation detail of our
run-time system and Linux’s default allocation policy, all stack memory would
be allocated on a single node, which would make context-switch cost dependent
on which node the process is scheduled. To average out these effects, we have
run all benchmarks under the interleave NUMA (non-uniform memory access)
policy which allocates physical memory pages from CPU nodes in round-robin
manner.5 Since most processes use only a small portion of the stack, we have
ensured that their stack size, in the number of pages, is relatively prime to 4
(the number of nodes in our machine). This ensures that the “top” stack pages
of all processes are evenly distributed across CPUs.

We have also realized that the graph-partitioning model described in section 2
does not adequately model the behavior of applications on NUMA architectures
in all situations. The model assumes that processes migrate together with their
data to a node where they are executed, while on NUMA, processes and their
data may reside on separate nodes, which is the case in our implementation.
However, data migration is possible also on NUMA architectures, and the model
describes well applications that migrate processes and data.

5 This is achieved by running benchmark programs under the control of the numactl

program.



Furthermore, the graph-partitioning algorithm assumes that the cost of an
edge between nodes A and B is constant, regardless of the CPUs to which the
nodes are assigned. This is not true in general, because we have measured that
on our NUMA machine (see figure 2) the cost of communication between A and
B will be ∼ 10% bigger when they are, for example, placed on CPUs 0 and 7
than when placed on CPUs 0 and 2.

These observations affect very little our findings because of three reasons: 1)
the workloads use little memory bandwidth, 2) NUMA effects are averaged out
by round-robin allocation of physical pages across all 4 nodes, 3) synchronization
cost between processes assigned to the same CPU is minimal since contention is
impossible.

In a distributed setting, two factors play a significant role that make load-
balancing algorithms based on graph-partitioning relevant: high cost of migrating
process data, and high cost of sending messages between different machines.
Indeed, we have chosen to implement Devine’s et.al. algorithm [14] because they
have measured improvement in application performance in a distributed setting.
The same algorithm is applicable to running other distributed frameworks, such
as MapReduce or Dryad.

4.2 Implementations of graph partitioning: mapping problem

Our run-time system measures CPU consumption in nanoseconds, which quickly
generates rather large numbers, which the PaToH library could not handle – it
exited with an error message about detected integer overflow. We could not either
divide all vertex weights by the smallest weight, because it would still happen
that the resulting weights are still too large. To handle this situation, we had two
choices: either run the partitioning algorithm more often, or aggressively scale
down all vertex weights. The first choice made it impossible to experiment with
infrequent repartitionings, so we have implemented the other option: all vertex
weights have been transformed by the formula w′ = w/1024 + 1 before being
handed over to the graph partitioner. This loss of precision, however, causes a

priori imbalance on input to the partitioner, so the generated partitions have
worse balance than would be achievable if PaToH would internally work with
64-bit integers.

As mentioned above, an edge in a source graph may change its weight, de-
pending on nodes the processes it connects are mapped to. The graph mapping

problem takes this phenomenon into account. Graph mapping algorithms take
as input two weighted graphs, the source and target graphs. The source graph
described the process network, while the target graph describes how the edge
weights of the source graph change depending on the mapping. The SCOTCH
library [16] implements mapping heuristics, but it does not support pinning of
vertices to given partitions, which is the essential ingredient of Devine’s algo-
rithms. The PaToH library [17], which we have used in our benchmarks, supports
pinning of vertices, but does not solve the mapping problem, i.e., it assumes that
the target graph is a complete graph with equal weights on all edges. Developing



algorithms that support both pinned vertices and solve the mapping problem is
one possible direction for future research in this area.

4.3 Migration cost

In our experiments, we have used a fixed value tmig = 16. The graph par-
titioner’s first priority is to establish load-balance and its second priority is to
minimize the communication cost between processes in different partitions. Since
load-imbalance is the primary reason for graph partitioning yielding worse per-
formance than work stealing, another value for tmig would not have influence
the outcome of the experiments.

