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ABSTRACT
This paper addresses the problem of optimal cooperative
spectrum sensing in a cognitive-enabled sensor network where
cognitive sensors can cooperate in the sensing of the spec-
trum. Such sensor networks are assumed to be power re-
source constrained. With a given threshold for the accuracy
of the spectrum detection, we find the optimal number of
cognitive sensors participating in the cooperative spectrum
sensing and the optimal sensing interval that minimize the
total energy consumption of the cooperative sensing. First,
the mathematical lower bound and upper bound for the
number of cooperative cognitive sensors are found. Then
the optimization problem to minimize the total energy con-
sumed by a group of sensors is presented. Finally, an effi-
cient approximate solution to the optimization problem is
proposed. Numerical calculations validate the accuracy and
the performance of the proposed scheme. The impact of the
noise uncertainty, the choice of the energy detection thresh-
old, and the spectrum bandwidth on the detection accuracy
and the minimum total energy consumption is also studied.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Design, Performance, Reliability

Keywords
Spectrum Sensing, Optimization, Energy Consumption

1. INTRODUCTION
The Federal Communications Commission (FCC) in the

US estimates that only 15% - 85% of the assigned spectrum
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is utilized, depending on geographical and temporal varia-
tions [2]. The main reason is that the policy of fixed or
static assignment of the spectrum leads to spectrum under-
utilization. Therefore, cognitive radio (CR) has been envi-
sioned by J. Mitola as the emerging technology to accommo-
date dynamic spectrum access [9] [1]. In a cognitive radio
network, the unlicensed (secondary) devices can utilize the
licensed spectrum when it is unused by any licensed (pri-
mary) devices. However, the occupied spectrum will need
to be vacated instantly when a primary device starts using it
in order to avoid interfering with the transmission of the pri-
mary device. Thus, spectrum sensing, which enables a CR
device to detect and adapt to primary usage of the spectrum
band, plays a critical role in dynamic spectrum utilization.

The use of cognitive-enabled sensors is an emerging tech-
nology for spectrum sensing. These sensors sense the spec-
trum band continuously and report the detection results to
secondary devices that will make use of the spectrum. How-
ever, one single sensor might perform poorly when the com-
munication channel experiences fading and shadowing. To
overcome this problem, cooperative spectrum sensing by a
group of collaborating sensors has been proposed to exploit
multi-user diversity in the sensing process [4, 8, 12].

Spectrum sensing consumes energy for the receiver and
base-band circuitry and depletes the battery life-time of a
cognitive sensor. On the one hand, one wants to gain a high
sensing (or detection) reliability by using many collaborating
cognitive sensors and a long sensing interval. On the other
hand, one wants to save as much energy as possible by using
fewer sensors and a shorter sensing interval. This tradeoff is
explored in this paper. To the best of our knowledge, this
key problem has not been studied before.

It is assumed that each cognitive sensor performs spec-
trum sensing with the well-known energy detection scheme
[3]. The performance of this scheme is represented by two
essential parameters, i.e. the probability of detection Pd and
the false alarm probability Pf . A high detection probability
means a high accuracy of detecting the activity of primary
users. Furthermore, a low false alarm probability translates
into a high usage of available spectrum by the secondary
device, due to a low chance that the spectrum is mistakenly
believed to be occupied when it is actually available. The
previously mentioned tradeoff means to keep a high Pd and
an acceptable level of Pf and at the same time preserve the
power resources of the cognitive sensors as much as possible.

The rest of the paper is organized as follows. First, the
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related work is presented in Section 2. Next, the bounds
for the number of cognitive sensors in cooperative spectrum
sensing is formulated in Section 3. Then, Section 4 presents
the energy minimization problem and an approximation ap-
proach to efficiently solve the optimization under the given
accuracy of primary user detection. In Sections 5 numerical
results are used to explore the optimization and validate the
performance and accuracy of the proposed scheme. Finally,
conclusions and future work are drawn in Section 6.

