
Latency Evaluation of Networking Mechanisms
for Game Traffic

Szabolcs Harcsik1, Andreas Petlund1,2, Carsten Griwodz1,2, Pål Halvorsen1,2

1Simula Research Laboratory, Norway 2IFI, University of Oslo, Norway

{szabi, apetlund, griff, paalh}@simula.no

ABSTRACT
Large improvements in computer technology allow thou-
sands of users to concurrently interact in a virtual game.
Due to this development, the body of work analyzing game
traffic has grown considerably in the recent past. How-
ever, little work has been done to examine and compare
networking techniques with respect to meeting the strin-
gent latency requirements that are common for networked
games. Most interactive games need response times between
100 and 1000 ms depending on the game genre [6]. In this
paper, we evaluate different techniques for delivering pack-
ets in a timely manner. In particular, we compare existing
user-space middleware running on top of UDP and reliable,
fair transport protocols like TCP and SCTP. In addition,
we evaluate some “low latency” extensions to TCP, SCTP
and one of the middleware platforms. We present results
concerning packet latency and bandwidth requirements for
the different approaches.

1. INTRODUCTION
In recent years, online gaming has grown to a huge in-

dustry as network technology allows users world-wide to in-
teract in a virtual game. These applications enable users to
form and maintain social bonds, compete against each other
and have fun in a virtual environment. However, there are
stringent latency requirements depending on the interaction
model, which differs between game genres. Thus, the suc-
cess of interactive games raises a very challenging system re-
quirement, low latency for all users. As most games require
a packet to arrive within less than one second to give the
users a satisfactory gaming experience [6], it is vital to have
appropriate networking support. A significant characteris-
tic of this type of application is therefore a lack of resilience
towards transmission delays [5, 10]. Interestingly, it is an
aggravating factor that an individual game stream hardly
ever consumes the bandwidth that constitutes its fair share
according to the ideas of TCP-fairness. The reason is that
these streams are very thin – they consist of small packets

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to NetGames’07 Melbourne, Australia
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

sent at low packet rates.
Many different networking mechanisms have been used

to meet the challenging requirements to support gaming.
These range from standard versions of the TCP/IP trans-
port protocols to specialized user-space middleware. In this
paper, we focus on mechanisms that provide some reliability.
We do not compare the tested systems with pure UDP. Reli-
able and partially reliable communication has recently been
ignored as researchers focus on increasing throughput for
non-interactive applications with high bandwidth demands.

For the online gaming scenario, we have tested and com-
pared two standard TCP versions, SCTP and two user-space
middleware platforms that use UDP. Additionally, we have
run tests applying “low latency” enhancements for TCP,
SCTP and one of the middleware platforms to trade band-
width for latency reduction. With the exception of SCTP,
which generally has a higher latency, the approaches per-
form similarly with respect to the average latency. How-
ever, for the worst-case latencies that are devastating for the
perceived gaming quality, there are large differences. The
traditional transport protocols have large maximum values,
while the user-space middleware platforms perform slightly
better. Finally, our results show that we can efficiently trade
off some bandwidth for lower latencies, both in user space
and in the kernel.

The rest of this paper is organized as follows: Section 2
presents some stream characteristics for games. In section 3,
we briefly describe some existing mechanisms with respect
to latency, and we present our experiments and the results in
section 4. In section 5, we discuss our findings, and finally,
we give some conclusions in section 6.

2. GAME STREAM CHARACTERISTICS
The body of work that has analyzed game traffic has

grown considerably in the recent past. For example, Clay-
pool [5] has investigated how latency affects the perceived
quality for real-time strategy games where the results show
that some latency is tolerable. Moreover, Feng et al. [8, 3]
provide a comprehensive analysis of Counter-Strike traffic
and investigate traces of several games concerning the pre-
dictability of game workloads. There, the conclusion is that
game traffic varies strongly with time and with the attrac-
tiveness of the individual game. Chen et al. [4] investigate
the traffic of MMORPGs. They find that streams are in
general very thin, but that they are also bursty and show a
correlation of inter-arrival times on the minute scale within
individual streams. Furthermore, fitting multi-player game
traffic to probability distributions is described by Borella [2].

