
Enhancing Video-on-Demand Playout over Multiple
Heterogeneous Access Networks

Dominik Kaspar∗† Kristian Evensen∗† Paal Engelstad†∗‡ Audun F. Hansen∗ Pål Halvorsen∗† Carsten Griwodz∗†
∗Simula Research Laboratory, Norway †University of Oslo, Norway ‡Telenor R&I, Norway

email:{kaspar, kristrev, paalee, audunh, paalh, griff}@simula.no

Abstract—Multimedia streaming is increasing in popularity
and has become one of the dominating services on the Internet
today. Even though user devices are often equipped with multiple
network interfaces and in reach of several access networks at the
same time, media streams are normally communicated over only
one of the available Internet connections.

In this paper, we explore the challenges and potential benefits
of using multiple access networks simultaneously. Exploiting
HTTP’s capability of handling requests for specific byte ranges of
a file, we present the implementation of a lightweight, application-
layer, on-demand streaming service that requires no changes to
existing servers and infrastructure.

Based on real-world experiments with a multihomed host, we
investigate the potential performance gains of video-on-demand
playout. We achieve a bandwidth aggregation efficiency of 90%
when downloading over 3 heterogeneous access networks in
parallel. In addition, we analyze the effect of file segmentation
on the buffer requirements and the startup latency.

I. INTRODUCTION

Today, mobile devices are typically equipped with multi-
ple network interfaces supporting different technologies. For
example, many smart phones and laptops can connect to
both 3G and WLAN networks. Provided that a multihomed
device is within coverage range of more than a single access
network, any secondary interface can potentially be used for
increased performance. Aside from enhanced connectivity and
possibilities of seamless handover, aggregating the bandwidth
of multiple interfaces is becoming increasingly interesting
for providing high-quality video-on-demand (VoD) services to
mobile devices. There are even claims that in 2013, almost
64% of the world’s mobile data traffic will be video [1].

A major hurdle in the deployment of a multilink solution is
the lack of server-side support. Although there have been sug-
gested modifications to TCP (e.g., [10]) and SCTP (e.g., [4]),
standard transport protocols are unable to provide host-based
bandwidth aggregation. A common approach is therefore to
provide specialized libraries (such as PSockets [7]) that trans-
parently partition application-layer data into multiple transport
streams. However, the implementation of such middleware
requires software modifications to clients and servers.

In order to provide easy deployment and interoperability
with existing server infrastructure, the Hypertext Transfer
Protocol (HTTP) [2] can be exploited to download a single file
over multiple links. Using the popular and widely supported
HTTP protocol allows for a lightweight and client-based
implementation. As illustrated in Figure 1, HTTP supports so-
called range retrieval requests (range requests in short), which

are commonly used to allow a halted download to proceed with
the outstanding part at a later time. In this paper, we suggest
the use of range requests to download unique segments of a
file over multiple links available at the host.

The retrieval of video segments from one or more servers
with HTTP range requests is a commonly used technique
in commercial content distribution. For example, Move Net-
works [6] provides a delivery service to VoD providers that
imports content into a delivery system and distributes it to
clients. Each client implements an HTTP-based pull approach
that makes transparent use of replicated servers. Move Net-
works supports the adaptation of video quality to available
bandwidth by creating several versions of the content, allowing
the client to choose the best version of a video segment at
playback time. However, Move Networks does not provide
support for hosts with multiple network interfaces and strongly
focuses on high-speed Internet connections.

Fig. 1. General scenario of a multihomed host connected to n different access
networks (i.e., ISPs). The host utilizes the links l1, ..., ln to simultaneously
download a file from a server in many fixed-size segments.

HTTP range requests are also frequently used by download
managers to achieve a larger throughput by opening multiple
transport flows over a single network. Searching the Internet
for existing download managers, we have found over 40 such
tools [8]. Most of them are advertised with a multitude of
features, such as the ability to connect to multiple mirror
sites and multi-protocol support. However, to the best of our
knowledge, not a single existing download manager actively
supports data transfer over multiple access links.