2. RELATED WORK
There has been a high research focus on improving the ac-

curacy of spectrum sensing as well as finding optimal spec-
trum sensing strategy, and a lot of literature on this issue
is available. In [6], Lee and Akyildiz propose the interesting
idea of optimizing the sensing parameters in order to maxi-
mize the sensing efficiency subject to interference avoidance
constraints in a single spectrum band. They propose spec-
trum selection and scheduling methods where the best spec-
trum bands for sensing are selected to maximize the sensing
capacity. An adaptive and cooperative spectrum sensing
method where the sensing parameters are optimized adap-
tively to the number of cooperating users is also considered.

Furthermore, in [7], Liang et al. study the problem of
designing the sensing duration to maximize the achievable
throughput for the secondary network under the constraint
that the primary users are sufficiently protected. They for-
mulate the sensing-throughput tradeoff problem and use the
energy detection sensing scheme in order to prove that the
formulated problem has one optimal sensing time, which
yields the highest throughput for the secondary network.

In [11], the authors consider sensor networks that attempt
to reclaim some of the available spectrum for their own com-
munications by using spectrum sensing to detect the absence
of the primary user. Different nearby sensor networks coop-
erate to reduce uncertainty caused by the presence/absence
of possible interference from other users.

Peh and Liang show in [10] that cooperation among all

secondary users in the network does not necessary achieve
the optimum performance. Instead, optimum is achieved
with a cooperation that involves only a certain number of
secondary users, i.e. those users sensing the highest signal
to noise ratio of the primary transmission.

3. LOWER BOUND AND UPPER BOUND
FOR THE NUMBER OF SENSORS

3.1 Energy Detector for Spectrum Sensing
Each cognitive sensor i is assumed to derive the single-

node detection probability Pdi and single-node false alarm
probability Pfi using the energy detection scheme for spec-
trum sensing [3, 4]. Pdi and Pfi can then be evaluated in
terms of the Q-function [5], following the approach in [6]:

Pdi = Q

„
λ − 2tsW (γi + 1)σ2

n√
4tsW (γi + 1)σ2

n

«
(1)

Pfi = Q

„
λ − 2tsWσ2

n√
4tsWσ4

n

«
(2)

where ts is the sensing interval, which is assumed to be the
same for every sensor, W is the spectrum bandwidth, and
λ is the energy detection threshold. σ2

n,i and σ2
n,i are the

variance of the noise and of the received signal at sensor i,
respectively. Here, the Signal-to-Noise-Ratio (SNR) at the
sensor i is γi = σ2

s,i/σ2
n,i. Without loss of generality, it is

assumed that the variance of the noise is the same at every
sensor, and it can therefore simply be denoted as σn.

Observe that Pdi is monotonically increasing with regard
to the sensing interval ts and the SNR γi. This means that
if all sensors have the same sensing interval ts, the sensors
that experience the lowest SNR will yield the lowest de-
tection probabilities or the least accurate detection. Thus,
one might reduce the total energy consumption by excluding
these sensors from the group of sensing nodes, and still keep
the total detection probability above the required threshold.

In addition, the primary activity has also an effect on the
spectrum sensing performance. The traffic pattern of the
primary user on a channel can be modeled as a two state
independent and identically distributed (i.i.d) ON-OFF ran-
dom process, whose ON and OFF distributions are exponen-
tially distributed with means equal to Ton and Toff , respec-
tively. Hence, the probabilities of the ON and OFF periods

are Pon = Ton

Ton+Toff
and Poff =

Toff

Ton+Toff
, respectively [6,

Ref. 15]. Therefor sensor i can detect a spectrum by the
single-node detection and false alarm probabilities as [6]:

P̂di = PonPdi (3)

P̂fi = PoffPfi (4)

3.2 A Cooperative Spectrum Sensing Scheme
In this paper, it is assumed that the cooperative spec-

trum sensing is coordinated by the common receiver. The
common receiver invites a group of sensors to participate in
spectrum sensing. After having received the invitation, all
the cognitive sensors of the invited group, say G, will inde-
pendently start sensing the spectrum and then return their
observations back to the common receiver. It is further as-
sumed that the common receiver is employing the “OR-rule”
for decision fusion and that the communication channels
with the invited cognitive sensors are perfect. Hence, the
cooperative detection probability Qd and the cooperative
false alarm probability Qf are given by [4]:

Qd =1 −
|G|Y
i=1

(1 − P̂di) (5)

Qf =1 −
|G|Y
i=1

(1 − P̂fi) (6)

where |G| is the number of the invited sensors in G and

P̂di, P̂fi are the sing-node detection and false alarm prob-
abilities estimated from sensor i according to (3) and (4),
respectively. We observe from (5) and (6) that when the
number of cooperative sensors for spectrum sensing, n (or
|G|), increases, then the cooperative detection probability
Qd of the group increases and as a result the accuracy of
primary user being detected also increases. However, the
higher |G|, the higher cooperative false alarm probability
Qf which in turn leads to a higher chance that a spectrum
opportunity will be missed.

In addition, the more sensors participate in the cooper-
ative group for spectrum sensing, the more energy is con-
sumed. This should be strictly avoided, since sensors are
assumed to be battery-powered and have limited energy re-
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source. That is why finding an optimal size of such coop-
erative spectrum sensing group is an important issue. In
addition, an energy-efficient problem of how to efficiently
select the actual sensors that experience the highest SNR
and that are well separated to avoid correlation shadowing
is also critical. This problem is considered as the future
direction of the present paper.

3.3 Bound for the Size of the Cooperative Sens-
ing Group

Given a threshold Q̄d for the cooperative detection prob-
ability, the condition Qd ≥ Q̄d is necessary to be confident
that a primary user is detected. Hence, (5) yields:

1 − Q̄d ≥
|G|Y
i=1

(1 − P̂di) (7)

Let P̂ min
d denote the minimum of the single-node detec-

tion probability among the group of sensor such that:

P̂ min
d � min{P̂di, i = [1 . . . n]}

=Pon.Q

„
λ − 2tsW (γmin + 1)σ2

n√
4tsW (γmin + 1)σ2

n

«
(8)

where, the minimum SNR is: γmin � min{γi, i = [1 . . . n]}.
Hence, if |G| is bounded by:

1 − Q̄d ≥ (1 − P̂ min
d )|G| ⇔ |G| ≥ log(1 − Q̄d)

log(1 − P̂ min
d )

(9)

then the inequality in (7) will be satisfied as:

1 − Q̄d ≥ (1 − P̂ min
d )|G| ≥

|G|Y
i=1

(1 − P̂di)

Similarly, given a cooperative false alarm probability thresh-
old Q̄f , the condition Qf ≤ Q̄f is needed to ensure that a
spectrum opportunity is not missed. Likewise, (6) yields:

1 − Q̄f ≤
|G|Y
i=1

(1 − P̂fi) (10)

Here we denote P̂ max
f as the maximum single-node false

alarm probability among the group such that:

P̂ max
f =max{P̂fi, i = [1 . . . n]} (11)

Then, (10) is guaranteed when:

|G|Y
i=1

(1 − P̂fi) ≥ (1 − P̂ max
f )|G| ≥ 1 − Q̄f

which leads to the following upper bound:

1 − Q̄f ≤ (1 − P̂ max
f )|G| ⇔ |G| ≤ log(1 − Q̄f )

log(1 − P̂ max
f )

(12)

Combining (9) and (12), the bound for |G| is derived as:&
log(1 − Q̄d)

log(1 − P̂ min
d )

’
≤ |G| ≤

$
log(1 − Q̄f )

log(1 − P̂ max
f )

%
(13)

where �.� and �.	 denote the ceiling and flooring functions
for the rounding of a real number to an integer, respectively.
It is observed that the higher the single-node detection prob-
ability the fewer sensors are required to guarantee a given

threshold. More importantly, the lower bound shows that
the higher the minimum SNR condition among the sensors,
the fewer sensors need to be included in the spectrum sens-
ing. This gives a hint that one should only select as part of
the sensing group only the sensors that experience a suffi-
ciently high SNR. On the other hand, the upper bound in-
dicates an invaluable physical meaning for the requirement
of the false alarm probability of the cooperative group. It
means the required threshold Q̄f cannot be as small as pos-
sible, since a low Q̄f requires a small number of sensors,
which may break the detection accuracy by breaking (13).