payload size (bytes) packet interarrival time (ms) avg. bandwidth
application percentiles requirement
(platform) average min max average median min max 1% 99% (pps) (bps)

Anarchy Online (PC)‡ 98 8 1333 632 449 7 17032 83 4195 1.582 2168
World of Warcraft (PC) 26 6 1228 314 133 0 14855 0 3785 3.185 2046

Counter Strike (PC)‡ 36 25 1342 124 65 0 66354 34 575 8.064 19604

Halo 3 (Xbox 360)†‡ 247 32 1264 36 33 0 1403 32 182 27.778 60223

Halo 3 (Xbox 360)†‡ 270 32 280 67 66 32 716 64 69 14.925 35888

Gears of War (Xbox 360)‡ 66 32 705 457 113 3 10155 14 8953 2.188 10264

Tony Hawk’s Project 8 (Xbox 360)‡ 90 32 576 308 163 0 4070 53 2332 3.247 5812

Test Drive Umlimited (Xbox 360)‡ 80 34 104 40 33 0 298 0 158 25.000 22912
† For Halo 3 (beta version), we also show differences between intensive (the upper row) and moderate (the lower row) action.
‡ The presented values are average values over all players (sending minimum 1000 packets) within the period of the trace.

Table 1: Examples of game stream packet statistics per stream based on packet traces

 0

 10

 20

 30

 40

 50

 600 700 800 900 1000 1100 1200

pa
ck

et
s

seconds

number of packets sent each second

Figure 1: Packets per second for World of Warcraft

However, little work has been performed analyzing and
comparing the various networking techniques with respect
to meeting the stringent latency requirements. Games typi-
cally require tight timeliness, with latency thresholds (before
the users starts getting annoyed) at approximately 100 ms
for first person shooter (FPS) games, 500 ms for role play-
ing games (RPG) and 1000 ms for real time strategy (RTS)
games [6]. We analyzed traces from several types of games to
understand more of the properties of thin stream traffic. We
also wanted some more data as a supplement to the analysis
found in [4, 7]. Some of the results of our game trace analy-
sis are shown in table 1. The statistics show that the games
have a small packet size and a relatively high interarrival
time between packets. For example, Funcom’s popular role
playing MMOG Anarchy Online send less than one packet
per RTT on average, that means, the packet interarrival
time is large with a median of about 450 ms. Additionally,
each packet contains only small game events, like position
updates, giving an average payload of 93 bytes. A second
example is a FPS game trace from a popular Counter Strike
server. This game shows similar properties as Anarchy On-
line with a small payload (in average 142 bytes) and a large
interarrival time (median about 50 ms) with about 20 pack-
ets per second (pps).

Considering that each game data stream has few packets
per second and that each packet is very small, this demon-
strates that the individual streams are thin. Moreover, it
is also typical to occasionally have small bursts of packets.
See for example the 10 minute I/O-graph in figure 1 show-
ing the number of packets sent each second. We further
observe that the RTTs are within the range of making the
game playable according to [5], and it is not the loss rate
itself that is unacceptable, but the occasional large delays
when multiple retransmissions are needed. Some extreme
examples are shown in the traces, for example, the Anarchy
Online trace had a worst case delay of 67 (!) seconds when

several retransmissions of the same packet were lost.
With the low latency requirements in mind due to the

interactive nature of the games, supporting these kinds of
applications is challenging. The task becomes even harder
since a significant characteristic of this type of application is
its lack of resilience towards network transmission delays [5].
Next, we therefore briefly outline some alternatives for send-
ing game packets before we present our experimental evalu-
ation.