None of our workloads has a heavy memory footprint. However, such pro-
cesses could benefit if the weight of their migration edges would be a decreasing
function c(tb) of the amount of time tb a process has been blocked. As tb in-
creases, the probability that CPU caches will still contain relevant data for the
given process decreases, and the cost of migrating this process becomes lower.

4.4 Variations of work stealing

We have also tested two additional variations on work stealing. In the first vari-
ant, the thread sleeps with exponentially increasing times, up to 16µs, between
steal attempts. Compared to the default version which yields between steal at-
tempts, this version used somewhat less CPU time, with little negative impact
on the real running time of the application. The exception is the ring benchmark,
which exhibited somewhat worse running time.

The other variation was configured to insert processes into two parallel data
structures: a queue of processes and a balanced tree sorted by the amount of
local and remote traffic that each process made since it was migrated to its
current thread. The stealing thread would then steal the process which exhibited
the most remote traffic and least local traffic, in an attempt to minimize the
amount of remote traffic. Due to using more complex data structures, this variant
performed slightly worse than the default work-stealing method, and did not
exhibit any better ratio of local to remote traffic compared to the default work
stealing.

4.5 Interaction with the OS scheduler

Our (kernel-level) threads, which execute (user-level) processes, are each pinned
to exactly one CPU in the system. The kernel may preempt and schedule out
these threads to execute other applications which are present on the system.
For work-stealing, the authors have proven [10] that the application speedup is
proportional to the average CPU allocation during its run-time.



4.6 Comments on Intel’s scalability simulations

Saha et. al. [13] have presented a run-time system aimed towards executing fine-
grained concurrent applications, much like our run-time system which we used
to implement and execute the experiments. Their simulations show that work-
stealing scales almost perfectly up to 16 cores, but they have not attempted to
quantify work granularity and relate it to application performance.

Our experiments complement their findings in that we show that the work
stealing indeed is the best method for scheduling all workloads on middle-sized
machines as long as processes do not block too often. Our experiments on 8
CPUs with random and scatter/gather graphs consistently show that the mini-
mal needed amount of work that a process has to perform between being woken
up and being blocked again is ∼ 100µs.

4.7 Miscellaneous remarks

Even though we have run the experiments on our implementation [8] of Kahn
process networks [9], we have carefully designed them so that they execute cor-
rectly even when behaviors that are specific for KPNs, most notably run-time
deadlock detection and resolution, are disabled. However, processes are still lim-
ited only to blocking, uninterruptible reads and have the ability to wait for
message arrival only on a single channel at a time.

5 Conclusion and future work

Scheduling and load balancing mechanisms taking into account the properties of
parallel programs are of vital importance for performance on multi-core archi-
tectures. In this paper, we have evaluated scheduling algorithms in the context
of modern parallel program runtimes. In particular, we have evaluated the work

stealing approach. Our experimental results confirm the results previously pre-
sented [12] that work stealing in many cases performs well, but we have also
identified some limitations, e.g., the performance decrease when very little pro-
cessing is performed per message before blocking on read for another message.
In such a case, graph partitioning algorithms may improve the performance,
but also here performance suffers. We also envisioned a larger impact of differ-
ent memory latencies to different memory banks, and work stealing performed
about 30 times the number of remote versus local message passing operations
compared to graph partitioning. This would give a huge difference when the edge
costs increase more, as in a distributed system or in a system with a larger and
more complex processor topology increasing the communication costs further,
but in our tests, however, this has no effect on application performance with
respect to job finishing time.

Ongoing and future activities include tests on larger machines with more
processors and looking at scheduling across machines in a distributed setting.
Both will give other properties of the processor topology, possibly requiring



slightly different algorithms. Especially, in a between-machine scenario, the high-
level partitioning will be an important part while at the same time achieving an
efficient, load balanced schedule locally on each node.
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