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Abstract—Shared-memory concurrency is the prevalent
paradigm used for developing parallel applications targe¢d
towards small- and middle-sized machines, but experience
has shown that it is hard to use. This is largely caused
by synchronization primitives which are low-level, inherently
nondeterministic, and, consequently, non-intuitive to us. In
this paper, we present theNornir run-time system. Nornir
is comparable to well-known frameworks like MapReduce
and Dryad, but has additional support for process structures
containing cycles. It is based on the formalism of Kahn
process networks, which we deem as a simple and deterministi
alternative to shared-memory concurrency. Experiments wth
real and synthetic benchmarks on up to 8 CPUs show that
performance in most cases improves almost linearly with the
number of CPUs, when not limited by data dependencies.

I. INTRODUCTION

It is widely recognized that developing parallel and
distributed programs is inherently more difficult than de-
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eases debugging, which is an otherwise a notoriously hard
problem with parallel and distributed computations. Com-
posability guarantees that assembling together indemtiyde
developed components will yield the expected result.

In our earlier paper [6], we have evaluated implementation
options for KPNs on shared-memory architectures. In a
follow-up paper [7], we have presented case studies of
modeling with KPNs and their comparison with MapReduce.
We showed that KPNs allow more natural problem modeling
than MapReduce, and that implementations of real-world
tasks on top of Nornir outperform the corresponding MapRe-
duce implementations. In this paper, we give implementatio
details about the new version of Nornir, which is internally
significantly different from the one described in [6]; this
same implementation is also used for evaluation in [7]. We
also investigate its performance and scalability charmste
tics of Nornir using a set of benchmarks on a workstation-

veloping sequential programs. As a consequence, several@ss machine with 8 cores. Our performance experiments

frameworks that aim to make such development easie

feveal some weaknesses in our current implementation, but

have emerged, such as Google's MapReduce [1] vahooRevertheless indicate that KPNs are a viable programming

PigLatin [2] which uses Hadodpas the back-end, Phoenix
[3], and Microsoft’s Dryad [4]. All of these frameworks are
gaining in popularity, but they lack a feature that is catic

to our application domains: the ability to model iterative

model for parallel applications on shared-memory architec
tures.

II. KAHN PROCESS NETWORKS

algorithms, i.e., algorithms containing feedback loops in  kpns MapReduce and Dryad have in common two

their data-path.

important features, both of which significantly simplify

Much of our research focuses on the execution of compleeyejopment of parallel applications: 1) communicatiod an
parallel programs, such as real-time encoding of 3-D V'de‘%arallelism are explicitly expressed in the applicatioapr;

streams and data encryption, where cycles are more ru

individual processes are written in the usual sequential

than the exception (see figure 2). Thus, we cannot use anyanner, and do not have access to each other’s state. In ad-
of the existing frameworks, so we have turned towards theyition KPNs have a unique combination of other desireable

flexible formalism of Kahn process networks (KPN) [5]. properties:

KPNs retain the nice properties of MapReduce and Dryad,
but in addition support cycles. Even though KPNs are an
inherently distributed model of computation, their imple-
mentation for shared-memory machines and its performance
is worth studying for many reasons (see section Il), the main
ones being determinism and, consequently, composability.
Determinism guarantees that a program, given the same
input, will behave identically on each run. This signifidgnt

1An open-source MapReduce implementation in Java, availabhttp:
/Ihadoop.apache.org/

« DeterminismKPNs are deterministic, i.e., each execu-
tion of a network produces the same output given the
same input, regardless of scheduling strategy.

« Reproducible faultsOne consequence of determinism
is that faults are consistently reproducible, which is
otherwise a notoriously difficult problem with paral-
lel and distributed systems. Reproducibility of faults
greatly eases debugging.

2Provided that processes themselves are deterministic.