3. NETWORKING MECHANISMS
Online games have many features that require appropri-

ate networking support. For example, games have stringent
latency requirements, and some of the data require reliable
or in-order delivery. This makes the choice of mechanisms
for communication important. The basic transport proto-
cols TCP and UDP are meant for a subset of the features
that an online game requires. It is therefore common to im-
plement application layer libraries or middlewares that can
extend on the basic services. In this section, we describe
the services provided by the basic protocols and two cho-
sen extensions regarding thin stream traffic. In addition, we
describe protocol modifications that are meant for latency
reduction in this scenario.

3.1 TCP
TCP provides means for flow control, congestion control,

ordered delivery and reliability, and it is widely used for all
kinds of applications. Important in the gaming scenario is
that reliability comes at the price of retransmissions that
increase the application-layer latency. Games like World of
Warcraft and Anarchy Online use TCP, mainly due to fire-
wall issues, and we also expect that TCP will be a popular
choice for this kind of games in the future.

TCP comes with a large number of variations with a mul-
titude of options designed for various scenarios. For the
purpose of online game support, we used New Reno. We
chose it due to the observation that the younger high-speed
variants perform worse than the more basic approaches [10].
In addition, we tested BIC since it is the current default
TCP variant of several Linux distributions.

TCP New Reno [9] is the most basic TCP variant included
in the Linux kernel. The two main means for triggering re-
transmissions are fast retransmit and timeout. The fast re-
transmit mechanism [1] triggers a retransmission when three
duplicate ACKs (dupACKs) are received. However, games
have large packet interarrival times (see table 1), and re-
transmission is often triggered by timeout (waiting too long
for an acknowledgment). An issue for time-dependent traffic
is then the exponential backoff whenever the same segment

is lost several times, as it causes very large application-layer
delays. Congestion mechanisms do not affect thin game
streams at all because their bandwidth requirements can be
fullfilled by sending with the smallest possible congestion
window at all times.

We include TCP’s binary increase congestion control (BIC) [15]
only for completeness. This variant tries to find the fair
share of the bandwidth faster than New Reno by perform-
ing a binary search for the number of packets that can be
sent per RTT without packet loss. However, this happens
only between two thresholds for the congestion window size.
Games traffic stays below the lower threshold where New
Reno’s congestion window development applies.

In addition to the existing TCP variations in Linux, we
have tested two “low latency” enhancements for thin streams.
First, the exponential backoff is removed to avoid the ex-
treme latencies that occur when experiencing multiple con-
secutive packet loss. In addition, the fast retransmission
mechanism is modified to trigger a fast retransmission after
only one duplicate ACK is received. This modification is
labeled modified TCP in our tests. Second, when the packet
sizes are small (as is common for online game traffic), an ag-
gressive bundling scheme can help to reduce the application
delay. TCP with redundant data bundling (RDB), labeled
TCP with RDB in our tests, is a modification of TCP that
enables bundling of unacknowledged data if there is room in
the packet. Thus, a lost packet may be recovered when the
next original packet is received without a retransmission.

3.2 SCTP
The Stream Control Transmission Protocol (SCTP) [14]

was originally developed to support public switched tele-
phone network signaling traffic over IP networks, but is sup-
posed to offer services like low latency delivery that can be
of use to other applications as well. A salient difference
from TCP is that it is message-oriented (not byte-oriented).
SCTP offers the option of bundling several messages in one
packet and also supports multi-homing for enhanced fault
tolerance. With respect to retransmissions, they are mainly
handled using fast retransmission and timeout mechanisms
as in TCP. However, with respect to our scenario, impor-
tant issues include a high minimum retransmission timeout
(minRTO) value of 1000 ms and delayed ACKs, which both
increase the latencies.

As with TCP, we have also tested “low latency” enhance-
ments to SCTP. Means for bundling are already included,
so we have included the exponential backoff and fast re-
transmission modifications described for TCP. In addition,
the minRTO value is lowered to 200 ms (the standard TCP
value). This modification is labeled modified SCTP in our
tests.