Apart from implementation challenges, the main difficulty
of efficiently combining multiple interfaces is the instabil-
ity of the different wireless links and the heterogeneity of
the different access networks [5]. While wired networks are
usually very stable and predictable in terms of throughput,
latency and loss, wireless links exhibit severe dynamics. A
typical example of throughput variances in wired and wireless

978-1-4244-5176-0/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

networks is depicted in Figure 2. While the used Ethernet
connection exhibits a stable throughput, both WLAN and
HSDPA fluctuate significantly over short periods of time.
An important goal is to achieve an aggregated throughput
that equals the sum of all links individually, regardless of
variations.

Fig. 2. Short-term throughput variances of different access technologies:
Ethernet, Wireless LAN, and High-Speed Downlink Packet Access (HSDPA).

In this paper, we investigate the playout performance of
multimedia files that are progressively downloaded over mul-
tiple wireless access networks in parallel. Section II ex-
plains and illustrates the challenges associated with progres-
sive download. After introducing our method of performance
analysis in Section III, we use Section IV to demonstrate
the potential of our multilink approach in terms of increased
throughput, reduced buffer requirements and startup latency.
From this exploration, we identify several exciting topics for
future work. Finally, Section V concludes the paper and dis-
cusses the numerous opportunities for future improvements.

II. MULTILINK PROGRESSIVE DOWNLOAD

The term progressive download describes the method of
sequentially transferring a media file from a server, allowing
data playout on the client while the download is still in
progress. Initially coined as “Fast Start” in Apple’s QuickTime
Streaming Server [3], progressive download is also supported
by several other commercial streaming products, including
Microsoft’s Internet Information Services [9].

A particular property of progressive download is the use
of client-side buffering for achieving smooth playback during
periods of congestion. If the buffer is emptied too fast, the
playout pauses until sufficient data is available again. A startup
latency for filling the buffer prior to playout is therefore re-
quired to reduce the chance of an interrupted video experience.
The tolerable startup latency is subjective and dependent on
the media content, but should be as small as a few seconds.

Enabling progressive download over multiple network in-
terfaces is very promising in terms of bandwidth aggregation
and potentially higher quality multimedia streams. In addition,
several independent and collaborating interfaces are more ro-
bust against link variances, congestion and failures. However,
due to heterogeneity, progressive download over multiple links

raises new challenges for efficient file segmentation. Dividing
a media file into larger segments poses the risk of long startup
latencies and large buffer requirements. On the other hand,
creating small segments allows a smooth playout at the cost
of reduced throughput due to segmentation overhead.

A. Segmentation Overhead

Analogous to Figure 1, linear playout over heterogeneous
and dynamic links can be achieved by dividing a requested
file into n fixed-sized segments. Whenever a link has finished
downloading a segment, it sends an HTTP request for the
next in sequence. Thus, for large numbers of segments, the
overhead caused by file segmentation is dominated by the
time THTTP it takes to request the server for a new byte range,
which amounts to 1 round-trip time. The effect of THTTP

depends on the delay heterogeneity. In general, the total time
overhead Ttot of linear segmentation is a combination of
several factors and can be summed up as:

Ttot = TTCP + n ∗ THTTP + TCPU + T∆ (1)

The time TTCP is the overhead caused by TCP’s three-
way handshake (2 RTTs) and slow-start mechanism when
establishing a new connection. This happens once for each
interface before the first segment can be transferred and is
therefore not avoidable. For common hardware, the processing
overhead of the application itself, TCPU , is several orders of
magnitude lower than THTTP and therefore negligible. Other
delays (T∆) may be caused by packet loss. Although we have
discovered a few cases of lost SYN packets causing TCP
timeouts (3 s is a common default value), these occurrences
have insignificant impact on our overall analysis.

B. An Example Playout Timeline

Based on a field experiment using a WLAN and an HSDPA
network simultaneously, Figure 3 illustrates the characteristics
of progressive download when multiple interfaces are used.

Even though segments are requested sequentially over the
available links, incoming packets at the client may contain data
that is not linear with respect to the playout order. In other
words, the use of multiple links causes gaps in the received file.
Most of the time during a transfer, some data must therefore
be buffered, because it is received and available, but blocked
by gaps and therefore not ready for playout.

In order to compensate for the stepwise increase in ready
data and to allow a playout bitrate equivalent to the total
aggregated throughput, a startup latency must be introduced.
Under the assumption of constant-bitrate video encoding, the
long-term sustainable playout rate can be represented as a line
parallel to the total aggregated data received, with an x-axis
offset equal to the startup latency.

