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Stein Gjessing,Member, IEEE, Olav Lysne,Member, IEEE

Abstract— As the Internet takes an increasingly central role
in our communications infrastructure, the slow convergence of
routing protocols after a network failure becomes a growing
problem. To assure fast recovery from link and node failures in
IP networks, we present a new recovery scheme called Multiple
Routing Configurations (MRC). Our proposed scheme guarantees
recovery in all single failure scenarios, using a single mechanism
to handle both link and node failures, and without knowing the
root cause of the failure. MRC is strictly connectionless, and
assumes only destination based hop-by-hop forwarding. MRC is
based on keeping additional routing information in the routers,
and allows packet forwarding to continue on an alternative
output link immediately after the detection of a failure. It can be
implemented with only minor changes to existing solutions. In
this paper we present MRC, and analyze its performance with
respect to scalability, backup path lengths, and load distribution
after a failure. We also show how an estimate of the traffic
demands in the network can be used to improve the distribution
of the recovered traffic, and thus reduce the chances of congestion
when MRC is used.

I. I NTRODUCTION

In recent years the Internet has been transformed from a
special purpose network to an ubiquitous platform for a wide
range of everyday communication services. The demands on
Internet reliability and availability have increased accordingly.
A disruption of a link in central parts of a network has the po-
tential to affect hundreds of thousands of phone conversations
or TCP connections, with obvious adverse effects.

The ability to recover from failures has always been a cen-
tral design goal in the Internet [1]. IP networks are intrinsically
robust, since IGP routing protocols like OSPF are designed
to update the forwarding information based on the changed
topology after a failure. This re-convergence assumes full
distribution of the new link state to all routers in the network
domain. When the new state information is distributed, each
router individually calculates new valid routing tables.

This network-wide IP re-convergence is a time consuming
process, and a link or node failure is typically followed by a
period of routing instability. During this period, packetsmay
be dropped due to invalid routes. This phenomenon has been
studied in both IGP [2] and BGP context [3], and has an
adverse effect on real-time applications [4]. Events leading
to a re-convergence have been shown to occur frequently [5].

Much effort has been devoted to optimizing the different
steps of the convergence of IP routing, i.e., detection, dissem-
ination of information and shortest path calculation, but the
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convergence time is still too large for applications with real
time demands [6]. A key problem is that since most network
failures are short lived [7], too rapid triggering of the re-
convergence process can cause route flapping and increased
network instability [2].

The IGP convergence process is slow because it isreactive
and global. It reacts to a failure after it has happened, and
it involves all the routers in the domain. In this paper we
present a new scheme for handling link and node failures
in IP networks. Multiple Routing Configurations (MRC) is a
proactiveandlocal protection mechanism that allows recovery
in the range of milliseconds. MRC allows packet forwarding
to continue over pre-configured alternative next-hops imme-
diately after the detection of the failure. Using MRC as a
first line of defense against network failures, the normal IP
convergence process can be put on hold. This process is
then initiated only as a consequence of non-transient failures.
Since no global re-routing is performed, fast failure detection
mechanisms like fast hellos or hardware alerts can be used
to trigger MRC without compromising network stability [8].
MRC guarantees recovery from any single link or node failure,
which constitutes a large majority of the failures experienced
in a network [7]. MRC makes no assumptions with respect to
the root cause of failure, e.g., whether the packet forwarding
is disrupted due to a failed link or a failed router.

The main idea of MRC is to use the network graph and
the associated link weights to produce a small set of backup
network configurations. The link weights in these backup
configurations are manipulated so that for each link and
node failure, and regardless of whether it is a link or node
failure, the node that detects the failure can safely forward the
incoming packets towards the destination on an alternate link.
MRC assumes that the network uses shortest path routing and
destination based hop-by-hop forwarding.