3.3 UDP-based Libraries and Middleware
For applications where reliability is not needed, UDP is

the most common alternative. There are, however, no con-
gestion control mechanisms, and a batch of aggressive UDP
streams can create bottlenecks and congestion in the net-
work. When using UDP in a game, critical data (where reli-
ability is needed) has to be supported through other means.
This is done by implementing reliability, congestion control,
and support for ordering on the application layer. The con-
trol data is in the payload, creating a small overhead, but it
has the advantage that the degree of reliability can be cho-

sen for each transmitted packet. Such network libraries and
middleware come in many variants and levels of abstraction.
The simplest ones are tiny libraries that provide a small set
of services. More complex middleware platforms provide
a range of services with a high level abstraction layer for
easy integration with different components. Some examples
include ACE, ENet, HawkNL, Plib, SDL, ClanLib, Net-Z,
OpenTNL, RakeNet, ReplicaNet, UDT and ZoidCom. Test-
ing all these variations is beyond the scope of this paper. We
have therefore selected two approaches which use different
mechanisms to schedule the packets. We wanted one low
level network library, and one middleware platform with a
higher level of abstraction. In addition, we needed to be
able to look at how they perform retransmissions, and we
selected two open source mechanisms: the UDP-based Data
Transfer Protocol (UDT) and ENet.

UDT [11] provides various features based on a UDP con-
nection. A structured (socket-like) interface provides a high
level of abstraction making it easy for application develop-
ers to use. Partial reliability and in-order delivery are sup-
ported, and congestion control mechanisms enables UDT to
maintain TCP fairness. There are also a wide range of pa-
rameters that can be set in order to achieve the combination
of options that is best for each application. Moreover, UDT
divides its packets into control and data messages. In order
to keep track of the status of the remote host, keep-alive
messages are an integral part of the framework. This com-
bined with aggressive bundling strategies, used if less than
the estimated bandwidth is consumed, contributes to a large
redundancy rate for the UDT platform. Retransmissions are
managed as for TCP with timeouts and dupACKs, and ad-
ditionally using negative acknowledgments. The range of
options makes this a promising choice for game developers.
Although the middleware was developed for data-intensive
applications, the aggressive transmission policy should pro-
vide ample support for thin stream applications.

ENet1 aims for online gaming support. It was developed
for the Cube game engine and is later also used by other
networked games (e.g., the commercial SilentWings flight
simulator). ENet provides a relatively thin, simple and ro-
bust network communication layer on top of UDP. It pro-
vides optional, reliable, in-order delivery of packets. ENet
is a small library that provides some functionality without
supplying a high level of abstraction and can therefore not
be considered to be a middleware platform. The services
include a connection interface for communicating with the
foreign host. Delivery is optionally stream oriented or mes-
sage oriented. The state of the connection is monitored by
pinging the target, and network conditions such as RTT and
packet loss are recorded. Partial reliability is supported,
and retransmissions are triggered using timeouts based on
the RTT like similar to TCP. The congestion control imple-
ments exponential backoff, making it vulnerable to bursts of
loss, and ENet also applies bundling of queued data if the
maximum packet size is not reached.

4. EXPERIMENTS AND RESULTS
To acquire statistics of the performance of various Linux

networking mechanisms concerning latency in a gaming sce-
nario, we ran several tests. Small packets (100 bytes) are
sent at a low rate (packet interarrival times between 50

1http://enet.cubik.org

and 200 ms) in accordance with the game characteristics
described in section 2. To emulate the network, we used
netem to introduce delays (RTTs between 50 and 200 ms)
and packet loss (between 0.1 and 2.5% in each direction).
Each of the tests had a 2 hour duration.

For our comparison, we tested the protocols and mech-
anisms briefly described in section 3. New Reno had no
options turned on whereas BIC used SACK, FACK and
DSACK. SCTP uses SACK by default. For this interactive
scenario, we turned off Nagle’s algorithm [12] for both TCP
and SCTP. Additionally, we tested the TCP and SCTP with
thin-stream modifications and the RDB algorithm. Finally,
we have compared the transport protocol techniques with
user space approaches (UDT and ENet) that provides the
same reliability using UDP.