4. ENERGY CONSUMPTION MINIMIZA-
TION

The lower bound in (13) gives the minimum number of
sensors collaborating in spectrum sensing in order to yield
a given accuracy of the primary user detection. Clearly, the
fewer the sensors used for cooperative spectrum sensing, the
less the total sensing energy consumed. Hence, for energy
efficiency, the lower bound of |G| in (13) is selected as the
minimum number of spectrum sensing sensors of group G:

|G| �

&
log(1 − Q̄d)

log(1 − P̂ min
d )

’
(14)

However, this formulation does not mean that the size of
G is optimal in terms of minimizing the total sensing en-
ergy consumption for cooperative spectrum sensing. It can
be seen from (1) that the detection probability depends on
the sensing interval ts. The higher the sensing interval, the
more accurate the detection probability. Then, fewer sensors
will need to participate in the cooperative spectrum sensing
(see (14)), and consequently less energy will be spent on the
spectrum sensing. On the other hand, the higher the sens-
ing interval ts, the more energy is consumed for spectrum
sensing. As a result, there is a tradeoff in estimating ts or
|G| in the energy efficiency problem.

Let δEss denote the sensing energy consumption per unit
of spectrum sensing interval, which is assumed to be the
same for every cognitive sensor in the network. Hence, for a
sensing interval ts, each sensor i consumes the sensing energy
ΔEss

i = (δEss.ts). The total sensing energy consumed by
the group G is minimized as follow:

Minimize:
ts

|G|X
i=1

ΔEss
i � |G|.(δEss.ts)

⇔ Minimize:
ts

log(1 − Q̄d)

log(1 − P̂ min
d )

.(δEss.ts) (15)

To refine the above optimization problem, it is argued
that the absolute function | log(1− P̂ min

d )| is monotonically

increasing with regard to P̂ min
d . Thus, (15) is equivalent to:

Minimize:
ts

| log(1 − Q̄d)|.δEss.
ts

| log(1 − P̂ min
d )|

⇔Maximize:
ts

1

| log(1 − Q̄d)|.δEss
.
P̂ min

d

ts

⇔Maximize:
ts

Pon

| log(1 − Q̄d)|.δEss
.
Q

“
λ−2tsW (γmin+1)σ2

n√
4tsW (γmin+1)σ2

n

”
ts

Without loss of generality, it is assumed that δEss is known
and that Q̄d is given. Pon = Ton

Ton+Toff
is also known and
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independent of the sensing interval ts. Finally, we derive the
following maximization problem with regard to the sensing
interval ts for minimizing the total sensing energy consumed
by the cooperative group G as:

t∗s = arg max
ts

Q

“
λ−2tsW (γmin+1)σ2

n√
4tsW (γmin+1)σ2

n

”
ts

� arg max
ts

Q(z)

ts
=

1√
2π

R ∞
z

e−
x2

2 dx

ts
(16)

where: z =
λ − 2tsW (γmin + 1)σ2

n√
4tsW (γmin + 1)σ2

n

The optimality of (16) can be found by solving the roots
t∗s of the first partial derivative as follows:

∂
“

Q(z)
ts

”
∂ts

= 0 ⇔
∂(Q(z))

∂z
. ∂z
∂ts

.ts − Q(z)

t2s
= 0

⇔ ∂(Q(z))

∂z
.
∂z

∂ts
.ts = Q(z) (17)

It can be shown that solving (16) analytically is extremely
difficult due to the exponential characteristic of the Q-function.
Therefore, an approximation approach to solve (16) is pro-
posed, using the well-known approximation for Q(z):

Q(z) ≈

8><
>:

1

2
e−z2/2 if z ≥ 0 (18)

1 − 1

2
e−z2/2 if z < 0 (19)

When z ≥ 0, the approximated optimal sensing interval
can be found by substituting (18) into (17) as follows:

∂( 1
2
e−

z2

2 )

∂z
.
∂z

∂ts
.ts =

1

2
e−

z2

2 ⇔ (−z).
∂z

∂ts
.ts = 1 (20)

Then ∂z
∂ts

.ts is found as:

∂z

∂ts
.ts =

∂
“

λ−2tsW (γmin+1)σ2

n√
4tsW (γmin+1)σ2

n

”
∂ts

.ts

= − λ + 2tsW (γmin + 1)σ2
n

4
√

tsW.(γmin + 1)σ2
n

(21)

Substituting (21) into (20) yields:

z.
λ + 2tsW (γmin + 1)σ2

n

4
√

tsW.(γmin + 1)σ2
n

= 1

⇔
“
x + 2(γmin + 1)σ2

n

”2

= λ2 + 4(γmin + 1)2σ4
n

where x is given by: x = 2tsW (γmin + 1)σ2
n

The approximated optimal sensing interval (i.e. the ap-
proximated root of (17)) can now be found as:

t∗s =

p
λ2 + 4(γmin + 1)2σ4

n − 2(γmin + 1)σ2
n

2W (γmin + 1)σ2
n

(22)

On the other hand, when z is negative the approximate
optimal sensing interval is found using (19) instead of (18)
as the approximation. However, solving the root of (17) an-
alytically by this approximation is still extremely difficult.
In this case, we solve the proposed optimization problem
numerically to validate the accuracy of that approximation.

The benefit here is that the complexity of finding the op-
timality will be significantly reduced compared to the com-
plexity of solving (16) directly. Providing accurate analyti-
cal solutions for this is considered as the future work. With
the solved optimal sensing interval t∗s above, the optimal
number of cooperative cognitive sensors can be found as:

n∗ =

&
log(1 − Q̄d)

log(1 − P̂ ∗min
d )

’
(23)

where: P̂ ∗min
d = Pon.Q

„
λ − 2t∗sW (γmin + 1)σ2

n√
4t∗sW (γmin + 1)σ2

n

«

5. NUMERICAL RESULTS
In this section, numerical calculations are presented to

validate the approximated optimal sensing interval and the
approximated optimal number of collaborating sensors that
minimize the total energy consumption of the cooperative
spectrum sensing. Mean absolute error is calculated as the
accuracy metric for the approximated results. In all the
numerical calculations, we use the following settings: δEss =
0.05 J, Ton = 1 sec, Toff = 2 sec, Q̄d = 0.9, Q̄f = 0.1,
and bandwidth W = 1 MHz. The minimum SNR threshold
(γmin) varies from 1 to 20 dB for comparison.

First of all, the validation of the accuracy and perfor-
mance of the proposed approach is presented in Fig. 1 - Fig.
3 with the chosen parameters for the energy threshold and
signal noise as λ = 15 dB, σn = −5 dB, respectively. Fig.
1 illustrates the minimum total energy consumption for co-
operative spectrum sensing. The solid curve illustrates the
minimum value of the energy consumption found by solving
the original optimization (16) numerically. The dash-dot-
asterisk curve, on the other hand, shows the corresponding
minimum value found by our proposed analytical approx-
imate solution. The results indicate that our approxima-
tion gives a rather good solution to the original optimiza-
tion problem, as the error is around 8.6% on average. It is
also observed that when the minimum SNR increases, less
energy is needed for the cooperative spectrum sensing while
still satisfying the required spectrum sensing accuracy.
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Figure 1: The minimum total energy consumption.