« Composability. Another consequence of determinism i i
is that processes can be composed: connecting the @\1‘ 0
output of a process computing(x) to the input of /v@—’
a process computing(z) is guaranteed to compute 12
g(f(z)). Therefore, processes can be developed and

tested individually and later put together to perform Figure 1. An example KPNi; andis are external input channels t;){ldthe
network (assumed to be numbers)is the external output channel, a#

more cqmp_lex tasks. L L . is an internal channel. The inputs and the output are relayettie formula

« Deterministic synchronizatiorSynchronization is em- = 2i; 44,

bodied in the blocking receive operation. Thus, de-

velopers need not use other, low-level and non-

deterministic synchronization mechanisms such as mudnbounded space for their execution. However, any real

texes and condition variablés. implementation is constrained to run in finite memory. A
« Arbitrary communication graph&Vhereas MapReduce common (partial) solution to this is to assigapacitiesto

and Dryad restrict developers to a parallel pipelinechannels and redefine the semantics of senthléck the

structure and directed acyclic graphs (DAGs), KPNssending process if the delivery would cause the channel to

allow cyclesin the graphs. Because of this, they canexceed its capacity. Under such send semanticaytiicial

directly model iterative algorithms. With MapReduce deadlockmay occur, i.e., a situation where a cyclically

and Dryad this is only possible by manual iteration, dependent subset of processes blocks on send, which would

which incurs high setup costs before each iteration [3].continue running in the theoretical model. The algorithm of
« No prescribed programming modelUnlike MapRe- Geilen and Basten [8] resolves the deadlock by traversing

duce, KPNs do not require that the problem be modeledhe cycle to find the channel of least capacity and enlarging

in terms of processing over key-value pairs. Conseit by one message, thus resolving the deadlock.

guently, transforming a sequential algorithm into a It also is worth noting that KPNs are not a universal

Kahn process often requires minimal modifications tosolution for what is an inherently difficult problem of

the code, consisting mostly of inserting communicationdeveloping parallel and distributed applications. Everutih

statements at appropriate places. determinism is a desirable property from the standpoint of

A KPN [5] has a simple representation in the form of Program d(_esign and debuggi_ng, it limits _the applicatiorlslfo
a directed graphwith processesas nodes anghannelsas KPNSs. A disk scheduler serving many cllent_s is a very sim-
edges, as exemplified by figure 1. A process encapsulatd¥€ €xample of a use-case that is inappropriate for KPNSs. It
data and a single, sequential control flow, independent of'ust periodically serve all clients in some order to preserv
any other process. Processes are not allowed to share d4@4Ness, say round-robin, but since read is blocking, atxese
and may communicate only by sending messages over chaff requests from one chem can indefinitely postpone servin
nels. Channels arinfinite FIFO queues that store discrete ©f requests from other clients. Such use-cases mandate use
message<Channels havexactly onesender andnereceiver ~ ©f other frameworks, or extending the KPN formalism by
process on each end (1:1 communication), and every proceggn_-determlmstlc construct(s) suchras n channels and/or
can have multiplénput andoutputchannels. Sending a mes- Plling.
sage to the channel always succeeds, but trying to receive
a message from an empty chanb#&cksthe process until
a message becomes available. These properties define theThe Nornir run-time system is implemented in C++, and
operational semanticef KPNs and make the Kahn model it runs on Windows and POSIX operating systems (Solaris,
deterministic i.e., the history of messages produced on theLinux, etc.). The implementatidreonsists of a Kahn process
channels does not depend on how the process executigP) scheduler, message transport and deadlock detection
order. Less restrictive models, e.g., those that allow nonand resolution algorithms.

blocking reads or polling, would result in non-determiitist
behavior. A. Process scheduler

~ The theoretical model of KPNs described so far is ideal-  Since KPNs are deterministic, they give a great freedom in
ized in two ways: 1) it places few constraints on processmplementing the process scheduler: daly scheduler will
behavior, and 2) it assumes that channels have infinitgesult in a KPN execution that generates the full oufput.

capacities. These assumptions are somewhat problemaiig this context, fairness means that the execution of a ready
because they allow for the construction of KPNs that neegyrocess will not be indefinitely postponed.

IIl. NORNIR

SMany inexperienced developers expect that mutexes and Gis wp 4Code is available at: http://simula.no/research/nete/sftware
waiting threads in FIFO order, whereas the wake-up orden iseality 5f the scheduler is not fair, the output will be correct, basgibly shorter
non-deterministic. than it would be under a fair scheduler.