4.1 Perceived Latency
One of the most important aspects of the interactive gam-

ing scenario, is the system’s ability to deliver data in time.
The measured results for the different mechanisms listed
above are shown in figure 22. The first observation is that
the average results are very similar, except for SCTP which
generally has higher latencies. Thus, with respect to aver-
age latency, all the TCP and UDP based approaches seem
to be usable.

However, looking at the worst case scenario, we can see
large differences due to the way data recovery is performed
(see section 3). These maximum latencies are dependent on
the number of retransmissions of the same packet. Since the
loss is random, the maximum number of consecutive lost
transmissions of a packet varies. The figures nevertheless
give a representative picture of the performance of the dif-
ferent mechanisms. The plots in figures 2(a), 2(b) and 2(c)
show the latency varying the RTT, packet interarrival time
and loss, respectively. When the interarrival time is equal to
(or higher than) the RTT, we see that retransmissions from
timeouts and backoffs give very large values for ENet, TCP
New Reno, TCP BIC and SCTP. By changing the retrans-
mission mechanisms as described where applicable, we can
achieve large latency improvements. This comes at the cost
of a possible increase in spurious (unnecessary) retransmis-
sions. Another (orthogonal) way to improve the latency is
to send multiple copies of a data element by bundling unac-
knowledged data in succeeding packets like in UDT (when
using less than the estimated bandwidth), TCP with RDB
and modified SCTP. The modifications increases aggressive-
ness in (re)transmissions, and may have an impact on fair-
ness. We will therefore next examine the bandwidth tradeoff
resulting from these changes.

4.2 Bandwidth Requirement
Adding support for reliability comes at the price of re-

transmitting lost packets, and trying to reduce the retrans-
mission latency increases the bandwidth requirement fur-
ther. To quantify the tradeoff, we have measured the num-
ber of bytes per second (Bps) and the number of packets
per second. Figure 3 shows the required bandwidth corre-
sponding to the achieved latencies in figure 2(a) where the
packet interarrival time is 100 ms and the loss rate is 0.5%

2When the loss rate is large (2.5%) and RTT is high (200ms),
the standard TCP variants and SCTP have maximum values
well above 2000 ms, although the scale of the figure is limited
at 1500.

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, 0.5 % loss in each direction, packet interarrival time = 100 ms

RTT 50 ms RTT 100 ms RTT 200 ms

maximum

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, 0.5 % loss in each direction, packet interarrival time = 100 ms

RTT 50 ms RTT 100 ms RTT 200 ms

average

(a) Latency vs. RTT

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, 0.5 % loss in each direction, RTT = 200 ms

50 ms interarrival 100 ms interarrival 200 ms interarrival

maximum

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, 0.5 % loss in each direction, RTT = 200 ms

50 ms interarrival 100 ms interarrival 200 ms interarrival

average

(b) Latency vs. packet interarrival time

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, RTT = 100 ms, packet interarrival time = 100 ms

0.1% loss 0.5% loss 2.5% loss

maximum

 0

 500

 1000

 1500

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
od

ifi
ed

 S
C

T
P

S
C

T
P

T
C

P
 w

ith
 R

D
B

m
od

ifi
ed

 T
C

P

T
C

P
 b

ic

T
C

P
 n

ew
 r

en
o

U
D

T

m
od

ifi
ed

 E
N

et

E
N

et

m
s

percieved application latencies, RTT = 100 ms, packet interarrival time = 100 ms

0.1% loss 0.5% loss 2.5% loss

average

(c) Latency vs. loss rate

Figure 2: Perceived latencies

in both directions. On the right y-axis, the figure also shows
the relative bandwidth compared to the IP payload of pure
UDP packets. With respect to the number of bytes sent, the
traditional TCP variants are best regardless of loss, packet
interarrival time and RTT. Compared to the user space li-
braries, the kernel TCP and SCTP transport protocols do
not add an additional header. SCTP and ENet are both
sightly higher than TCP. The “modified TCP” has stan-