The shifting of traffic to links bypassing the failure can
lead to congestion and packet loss in parts of the network [9].
This limits the time that the proactive recovery scheme can
be used to forward traffic before the global routing protocolis
informed about the failure, and hence reduces the chance that
a transient failure can be handled without a full global routing
re-convergence. Ideally, a proactive recovery scheme should
not only guarantee connectivity after a failure, but also doso in
a manner that does not cause an unacceptable load distribution.
This requirement has been noted as being one of the principal
challenges for precalculated IP recovery schemes [10]. With
MRC, the link weights are set individually in each backup
configuration. This gives great flexibility with respect to how
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the recovered traffic is routed. The backup configuration used
after a failure is selected based on the failure instance, and
thus we can choose link weights in the backup configurations
that are well suited for only a subset of failure instances.

The rest of this paper is organized as follows. In Sec. II
we describe the basic concepts and functionality of MRC. We
then define MRC formally and present an algorithm used to
create the needed backup configurations in Sec. III. In Sec. IV,
we explain how the generated configurations can be used to
forward the traffic safely to its destination in case of a failure.
We present performance evaluations of the proposed method
in Sec. V. In Sec. VI, we discuss how we can improve the
recovery traffic distribution if we have an estimate of the
demands in the network. In Sec. VII, we discuss related work,
and finally we conclude in Sec. VIII.

II. MRC OVERVIEW

MRC is based on building a small set of backup routing
configurations, that are used to route recovered traffic on
alternate paths after a failure. The backup configurations differ
from the normal routing configuration in that link weights
are set so as to avoid routing traffic in certain parts of the
network. We observe that if all links attached to a node are
given sufficiently high link weights, traffic will never be routed
through that node. The failure of that node will then only
affect traffic that is sourced at or destined for the node itself.
Similarly, to exclude a link (or a group of links) from taking
part in the routing, we give it infinite weight. The link can
then fail without any consequences for the traffic.

Our MRC approach is threefold. First, we create a set of
backup configurations, so that every network component is
excluded from packet forwarding in one configuration. Second,
for each configuration, a standard routing algorithm like OSPF
is used to calculate configuration specific shortest paths and
create forwarding tables in each router, based on the configu-
rations. The use of a standard routing algorithm guarantees
loop-free forwarding within one configuration. Finally, we
design a forwarding process that takes advantage of the backup
configurations to provide fast recovery from a component
failure.

In our approach, we construct the backup configurations
so that for all links and nodes in the network, there is a
configuration where that link or node is not used to forward
traffic. Thus, for any single link or node failure, there will
exist a configuration that will route the traffic to its destination
on a path that avoids the failed element. Also, the backup
configurations must be constructed so that all nodes are
reachable in all configurations, i.e., there is a valid path with
a finite cost between each node pair. Shared Risk Groups
can also be protected, by regarding such a group as a single
component that must be avoided in a particular configuration.
In Sec. III, we formally describe MRC and how to generate
configurations that protect every link and node in a network.

Using a standard shortest path calculation, each router
creates a set of configuration-specific forwarding tables. For
simplicity, we say that a packet is forwarded according to a
configuration, meaning that it is forwarded using the forward-
ing table calculated based on that configuration. In this paper

we talk about building a separate forwarding table for each
configuration, but we believe that more efficient solutions can
be found in a practical implementation.

When a router detects that a neighbor can no longer be
reached through one of its interfaces, it does not immediately
inform the rest of the network about the connectivity failure.
Instead, packets that would normally be forwarded over the
failed interface are marked as belonging to a backup config-
uration, and forwarded on an alternative interface towardsits
destination. The selection of the correct backup configuration,
and thus also the backup next-hop, is detailed in Sec. IV.
The packets must be marked with a configuration identifier, so
the routers along the path know which configuration to use.
Packet marking is most easily done by using specific values
in the DSCP field in the IP header. If this is not possible,
other packet marking strategies like IPv6 extension headers or
using a private address space and tunneling (as proposed in
[11]) could be used.

It is important to stress that MRC does not affect the failure-
free original routing, i.e., when there is no failure, all packets
are forwarded according to the original configuration, where
all link weights are normal. Upon detection of a failure, only
traffic reaching the failure will switch configuration. All other
traffic is forwarded according to the original configurationas
normal.

If a failure lasts for more than a specified time interval,
a normal re-convergence will be triggered. MRC does not
interfere with this convergence process, or make it longer than
normal. However, MRC gives continuous packet forwarding
during the convergence, and hence makes it easier to use
mechanisms that preventsmicro-loops during convergence,
at the cost of longer convergence times [12]. If a failure
is deemed permanent, new configurations must be generated
based on the altered topology.