KPN networks could be built on top of native OS mech- will compete for access to any given channel, so the expected
anisms, with each KP being an OS-thread. Channels wouldumber of spins in the case of contention on a channel is
be protected by blocking mutexes, and condition variablesery small.
would be used as the sleep / wakeup mechanism. However, Since KPs are executing in a shared address space in
we have investigated this approach in an earlier paper [6bur implementation, it is still possible that they modify
and found that user-mode scheduling of many KPs over feveach others stdteand thus ruin the KPN semantics. There
kernel threads is considerably more efficient. are at least two ways of implementing a channel transport

Nornir can be configured to use different schedulingmechanism that lessens the possibility of such occurrence:

policies. In addition to classical work-stealing [9], wevBa | A message can be dynamically allocated and a pointer
also implemented a policy based on graph-partitioning [10] {0 it sent in a class that implementsove semantics
which tries to reduce the amount of inter-CPU synchroniza-  (e.g. aut o_ptr from the C++ standard library).

stealing policy due to its superiority and space restniio buffers which is, in our case, done by invoking the
When the KPN is startedy runner threads (“runners”) copy-constructor.

are created and scheduled by the OS onto the avallabkﬁ/e have initially implemented the first approach, which

CE_UE' Each rl_mnet[ |tr1nplemr<]ents ta r\]/vorkbste?hngf pOIICy’requires dynamic memory (de-)allocation for every mes-
which our experiments have shown to have best per Ormancseage creation and destruction, but is essentially zerg-cop

for computationally intensive tasks on few CPUs. With workOur current implementation uses the second approach be-

stealing, each runner has a private run queue of ready KP&’.—;wse measurements on Solaris have shown that memory

If this queue is empty, '_t trle_s_to steal a KP from a randomly(de)allocation, despite having been optimized by using So-
chosen runner. For simplicity, we do not use the non-

. ; . ) . laris’s umem allocator, has larger overhead than copying
blocking queue described in [9]; instead we use an ordlnar‘yis long as the message size is less thar256 bytes
mutex per run queue. This might become problematic o '

hi ith but q d that introduci s of now, our implementation cannot choose between
machines with many cores, but we deemed that INtroduCiNg;ga oyt mechanisms depending on the message size, so we
the additional complexity of a non-blocking queue was

_ recommend that large blocks be transfered as pointers.
unnecessary at this stage of our research.

. Since C++ is a statically-typed language, our channels
The work-stealing scheduler uses a user-mode contexgr y-yp guag

. : : ; . “are alsostrongly-typed i.e., they carry messages of only
switch. On Solaris and Linux running on AMD64 archi- a single type. Sinceommunication portgendpoints of a

tecture, we employ optimized, hand-crafted assembly COOI8hanne|; used by processes to send and receive messages)

for_g(_)ntext.-swnch; on _other platforms we use OS'prOV'dedand channels are parametrized with the type of message
facilities: fibers on windows, andgwapcont ext () on

L. . .. that is being transmitted, compile-time mechanisms preven
POSIX. The latter is inefficient because each context SW'tC@ending megssages of wrong tyToes Furthermore. the rpun-time

requires a system call to save and restore the signal mas'%verhead of dynamic dispatch based on message type are

B. Message transport eliminated. Nevertheless, if dynamic typing is desiredait
In KPNs, channels have a two-fold role: 1) to interact with .be implemented by sending byte arrays over channels, or
in a more structured and safe manner by using a standard

the scheduler, i.e., block and unblock processes on elthesrolution such aBoost. Variant(see http://www.boost.org).

side of the channel, and 2) to transport messages. Thd initia . L .
capacity of the channel may be specified when the channel As KPs have only blocking read at their disposal, it

is first created; if omitted, the default capacity taken from'> U ?ef”' to provide an indication of no more messages
an environment variable is used. arriving on the channel_ (EOF)._Qne way of d0|_ng_th|.s is

Interaction with the scheduler is needed for the cases o Oienljozerygsssg?/am;z z?e;;ﬂc (;/a(lgg tfga)xt r;’]\?”htmgécate
a full or empty channel. Receiving from an empty channel ’ ’ yp g 9