dard TCP headers, but may send more (and more frequent)
retransmissions. However, the data and loss rates are low,
so the increase is negligible. The most resource consuming
approaches are UDT and TCP with RDB. The reasons are
that UDT always tries to use all the estimated bandwidth,
and RDB bundles previous packets as long as there are un-
acknowledged data in the queue and the size limit for the
new packet is not reached. Thus, when the RTT is low, UDT
will resend a packet multiple times to fill the pipe, and the
overhead for TCP with RDB will increase with the amount
of unacknowledged data. In terms of the number of bytes,
TCP with RDB will be expensive with higher packet rates
and longer RTTs.

 0

 500

 1000

 1500

 2000

 2500

 3000

E
N

et
m

od
ifi

ed
 E

N
et

U
D

T
T

C
P

 n
ew

 r
en

o
T

C
P

 b
ic

m
od

ifi
ed

 T
C

P
T

C
P

 w
ith

 R
D

B
S

C
T

P
m

od
ifi

ed
 S

C
T

P

E
N

et
m

od
ifi

ed
 E

N
et

U
D

T
T

C
P

 n
ew

 r
en

o
T

C
P

 b
ic

m
od

ifi
ed

 T
C

P
T

C
P

 w
ith

 R
D

B
S

C
T

P
m

od
ifi

ed
 S

C
T

P

E
N

et
m

od
ifi

ed
 E

N
et

U
D

T
T

C
P

 n
ew

 r
en

o
T

C
P

 b
ic

m
od

ifi
ed

 T
C

P
T

C
P

 w
ith

 R
D

B
S

C
T

P
m

od
ifi

ed
 S

C
T

P

 0

 50

 100

 150

 200

 250

 300

B
ps %

bandwidth requirement, 0.5% packet loss each direction, packet interarrival time = 100ms

RTT 50ms RTT 100ms RTT 200ms

Figure 3: Measured bandwidth

Another way of comparing the overhead is to look at the
number of packets sent (see figure 4). Many consider this as
more relevant because of the fixed time between packets the
on transmission media. For example, the minimum size of
an Ethernet frame is 64 bytes corresponding to the Ethernet
slot time of 512 bits used for carrier sensing and collision de-
tection at 10 and 100 Mbps. For gigabit Ethernet, the slot
is increased from 512 to 4096 bit. Thus, it can be said that
space may be wasted if the packets are not filled – at least
to the slot size. In our plots, the application sends approx-
imately 10 packets per second (actually marginally less in
average due to the timing granularity in user space). Tra-
ditional TCP follows this rate and since only a few packets
are lost, the measured packet rate is approximately 9.6 pps.
ENet and SCTP (as well as the modified versions) both send
a few more packets. As UDT always try to fill the estimated
pipe, the packet rate is large, e.g., for an RTT of 50 ms, UDT
sends about 29 packets per second. Finally, TCP with RDB
sends slightly less packets compared to standard TCP since
we did not experience any retransmissions using RDB.

5. DISCUSSION
The loss induced by netem in our tests is random without

tendency for burstiness. This results in only a small num-
ber of 2nd and 3rd retransmissions. If burstiness had been
introduced in the loss-generating mechanisms, we would see
more consecutive retransmissions, and the latency due to
exponential backoff would be increased. However, with re-
spect to the maximum values, our results are representative,
and a higher frequency of multiple losses would only slightly
increase the average values.

 0

 10

 20

 30

E
N

et

m
od

ifi
ed

 E
N

et

U
D

T

T
C

P
 n

ew
 r

en
o

T
C

P
 b

ic

m
od

ifi
ed

 T
C

P

T
C

P
 w

ith
 R

D
B

S
C

T
P

m
od

ifi
ed

 S
C

T
P

E
N

et

m
od

ifi
ed

 E
N

et

U
D

T

T
C

P
 n

ew
 r

en
o

T
C

P
 b

ic

m
od

ifi
ed

 T
C

P

T
C

P
 w

ith
 R

D
B

S
C

T
P

m
od

ifi
ed

 S
C

T
P

E
N

et

m
od

ifi
ed

 E
N

et

U
D

T

T
C

P
 n

ew
 r

en
o

T
C

P
 b

ic

m
od

ifi
ed

 T
C

P

T
C

P
 w

ith
 R

D
B

S
C

T
P

m
od

ifi
ed

 S
C

T
P

nu
m

be
r

of
 p

ac
ke

ts
 p

er
 s

ec
on

d

sending packet rate, 0.5% packet loss each direction, packet interarrival time = 100ms