III. PERFORMANCE METRICS

For measuring the performance of progressive download,
there are three general metrics that also apply in the scenario
of simultaneously utilizing multiple networks:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

Fig. 3. Playout timeline of progressive download: the use of heterogeneous
access networks (in this case WLAN and HSDPA) causes gaps in the received
file and results in a step-wise increase of data ready for playout.

1) Playout bitrate: the bitrate at which a movie is played
out is highly relevant for the user experience in terms
of image resolution or frame rate. When using multiple
links, efficient bandwidth aggregation is necessary for
maximizing the playout bitrate.

2) Startup latency: in order not to exhaust the viewers’
patience, it is important to minimize the startup waiting
time. As shown in Figure 3, for every playout timeline,
there exists an optimal startup latency. Due to unknown
future link variances, it is a challenge to predict an
appropriate startup latency.

3) Buffer requirements: for low-power and memory-
constraint devices, it is crucial to minimize the buffer
occupancy.

Due to network heterogeneity and dynamically changing
link conditions, the maximum achievable playout rate, the
minimum possible startup latency and the buffer requirements
are unknown until a download is complete. Therefore, to
investigate what the optimal values of these metrics are in
reality, we conducted our analysis based on log files that
include a precise history of the download progress. Figure 4
illustrates an example snapshot of the received byte ranges
during a progressing download.

Fig. 4. Time snapshot of a download in progress. The shaded areas represent
currently received data. Data that follows a gap is unready for playout and
must be buffered.

Once a file download with a given segment size has com-
pleted, the average aggregated throughput can be calculated by

dividing the total file size by the transfer duration. Following
the goals of maximizing the movie quality while ensuring
a long-term sustainable playout, we set the desired playout
bitrate equal to the average aggregated throughput.

After the desired playout bitrate is decided, the optimal
startup latency and the required buffer requirements can be
calculated from the history of received bytes. By virtually
playing back the entire download, it is possible to find out
the number of bytes that are ready for playout at any given
point in time (bytes ready). Knowing the exact received byte
ranges, it is also possible to determine the amount of data that
must be buffered because it is blocked by gaps in the playout
order (bytes unready).

In order to obtain the minimum required startup latency,
it is possible to calculate for every time t how many bytes
are needed (bytes needed) for achieving a uninterrupted and
sustainable playout at the desired bitrate:

bytes needed(t) = bitrate ∗ t − bytes ready(t) (2)

Fig. 5. The required startup latency can be illustrated as a race between
(a) the number of bytes ready for playout and (b) the desired constant-bitrate
playout. The startup latency must be able to compensate for the maximum
difference between the two pointers (a) and (b).

As depicted in Figure 5, the required startup latency is
the maximum number of bytes needed to satisfy the desired
playout bitrate. It can be calculated as follows:

startup latency =
maxt(bytes needed(t))

bitrate
(3)

The required buffer size can generally be understood as
the maximum capacity needed to store those packets that
were received during the startup waiting time. However, in
a scenario of sending file segments over multiple links, the
buffer size is additionally influenced by received data that
is not in correct playout order. In other words, the buffer
occupancy at a given point in time is the number of received
but unready bytes plus the number of playout-ready bytes
needed to guarantee smooth playout. The maximum buffer
requirements buf req can thus be calculated as:

buf req = max
t

(bytes unready(t)+bytes needed(t)) (4)

In consideration of these three metrics, Section IV will
explore the potentials of using multiple links for enhancing the
performance of on-demand progressive download. Rather than
introducing a complete multilink solution, our current intention
is to gain insight from real-world experiments and to identify
the most promising opportunities for further optimizations.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

IV. EXPERIMENTAL RESULTS

In the following subsections we discuss the performance
of progressive download in a real-world scenario with a
multihomed host that is simultaneously connected to a WLAN
and up to two independent HSPDA networks. The measured
link characteristics between the used client and server are
summarized in Table I.

TABLE I
OBSERVED CHARACTERISTICS OF USED LINKS

WLAN HSDPA

Maximum achievable throughput 640 KB/s 320 KB/s
Average experienced throughput (Φ) 600 KB/s 250 KB/s
Average RTT for header-only IP packets 20 ms 100 ms
Average RTT for full-size IP packets 30 ms 220 ms

All the presented results are based on downloading a
25.2 MB large file from a geographically local web server (the
path lengths from the client to the server are in the range of
7 to 9 IP hops).

