Bandwidth Aggregation over Heterogeneous Wireless Links

Kristian Evensen and Dominik Kaspar Simula Research Laboratory, Norway

General Scenario

Motivation

HSDPA WLAN

HSDPA + WLAN (ECMP)

HSDPA

WLAN

HSDPA + WLAN

Optimization idea:

Utilize all links simultaneously

Benefits:

- Increased data throughput
- Better connectivity (reliability)
- Smooth handover across networks

Challenges:

- Implementation (clients, servers, proxies)
- Link heterogeneity (delay, bandwidth, loss)
 - IP packet reordering

The Challenges

Delay Heterogeneity

Scheduling packets over links with large differences in delay, causes reordering.^[1]

Network Interfaces

An IP-Layer Proxy

In order to allow servers to remain unchanged, we

are working on a proxy solution for redirecting IP

packets over independent networks to a client.

Proxy

Redirected

Part of Flow

The proxy has several functionalities:

Client (receiver)

2. Bandwidth aggregation of client interfaces

1. Support for network-layer packet striping

- 3. Reducing IP packet reordering (delay equalizer)
- 4. Monitoring of path characteristics

First results from an emulation testbed show close to ideal bandwidth aggregation and a significant reduction in IP packet reordering.^[2]

Our Solutions

Server (sender)

Default

Application-layer Video Playout

We also work on enhancing video-on-

demand playout by optimally downloading file segments over multiple heterogeneous access networks.

Using HTTP's ability of handling requests for specific byte ranges, we download a single file over 1 WLAN and 2 HSDPA links concurrently.

We have found many interesting tradeoffs between the chosen segment size, the startup latency, and the buffer requirements.^[3]

Throughput Dynamics

Assigning traffic to links with high variations is a big challenge for bandwidth aggregation.^[4]

Packet Reordering

The IP packet reordering experienced over heterogeneous wireless links is severely higher than the 0 - 2% late packets commonly observed in wired, high-speed networks.^[1]

Packet reordering reduces the performance of traditional transport protocols (e.g. TCP).

References

[1] D. Kaspar, K. Evensen, A. F. Hansen, P. E. Engelstad, P. Halvorsen, and C. Griwodz. An Analysis of the Heterogeneity and IP Packet Reordering over Multiple Wireless Networks, International Symposium on Computers and Communication, ISCC 2009.

[2] K. Evensen, D. Kaspar, P. E. Engelstad, A. F. Hansen, C. Griwodz, P. Halvorsen, A Network-Layer Proxy for Bandwidth Aggregation and Reduction of IP Packet Reordering, LCN 2009.

[3] D. Kaspar, K. Evensen, P. Engelstad, A. Hansen, Halvorsen, P., Griwodz, C., Enhancing Video-on-Demand Playout over Multiple Heterogeneous Access Networks, Submitted to Consumer Communications and Networking Conference CCNC 2010.

[4] D. Kaspar, A. F. Hansen, and C. Griwodz. Multilink Transfer over Heterogeneous Networks, In: IEEE International Conference on Network Protocols (ICNP), Poster Session, 2008.