RTT 50ms RTT 100ms RTT 200ms

Figure 4: Number of packets sent

TCP with RDB performs very good in all our tested sce-
narios with respect to latency. This is due to the small
packet size that makes it possible to bundle many data
“segments”. With larger packet sizes, more retransmissions
would have occurred, and latency performance would have
dropped. UDT on the other hand makes use of frequent
“spurious” retransmissions to fill its estimated bandwidth.
Designed for high-bandwidth environments, the maximum
latency performance of UDT drops when the packet inter-
arrival time and the packet size increase.

The modified TCP and SCTP performs better than its un-
modified counterparts both for max and average values. The
difference increases with larger interarrival times and RTTs.
This is due to the degenerating performance of the retrans-
mission mechanisms when fewer packets are sent in an RTT.
The modifications helps improving the situation without the
large amount of redundancy introduced by RDB and UDT.
This can be an important aspect when very many concurrent
streams compete for the bandwidth. SCTP is constantly
above its TCP counterparts due to the (non-optional) de-
layed ACK mechanism. This is a point of concern since
SCTP originally was intended for time-dependent signaling
traffic [14, 13].

When the loss rate is high, all mechanisms that implement
exponential backoff suffer severely with regard to latency.
The experimental removal of exponential backoff for ENet
results in better performance. We can therefore assume that
the other modifications (adjustment of minRTO and number
of needed dupACKs) can also be successfully integrated in
middleware platforms intended for networked games.

From figure 2(b) we can see that the performance of dif-
ferent mechanisms varies with the packet interarrival time.
As shown in section 2, the game genres all have different
packet interarrival times. Thus, the packet generation pat-
tern for each game should be taken into consideration when
choosing the networking platform.

As we can see from the results, there may be large dif-
ferences in the latencies achieved by the tested mechanisms
under the different conditions. In general, standard TCP
variations are outperformed by the other mechanisms when
there are few packets in flight. This is one of the reasons
why game developers use middleware on top of UDP to meet
their requirements. However, our results also show that
large improvements with respect to latency can be achieved

with small modifications by trading off some bandwidth.
On the other side, fairness with respect to sharing the re-
sources equally is highly valued in the networking commu-
nity and increasing the consumed resources for some appli-
cations may therefore be a critical point. However, the data
rates are low, and looking at the latency gain, we consider
this a worthwhile tradeoff.

Finally, the analyzed game traces show that the packet
size and rate typically vary according to the number of play-
ers and the interaction pattern. This indicates that different
means should dynamically be applied to the stream of pack-
ets to meet the latency requirements without trading off too
much bandwidth (and thereby influencing the fairness ideal).
For example, if there are few players and they hardly inter-
act, there will be very few packets. In this case, retransmis-
sions are mainly due to timeouts, and modifications to the
fast retransmit and exponential backoff mechanisms could
be applied if this situation occurs. On the other hand, if
many players come into the same region and interact, the
packet rate increase rapidly, and modifications like the ones
mentioned above could be turned off if it jeopardizes the
fairness. Thus, integrated monitoring of the streams should
be used to dynamically apply the appropriate mechanisms
when the stream is thin.

6. CONCLUSIONS
Interactive online games raises a challenging requirement

with respect to low latency. However, the systems today lack
appropriate networking support, because most online games
will never consume the full bandwidth that constitutes their
fair share. The data streams are very thin, meaning that
they have small packets and low packet rates. Thus, tradi-
tional mechanisms fail in this scenario, because they assume
that the application will always fill the pipe.