A. Bandwidth Aggregation

The most obvious advantage of downloading a file over mul-
tiple network interfaces in parallel is the expected throughput
gain. When simultaneously transferring data over n different
links li (i ∈ {1, ..., n}) with average throughput Φ(li), the
main objective is to maximize the bandwidth aggregation
efficiency η, which we define as:

η =
Φ(l1 + ... + ln)

Φ(l1) + ... + Φ(ln)
(5)

In other words, for achieving ideal bandwidth aggregation,
each link should transfer data at its full capacity at all times;
idle periods should be kept as rare as possible.

Figure 6 compares the throughput gain of combined hetero-
geneous networks to the traditional method of using the fastest
interface alone. For optimal segment sizes (around 1000 KB
in these experiments) the aggregation efficiency is η = 90%.

When choosing small segment sizes, the utilization of the
links is often interrupted due to frequent requests to the server.
This causes a significant loss in bandwidth aggregation effi-
ciency, which indicates that there exists a tradeoff between the
segmentation overhead and the maximum achievable through-
put. Choosing a small segment size increases the overhead and
therefore reduces the aggregation efficiency. For very small
segment sizes, it might even be advantageous to solely use
the highest capacity link.

On the other hand, the use of large segments is problematic
for two reasons. First, there is the last segment problem, which
is most obvious when a file is divided in two segments. Since
the networks are heterogeneous, one interface will finish first
and remain idle until the entire download has finished. Second,
as will be shown later in Sections IV-B and IV-C, the use
of large segment sizes creates a significant increase in the
required startup latency and buffer requirements.

From the results presented in Figure 6, it becomes evident
that an optimal segment size must exist that maximizes the

Fig. 6. The efficiency of bandwidth aggregation heavily depends on the
segment size. In this progressive download scenario, a 25.2 MB large file was
downloaded 50 times using up to 3 combined WLAN and HSDPA networks.

aggregated throughput. The optimal segment size depends pri-
marily on the delay heterogeneity of the used links. It should
therefore be possible to dynamically adjust the segment size
according to predictions based on link monitoring feedback.

B. Startup Latency

The required waiting time before the playout of an on-
demand video is an important factor for the user-perceived
quality of service. For example, when starting a full-length
movie of two hours, users might be willing to wait a minute
before show time, but for shorter clips, the startup should be
perceived as instantaneous.

Due to link variations, the optimal startup latency is un-
known in advance. Additionally, the required startup latency
depends on the desired playout bitrate, which is bounded by
the aggregated throughput over the combined links. If the
desired playout bitrate is well below the aggregated through-
put, then the startup latency could be reduced. Our goal is,
however, to gain from multiple links and to achieve a playout
rate that approaches the average aggregated throughput.

Figure 7 reports the startup latency that is required to obtain
a playout bitrate equal to the average aggregated throughput.
Not only for bandwidth aggregation, but also for the required
startup latency, file segmentation plays a crucial role. When
the segment size is small, it takes less time for transferring
a full segment, which reduces the startup latency. From a
consumer’s perspective, choosing the segment size translates
to the decision between a shorter startup latency or a higher
playout quality.

In addition to the segment size, the startup delay also
depends on the throughput heterogeneity of the links. The
larger the throughput difference between the slowest link and
the others, the larger the amount of bytes needed to satisfy the
desired playout rate (see bytes needed in Figure 5).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

Fig. 7. The required startup latency grows with increasing segment size.

In a deployable implementation, a precise estimation of
the startup latency would be necessary, for instance by using
the startup phase itself for link monitoring purposes. Another
approach of reducing the startup latency could include a TCP-
like slow growth in segment sizes.

C. Buffer Requirements

In order to store received data that is not ready for play-
out, buffering is needed. From a consumer’s perspective, the
required buffer size is of little relevance. However, for the
development of multilink on-demand streaming solutions on
devices with scarce memory, the maximum required buffer
capacity represents an important design factor.

The maximum expected buffer size increases with the
chosen segment size and is in close correlation to the required
startup latency. The only major difference between the two
metrics is their dependence on the number of used interfaces.
As the startup latency is dominated by the slowest link used,
the aggregation of additional faster interfaces will not have
any significant impact on the startup latency. On the other
hand, the buffer capacity increases with the number of used
network interfaces, because each interface causes additional
out-of-order data to be received and buffered.