A similar trend can also be observed from Fig. 2. The
figure reconfirms that the optimal sensing interval solved by
our proposed approximation (the dash-dot-asterisk curve)
follows closely to that of the original optimization (the solid
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curve). Again it is seen that the higher the minimum SNR
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Figure 2: The optimal sensing interval.

threshold, the shorter time the cooperative cognitive sen-
sors will need to complete the spectrum sensing while still
satisfying the required accuracy of the sensing. However,
the optimal sensing interval solved by our approach is a bit
longer (about 13.6% on average) than that of the original
optimization. This inaccuracy occurs as a consequence of
approximating the Q-function.

Fig. 3 presents the optimal number of cognitive sensors
found by our approach (the dashed bar) and that of the
original optimization (the solid bar). The results show that
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Figure 3: The optimal number of sensor.

the error between our approach and the original one is be-
tween 1 and 2 sensors on average. When the SNR condition
is better, the optimal number of sensors is higher, which is
due to the reason that the energy minimization produces
shorter optimal sensing interval under the good SNR con-
dition. However, it needs to satisfy the requirement for de-
tection accuracy, hence the sufficient number of sensors will
need to be included during the optimization. It is also ob-
served here that a higher error is caused when the minimum
SNR is higher than 12 dB, which is due to the inaccuracy
of the proposed approximation. Improving this high inaccu-
racy is considered as the future work of the present paper.

The performance metric for the spectrum detection ac-
curacy is evaluated in terms of the summation (the maxi-

mum total detection error probability: errmax) of the miss-
detection and false alarm probabilities as: errmax = (1 −
Q∗min

d )+ Q∗max
f = (1− P̂ ∗min

d )n∗

+ 1− (1− P̂ ∗max
f )n∗

. Fig.
4 presents this maximum total detection error probability
with regard to the noise uncertainty. It can be seen the
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Figure 4: Two graphs of the maximum total detec-

tion error probability when the ceiling function is

used and not used for n∗ in (23). λ = 10 dB

slightly difference between the upper and lower graphs in
Fig. 4. It is caused by using the ceiling function in (23)
to round the optimal number of sensors up to an integer.
Since the number of sensors must be an integer, so it can be
also observed from all the graphs in this section that they
are not as smooth as the graphs resulted by not using the
ceiling function in (23). The results in Fig. 4 show that the
signal noise uncertainty has strong effect on the detection
accuracy of the cooperative spectrum sensing using the en-
ergy detector, especially when the minimum SNR condition
is bad. The main reason is due to the fact that the energy
detection scheme is not robust in the low SNR conditions
and is sensitive to the signal noise [13]. It also confirms
that our approach produces good detection accuracy when
the signal noise uncertainty is not very high and the SNR
condition is not very low. Tackling the detection inaccuracy
under very low minimum SNR conditions and strong noise
uncertainty is the future work of the present paper.

Second of all, the impact of the noise uncertainty σn, the
choice of the energy threshold λ, and the spectrum band-
width W on the detection accuracy and the minimum total
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Figure 5: The maximum total detection error probability vs. energy threshold and noise uncertainty.

energy consumption for the cooperative spectrum sensing
scheme, especially under the low minimum SNR conditions,
is studied in Fig. 5 - Fig. 7. The results in Fig. 5 show
how the energy threshold and the noise uncertainty affect
the maximum total detection error probability errmax un-
der different minimum SNR conditions. It can be observed
that under noise uncertainty, the energy detector can only
perform well under the low minimum SNR conditions if the
energy threshold is set high enough. For example, when
σn = −5 dB, it is better to choose λ = 15 dB, as we use
in the calculations for Fig. 1 - Fig. 3, in order to keep
errmax ≤ 0.1 when the minimum SNR γmin ≤ 3 dB .

In addition, the four graphs in Fig. 5 illustrate that when
the noise uncertainties are −10 dB, −5 dB, 0 dB, and 5 dB,
the corresponding energy thresholds should be selected as
about 5 dB, 15 dB, 25 dB, and 35 dB, respectively in order
to keep the energy detector detecting the spectrum accu-
rately under the low minimum SNR conditions. This can be
implied generally that when the noise uncertainty increases
by 5 dB, the energy threshold should have to be increased
by around 10 dB, which requires much more energy con-
sumption in order to produce high detection accuracy under
the low minimum SNR conditions. It indicates again that
the cooperative spectrum sensing using energy detector is
highly sensitive to the noise uncertainty and the choice of
the energy threshold. Thus, the important issue of finding
an analytical form of the optimal energy threshold under
a specific range of the noise uncertainty while satisfying a
given spectrum detection accuracy is considered as the fu-
ture work of the present paper.