. ; meaningful in a certain context, so no value is available
or sending to a full channel must block the acting process S
. o . fo encode the EOF indication. In such cases, one would be
Similarly, receiving from a full channel or sending to an

forced to use solutions that are more cumbersome to use and

empty channel must unblock the process on the other side o :
of the channel impose additional overhead (for example, dynamic memory

. allocation withNULL pointer value representing EOF). We
Message transport over channels is protectedbbgy- . .
wait mutexes: if a KP cannot obtain the channel’'s lock i,[have therefore extended channels by introducing support fo
) " "EOF indication the sender can set the EOF status on the

W'" exp_I|C|tIy yleld_to the scheduler betwegr) iterationstil channel when it has no more messages to send. After EOF
it has finally obtained the lock. Busy-waiting allows other . i
on the channel has been set, the receiver will be able to

processes to proceed with their computations, while amgidi
the complexities of a full-fledged sleep/wakeup mechanism. ec., is an inherently unsafe language, so there is no wayefenting
Furthermore, since channels are 1:1, at most two processess.



read the remaining buffered messages. After all messagdyy using intra-prediction (relative to macroblocks in the-

have been read, the next call to the portscv method rent frame F},) or inter-prediction (relative to macroblocks
will immediately return false (without changing the targetin the referenceframe(s)F,,_1). The encoded macroblock
message buffer), and the naxécv call will permanently  goes through the forward path and ends at the entropy coder

block the process. (EC), which is the final output of the encoder. The decision
. , on whether to apply intra- or inter-prediction is based on
C. Deadlock detection and resolution factors such as the desired bandwidth and quality. To be able

Deadlock detection and resolution makes it possible tdo estimate quality, the codec needs to apply transformatio
execute KPNs in a finite space. Each time a process woulihverse to those of the forward path, and determine whether
block, either on read or on write, a deadlock detectionthe decodedrame satisfies the quality constraints.
routine is invoked. Since communication is 1:1, every cy- This example demonstrates that feedback loops are not
cle of blocked KPs is a ring; a property which greatly only a matter ofconveniencgbut actuallyessentiaffor the
simplifies detection. The deadlock detection and resatutio expressive power of a programming framework. Thus, as
algorithm in our current implementation uses a centralizedilready argued in the introduction, neither MapReduce nor
data-structure (the blocking graph) and thus must run whil@®ryad can be used to implement the H.264 encoder.
holding a single global mutex. If no cycle is found, the KP
is blocked and this fact is recorded in the blocking graph.
Otherwise, the capacity of the smallest channel in the cycle

is increased by one, as suggested by [8]. Similarly, resgivi  To evaluate the performance and scalability of applica-
from a full channel unblocks the sending side and removegons modeled as KPNs, we have used the H.264 KPN net-
the corresponding edge from the blocking graph. work (see section IV and Figure 2), a random network and a
pipeline with artificial workloads, as well as AES encryjtio
with a real workload. The test programs have been compiled
We have implemented a detailed accounting system thajs 64-bit with GCC 4.3.2 and maximum optimizations
enables us to monitor many different aspects of Nornir's run(- ng4 - 08 - mar ch=opt er on). All benchmarks have
time performance, such as cpu time used by each processeen configured to use the work-stealing scheduling policy,
number of context-switches, number of |00p iterations ininitia| channel Capacity of 64 messages. Nornir has been
waiting on spinlocks, number of process thefts, number otompiled with accounting turned on, since this is necessary
messages sent to processes on the same or different CPl.study performance effects of deadlock detection. We have
We have measured (see [6] for methodology) that a singleun them on an otherwise idle 2.6 GHz AMD Opteron
transaction consisting of [seret context switch— receive]  machine with 4 dual-core CPUs, 64 GB of RAM running
takes1.4us with accounting enabled. When accounting isinux kernel 2.6.27.3. Each data point is an average of
disabled, this time drops te 0.68us. The largest overhead 10 consecutive measurements of the total real (wall-clock)
in our accounting mechanism stems from the measuremefgnning time. This metric is most representative because it
of per-process CPU time, which requires a system calhccurately reflects the real time needed for task completion

immediately before a process is run and immediately afteyhich is what the end-users are most interested in.
a process returns to scheduler.