In a solution for devices with memory constraints, it will
be important to find an optimal balance of the playout bitrate
and the startup latency, given a limited buffer capacity.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the utilization of multi-
ple wireless networks for improving on-demand progressive
download. The presented proof-of-concept implementation op-
erates in the application layer and uses HTTP range retrieval
requests to sequentially transfer a file in segments from a
server to a multihomed host. Even though it is common
for video-on-demand solutions to employ file segmentation
techniques, there has so far been a lack of studies that

demonstrate how progressive download performs when multi-
ple heterogeneous wireless networks are used simultaneously.

From field experiments with combined HSDPA and WLAN
networks we reached the conclusion that there exists an
optimal segment size for which the aggregation efficiency is
maximized. In reality, however, the application does not know
the segment size that achieves the highest aggregated through-
put. Therefore, our future plans include several optimizations
for the prediction of the optimal segment size and the required
startup latency. Both properties are heavily dependent on
the delay heterogeneity and variances in throughput, which
necessitates the use of link monitoring and dynamic resizing of
segments. It is also conceivable that a proportional adjustment
of segment sizes to each link’s capacity will decrease the num-
ber of necessary requests, reduce the periods of underutilized
links, and therefore improve the aggregation efficiency.

As a concluding summary, Table II aligns all challenges that
have been identified during our current research with possible
solutions for future work.

TABLE II
PROBLEMS WITH SEGMENTED FILE DOWNLOAD OVER MULTIPLE LINKS

Problem Possible solution

P1
The time overhead of frequently
requesting small segments causes
inefficient throughput aggregation.

Utilize a mechanism for pipelining
requests and permanently keeping
the server busy.

P2

It is a challenge to predict the op-
timal segment size that maximizes
the aggregated throughput and min-
imizes the startup latency.

Before the actual download begins,
employ a short phase of link moni-
toring to gain knowledge of the de-
lay and throughput characteristics.

P3
In highly dynamic networks, fixed-
size segments increase the required
startup latency and the buffer load.

Employ continuous link monitoring
and adjust the segment sizes in pro-
portion to the links’ throughput.

P4
The last segment is often down-
loaded by the slowest interface,
causing idle time on all others.

The last segment may be split
among all interfaces in a divide-
and-conquer fashion.

REFERENCES

[1] CISCO SYSTEMS, I. Cisco visual networking index: Forecast and
methodology, 2008–2013. Tech. rep., Cisco Systems, Inc., June 9 2009.

[2] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER,
L., LEACH, P., AND BERNERS-LEE, T. Hypertext transfer protocol –
HTTP/1.1. IETF, 1999.

[3] INC., A. Mac OS X server – QuickTime streaming and broadcasting
administration, 2007.

[4] IYENGAR, J. R., AMER, P. D., AND STEWART, R. Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths.
IEEE/ACM Trans. Netw. 14, 5 (2006), 951–964.

[5] KASPAR, D., EVENSEN, K., HANSEN, A. F., ENGELSTAD, P.,
HALVORSEN, P., AND GRIWODZ, C. An analysis of the heterogeneity
and IP packet reordering over multiple wireless networks. In IEEE
Symposium on Computers and Communications (ISCC) (2009).

[6] NETWORKS, M. Internet television: Challenges and opportunities. Tech.
rep., Move Networks, Inc., November 2008.

[7] SIVAKUMAR, H., BAILEY, S., AND GROSSMAN, R. Psockets: The
case for application-level network striping for data intensive applications
using high speed wide area networks. Supercomputing, ACM/IEEE 2000
Conference (Nov. 2000), 38–38.

[8] WIKIPEDIA. Comparison of download managers, June 2009.
[9] ZAMBELLI, A. IIS smooth streaming technical overview. Tech. rep.,

Microsoft Corporation, March 2009.
[10] ZHANG, M., LAI, J., KRISHNAMURTHY, A., PETERSON, L., AND

WANG, R. A transport layer approach for improving end-to-end
performance and robustness using redundant paths. In ATEC ’04:
Proceedings of the USENIX Annual Technical Conference (2004).

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

	Select a link below
	Return to Proceedings
	Return to Main Menu