Furthermore, we observe how the choice of the energy
threshold λ for the energy detector affects the minimum to-
tal energy consumption when the noise uncertainty is fixed
as σn = −5 dB in Fig. 6. Obviously, the higher energy
threshold, the more sensing energy will need to be consumed
by the group of collaborating sensors. However, under the
noise σn = −5 dB, the results in Fig. 5 show that the en-

ergy threshold should be selected as λ = 15 dB in order
to yield errmax ≤ 0.1 under the low minimum SNR con-
ditions. Hence there is a tradeoff in selecting the energy
threshold to keep the minimum total energy consumption
and the maximum total detection error probability as low
as possible at the same time, especially when the minimum
SNR condition is bad. On the other hand, under the good
minimum SNR conditions, for example when γmin ≥ 5 dB,
a wide range of λ could be selected to yield errmax ≤ 0.1,
hence the lower the selected λ, the lower the minimum total
energy consumption. It again indicates that the cooperative
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Figure 6: Minimum total energy consumption vs.

energy threshold λ for the energy detector.

spectrum sensing scheme using energy detector is highly sen-
sitive to the energy threshold under the low minimum SNR
conditions. Thus, making this scheme be less sensitive to
the noise uncertainty and/or the energy threshold in a wide
range of the minimum SNR conditions is seen to be an im-
portant issue. We consider this observation as the future
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work of the present paper.
Finally, the impact of the spectrum bandwidth on the

minimum total energy consumption for cooperative spec-
trum sensing is presented in Fig. 7. In this figure, the energy
threshold and the signal noise are set as λ = 15 dB, σn = −5
dB, respectively. The similar observation can also be seen
here that the higher the minimum SNR, the lower the to-
tal energy consumption. However, the larger the spectrum
bandwidth to be sensed, the lower the total energy consump-
tion, which is caused by performing shorter sensing interval
in cooperative spectrum sensing.
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bandwidth W .

6. CONCLUSION AND FUTUREWORK
This paper explores the problem of optimal cooperative

spectrum sensing in cognitive-enabled sensor networks. The
cognitive-enabled sensors are assumed to be battery pow-
ered and constrained by limited power resources. Thus, the
key problem is how to minimize the total energy consump-
tion for cooperative spectrum sensing by a group of cog-
nitive sensors while still satisfying the given threshold for
the spectrum detection accuracy. First, an expression for
the lower and upper bound for the number of cognitive sen-
sors participating in the spectrum sensing is found. The
optimization problem for minimizing the total energy con-
sumed by that group for cooperative spectrum sensing is
also proposed. Furthermore, an approximation approach to
solve the proposed energy consumption minimization is pre-
sented. Finally the accuracy of the approximation is vali-
dated using numerical calculation to compare the approxi-
mated optimization with the original proposed optimization.
The impact of the noise uncertainty, the choice of the energy
threshold for the energy detector, and the spectrum band-
width on the spectrum detection accuracy and the minimum
total energy consumption for the cooperative spectrum sens-
ing scheme is also discussed.

In the future, improving the detection accuracy under ex-
tremely low minimum SNR conditions and high noise un-
certainty as well as finding more accurate approximations
for analytically solving the optimal results are necessary.
Furthermore, finding an analytical form of the optimal en-
ergy threshold under a specific range of the noise uncer-
tainty while satisfying a given spectrum detection accuracy

is addressed as an important issued for the future work. Fi-
nally, making the cooperative spectrum sensing scheme us-
ing energy detector be less sensitive to the noise uncertainty
and/or the energy threshold in a wide range of the minimum
SNR conditions is the future work as well.
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