V. PERFORMANCE EVALUATION

D. Accounting

IV. CASE STUDY. H.264ENCODING A. Results

KPNs are especially well suited for stream-processing  H.264: For the purpose of evaluation of Nornir, we
applications. Indeed, each process is a function that takdsave used an artificial workload consisting of loops that
as input one or more input data streams and producesonsume the amount of CPU time which are on average
one or more streams as output. H.264 is a modern, lossysed by a real codec in the different blocks. To gather
video-compression format that offers high compressiogsrat this data, we have profiled x264, an open-source H.264
with good quality. Our KPN representation of an H.264 encoder, with the cachegrind tool and mapped the results
video encoder (see figure 2) is a slight adaptation of theo the H.264 block-diagram (see figure 2). The benchmark
encoder block diagram found in [11], with functional blocks “encoded” 30 frames at rate of 1 frame per second (fps), with
implemented as KPs. the number of workers varying from 1...512 in successive

The input video consists of a series of discrete framespowers of two. From the results in figure 3 we can see that
and the encoder operates on small parts of the frame, calldtie performance gets slightly better as the number of werker
macroblocks, typicallyi6 x 16 pixels in size. The encoder per stage increases up to the number of CPUs, and remains
consists of “forward” and “reconstruction” datapaths whic constant afterwards. The best achieved speedup on 8 CPUs
meet at the prediction block (P). The role of the predictionis only ~ 2.8; this limitation is caused by data-dependencies
block is to decide whether the macroblock will be encodedn the algorithm.
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Figure 2. H.264 block-diagram, adapted from the H.264 vplaiper [11]. Inputs to the codec are current and referenceelaf’, and F;,_1). Since P,
MC and ME blocks are together using over 50% of the total msiog time and are perfectly parallelizable, we have paizdid each block by dividing
the work overn workers. The figure on the right exemplifies parallelizat@na single block.

228 pytes (256 MB), and the chunk given to each individual

35- ‘o of cPUs worker has been varied from t'7 to 22® and the total

30- ———— number of workers has been varied from 2048 to 1. The

25 e 1 number of encryption passes that each worker will perform
e .. . P over its assigned chunk has been set to 40. The results,
£ — ) | S shown in figure 4, show perfect linear speedup with the
2% K I = 4 number of CPUs, as soon as the number of workers becomes
5 104 N . greater or equal to the number of CPUs. Note that the

5- number of workers increases to thedt in the figure, when

0- 5 8 given work divisionw (x-axis), the number of workers

| | |
- N < ©

is 228~%, For w = 28 there cannot be any speedup on
multiple CPUs because there is only a single worker process
encrypting the whole chunk.

Random network:A random network is a directed
Figure 3. H.264: performance of “encoding” 30 frames-at fps. graph consisting of a source KP, a number of intermediate
KPs arranged im, layers (user specified) and a sink KP. The

number of KPs in each layer is randomly selected between 1

64—

|
o
3]

16—
128 -
256 -
512 -

Work division

80- and the user-specified maximum numberThe intention of
No. of CPUs . . . . . . .
this construction is to mimic, with fine granularity, networ

60 e 1 protocol graphs or parallelism in algorithms. The network
D may have additiond back-edges which create cycles. Each
. | M node is constrained to have at most one back-edge, be it
é / - 4 outgoing or incoming.
5 20 | The workload of the random network is determined by the
£ . ° formulanT'/d, wheren is the number of messages sent by