In our work comparing different networking techniques,
we found that the average latencies for the majority of the
approaches make the game playable. The figures for worst-
case latency, however, show large variations. The high max-
imum values are due to multiple consecutive retransmissions
and can be devestating to the perceived gaming experience.
The traditional transport protocols have large maximum
values, while the user-space middleware platforms perform
slightly better. Finally, by trading off some bandwidth for
lower latencies, both in user space and in the kernel, better
results may be achieved.

With respect to ongoing and future work, we are currently
investigating several in-kernel mechanisms reducing the la-
tency and how to dynamically apply them according to the
oscillating behavior of the different streams. For this work
in particular, we will try to evaluate a larger number of the
existing user-space middlewares and compare them to the
kernel modifications.

7. ACKNOWLEDGEMENTS
Funcom has provided traces from Anarchy Online, Wu-

chang Feng and Wu-chi Feng have provided traces from
Counter Strike. Kristian Evensen has provided traces for
the other games analyzed in this paper.

Kristian Evensen has also implemented the RDB tech-
nique for TCP, and Jon Pedersen has implemented the mod-
ifications for SCTP.

Andreas Petlund has been partially sponsored by the Nor-

wegian Research Council under contract number 159992/V30
– the MiSMoSS project.

8. REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens. TCP

Congestion Control . RFC 2581 (Proposed Standard),
Apr. 1999. Updated by RFC 3390.

[2] M. S. Borella. Source models of network game traffic.
Elsevier Computer Communications, 23(4):403–410,
Feb. 2000.

[3] C. Chambers, Wu-chang Feng, S. Sahu, and D. Saha.
Measurement-based characterization of a collection of
on-line games. In Proceedings of the USENIX Internet
Measurement Conference (IMC), pages 1–14, 2005.

[4] K.-T. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei.
Games traffic analysis: An MMORPG perspective. In
Proceedings of the International Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV), pages 19–24. ACM Press, 2005.

[5] M. Claypool. The effect of latency on user
performance in real-time strategy games. Elsevier
Computer Networks, 49(1):52–70, Sept. 2005.

[6] M. Claypool and K. Claypool. Latency and player
actions in online games. Communications of the ACM,
49(11):40–45, Nov. 2005.

[7] M. Claypool, D. LaPoint, and J. Winslow. Network
analysis of counter-strike and starcraft. In Proceedings
of the IEEE International Performance Computing
and Communications Conference (IPCCC), pages
261–268, Apr. 2003.

[8] W.-c. Feng, F. Chang, W.-c. Feng, and J. Walpole.
Provisioning on-line games: a traffic analysis of a busy
Counter-strike server. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurement,
pages 151–156, 2002.

[9] S. Floyd, T. Henderson, and A. Gurtov. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC
3782 (Proposed Standard), Apr. 2004.

[10] C. Griwodz and P. Halvorsen. The fun of using TCP
for an MMORPG. In Proceedings of the International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV). ACM
Press, May 2006.

[11] Y. Gu and R. L. Grossman. UDT: UDP-based Data
Transfer for High-Speed Wide Area Networks.
Computer Networks (Elsevier), 51(7), May 2007.

[12] J. Nagle. Congestion control in IP/TCP
internetworks. RFC 896, Jan. 1984.

[13] L. Ong, I. Rytina, M. Garcia, H. Schwarzbauer,
L. Coene, H. Lin, I. Juhasz, M. Holdrege, and
C. Sharp. Framework Architecture for Signaling
Transport. RFC 2719 (Informational), Oct. 1999.

[14] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control
Transmission Protocol. RFC 2960 (Proposed
Standard), Oct. 2000. Updated by RFC 3309.

[15] L. Xu, K. Harfoush, and I. Rhee. Binary increase
congestion control for fast long-distance networks. In
Proceedings of the Joint Conference of the IEEE
Computer and Communications Societies
(INFOCOM), 2004.