o N . the source is a constant that equals 1 second of CPU-

time, andd is the work division factor. In effect, each single
message sent by the source (a single integer) carries a work
amount equalling approximately = 7'/d seconds of CPU
time. The workloady is distributed in the network (starting
Figure 4. AES encryption benchmark. from the source KP) with each KP reading messages
from all of its in-edges. Once all messages are read, they
are added together to become thaits of CPU-time which
AES: The AES KPN has the same topology as thethe KP is to consume before distributingo its n,, forward
network on the right in figure 2; this topology is in fact out-edges. Then, if a process has a back-edge, a message is
common for algorithms that can process different chunksent/received (depending on the edge direction) along that
of input independently. The source KP (denoted “0”) handschannel. As such, the workloaddistributed from the source
out equally-sized memory chunkstoworker KPs (denoted KP will equal the workloadw collected by the sink KP.
“1” ..."n") which reply back when they have encrypted Messages sent along back-edges do not contribute to the
the given chunk. The exchanged messages are carrying ontetwork’s workload; their purpose is solely to generateenor
pointer-length pairs (16 bytes in total). complex synchronization patterns.
In this benchmark, we have set the total block size to Figure 5(a) shows the absolute running times of a random
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Figure 6. Deadlock detection rate on the random graph beadhm Figure 7. Pipeline speedup for message sizes of 8,...,2048 hnd three
different work divisions ¢).

graph with cycles at different values df whereas figure
5(b) shows speedup over running time on 1 CPU. In ou
experiments, we have set = d. As d increases to 100,
the available parallelism in the network increases, and th
running time decreases; in figure 5(b) we see that 100

Ipreceding process in the pipeline. In all previous bench-
marks, the communicated messages have been rather small
less than 32 bytes). We have used a pipeline consisting of 50
tages to study the impact of message size on performance.
i : As previously, d messages have been generated by the
achieves perfect speedup on multiple CPUs.dAt 1000, g5 rce process, each containingl seconds of CPU time.

running time starts increqsi_ng linearly with and grows A noticable slow-down (see figure 7) happens regardless of
faster on more CPUs. This is caused by frequent deadloc’%essage size and only dt— 10°, which is equivalent to

detections, as witnessed by figure 6 which shows the numbar0 us of work per message, which is only 7 times greater
of started deadlock detections per second of running iM& -, the time needed for a single transaction (see section
Since deadlock detection uses a global lock to protecﬁl_D) As expected, the drop in performance @t= 10

the blocking graph, this limits Nornir's scalability on $hi 5 5o tional to message size, but also to the number of

benchmark. A possible way of avoiding this problem, in ouUr=pys. Larger message sizes take more time to copy, which

_current implementation, is to mcrease_defgu_lt channeeh(_:ap causes greater contention over channel locks with inargasi
ity to a larger value. A long-term solution is implementing a number of CPUs

distributed deadlock detection and resolution algoritA2] [

Pipeline: A pipeline does the same kind of processingB- Summary
as the random network, except that each layer has exactly We have evaluated several aspects of Nornir: scalability
one process and each process takes its only input from th&f the scheduler with number of processes and CPUSs,



overheads of copying message-passing and overheads af embedded systems, which employs KPNs for application
centralized deadlock-detection and resolution. Our figslin modeling and simulation. As such, it is not suitable for
can be summarized as follows: executing KPNs where performance is important.

« Nornir can efficiently handle a large number of pro- Phoenix [3] is a MapReduce implementation optimized
cesses. Indeed, in the AES benchmark, it achieved afor multi-core architectures. We have reimplemented word
almost perfect linear speedup of 7.5 on 8 CPUs withcount and k-means examples using Nornir, and found that
2048 processes. our implementation outperforms that of Phoenix by factors

« Message sizes up to 512 bytes have negligible impacef up to 2.7 and 1.7, respectively [7]. The main reason
on performance. The cost of message copying starts ttor this is that, unlike MapReduce, KPNs allow us to
be noticeable at message size of 2048 bytes. Protectse algorithms and build a processing graph that are well
ing channels with mutexes has negligible performancenatched to the structure of the underlying problem.
impact on 8 CPUs. Streamlt [16] is a language for simplifying implemen-

« As shown by the pipeline benchmark, context-switchtation of stream programs described by a graph consisting
and message-passing overheads start to have a nef computational blocks (filters) having a single input and
ticeable impact on the overall performance when theoutput. Filters can be combined in fork-join patterns and
amount of work per message is less thaf times the  loops, but must provide bounds on the number of produced
transaction time (see section I1I-D). and consumed messages, so a Streamlt graph is actually a

« The centralized deadlock detection and resolution alsynchronous dataflow process network [17]. The compiler
gorithm can cause serious scalability and performanc@roduces code which can exploit multiple machines or
problems on certain classes of applications. In ourCPUs, but their number is specified at compile-time, i.e.,
evaluation, this was the casaly for the random graph a compiled application cannot adapt to resource avaitgbili
benchmark. PigLatin [2] is a language for performing ad-hoc queries

« Again, as shown by the random graph benchmarkover large data sets. Users specify their queries in a high-
the default channel capacity of 64 bytes, which welevel language which provides many features of operators
have used in our benchmark, can be too small in cerfound in SQL. Unlike SQL, which is declarative and heavily
tain casses. Increasing it would mitigate overheads ofelies on query optimizer for efficient query execution, Pig
deadlock detection, but it would also increase memoryatin allows users to precisely specifyow the query will
consumption. be executed. In effect, users are constructing a dataflow

« Performance can be further increased by turning offgraph which is then compiled into a pipeline of MapReduce
detailed accounting in cases where it is not needed. programs and executed on a Hadoop cluster, which is an

« We have not noticed any scalability problems with open-source, scalable implementation of MapReduce. All
using mutexes to protecting the scheduler's queuesf the Pig latin operators, such & LTER and JO N,
instead of using the non-blocking queue of [9]. are directly implementable as Kahn processes. Taking our

Although there is room for improvement in Nornir (es- €xperimental results [7] into consideration, we believat th
pecially in deadlock detection), our results indicate thatcompiling Pig latin programs into Nornir graphs would be
message-passing and KPNs in particular are a viable pr@dvantageousfortheir performance on multi-core machines
gramming model for high-performance parallel applicagion

. VII. CONCLUSION AND FUTURE WORK
on shared-memory architectures.

In this paper we have described implementation details
VI. RELATED WORK of Nornir, our run-time environment for executing parallel
Very few general-purpose KPN runtime implementationsapplications specified in the high-level framework of Kahn
exist, among them YAPI [13] and Ptolemy Il [14]. YAPI is process networks, which allow cycles in the communication
not a pure KPN implementation, as it extends the semanticgraph of the program. Since this feature is crucial for imple
and thus introduces the possibility of non-determinis, it menting iterative algorithms such as H.264 encoding, Norni
code-base is too large for easy experimentation (120 kB veomplements existing frameworks such as MapReduce and
50 kB in our implementation), and the implementation didDryad.
not have inherent support for multiple-CPUs. Ptolemy Il is We have evaluated Nornir's efficiency with several syn-
a Java-based prototyping platform for experimenting withthetic (H.264 encoding, random KPN, pipeline) and one
various models of computation, and it spawns one threadeal (AES) application on an 8-core machine. Our results
for each Kahn process, which is rather inefficient for largeindicate that Nornir can scale well, but that in certain sase
networks. The amount of code that the JVM consists ofrandom KPN) the centralized deadlock detection is detri-
would make it prohibitively difficult to experiment with low  mental for performance, and that default channel capacity
level mechanisms, such as context-switches. PNRunner, & 64 bytes is too small for some applications. We have
part of the Sesame project [15], is an event-drigsgnulator  also found that copying semantics of message-passing start



having a slight, but noticeable impact on performance at[8] M. Geilen and T. Basten, “Requirements on the execution
message sizes of 2048 bytes. Furthermore, Nornir can
support parallelism at fine granularity: its overheads bezo
noticeable at processing time tius per message, which is
~ 7 times greater than the combined overhead of schedulingg]
and message-passing.

The first, and most important, step in our future work
is increasing Nornir's scalability by replacing a centzaetl
deadlock detection algorithm with a a distributed one [12].
This will also be the first step towards a distributed version10]
of Nornir, executing on a cluster of machines. Further
performance increases can be gained by using non-blocking
data structures. In the scheduler, we might need to use the
non-blocking queue of [9] instead of mutexes in order to
support scalability beyond 8 CPUs. We might also use a
single-producer, single-consumer FIFO queue [18] to avoid11]
yielding between en-/dequeue attempts. Since yielding in-
curs switching to new control flow and new stack, we expect
that this improvement will further increase performance by[12]
reducing pressure on data and instruction caches.
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