III. G ENERATING BACKUP CONFIGURATIONS

In this section, we will first detail the requirements that must
be put on the backup configurations used in MRC. Then, we
propose an algorithm that can be used to automatically create
such configurations. The algorithm will typically be run once
at the initial start-up of the network, and each time a node or
link is permanently added or removed. We use the notation
shown in Tab. I.

A. Configurations Structure

MRC configurations are defined by the network topology,
which is the same in all configurations, and the associated
link weights, which differ among configurations. We formally
represent the network topology as a graphG = (N,A), with
a set of nodesN and a set of unidirectional links (arcs)A1. In
order to guarantee single-fault tolerance, the topology graph
G must be bi-connected. A configuration is defined by this
topology graph and the associated link weight function:

1We interchangeably use the notationsa or (u, v) to denote a link,
depending on whether the endpoints of the link are important.
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TABLE I

NOTATION

G = (N, A) Graph comprising nodesN and directed links (arcs)A
Ci The graph with link weights as in configurationi
Si The set of isolated nodes in configurationCi

Bi The backbone in configurationCi

A(u) The set of links from nodeu
(u, v) The directed link from nodeu to nodev

pi(u, v) A given shortest path between nodesu andv in Ci

N (p) The nodes on pathp
A(p) The links on pathp

wi(u, v) The weight of link(u, v) in configurationCi

wi(p) The total weight of the links in pathp in configuration
Ci

wr The weight of a restricted link
n The number of configurations to generate (algorithm

input)

Definition. A configurationCi is an ordered pair(G,wi) of
the graphG and a functionwi : A → {1, . . . , wmax, wr,∞}
that assigns an integer weightwi(a) to each linka ∈ A.

We distinguish between the normal configurationC0 and the
backup configurationsCi, i > 0. In the normal configuration,
C0, all links have “normal” weightsw0(a) ∈ {1, . . . , wmax}.
We assume thatC0 is given with finite integer weights.
MRC is agnostic to the setting of these weights. In the
backup configurations, selected links and nodes must not carry
any transit traffic. Still, traffic must be able to depart from
and reach all operative nodes. These traffic regulations are
imposed by assigning high weights to some links in the backup
configurations:

Definition. A link a ∈ A is isolated in Ci if wi(a) = ∞.

Definition. A link a ∈ A is restricted in Ci if wi(a) = wr.

Isolated links do not carry any traffic. Restricted links are
used to isolate nodes from traffic forwarding. The restricted
link weight wr must be set to a sufficiently high, finite value
to achieve that. Nodes are isolated by assigning at least the
restricted link weight to all their attached links. For a node to
be reachable, we cannot isolate all links attached to the node
in the same configuration. More than one node may be isolated
in a configuration. The set of isolated nodes inCi is denoted
Si, and the set of normal (non-isolated) nodesSi = N \ Si.

Definition. A nodeu ∈ N is isolated in Ci if

∀(u, v) ∈ A,wi(u, v) ≥ wr

∧ ∃(u, v) ∈ A,wi(u, v) = wr (1)

With MRC, restricted and isolated links are always attached
to isolated nodes as given by the following rules. For all links
(u, v) ∈ A,

wi(u, v) = wr ⇒ (u ∈ Si ∧ v ∈ Si) ∨ (v ∈ Si ∧ u ∈ Si) (2)

wi(u, v) = ∞ ⇒ u ∈ Si ∨ v ∈ Si (3)

This means that a restricted link always connects an isolated
node to a non-isolated node. An isolated link either connects
an isolated node to a non-isolated node, or it connects two
isolated nodes. Importantly, this means that a link is always
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Fig. 1. Left: Node 5 is isolated (shaded color) by setting a high weight on
all its connected links (stapled). Only traffic to and from the isolated node
will use these restricted links. Right: A configuration where nodes 1, 4 and
5, and the links 1-2, 3-5 and 4-5 are isolated (dotted).

isolated in the same configuration as at least one of its attached
nodes. These two rules are required by the MRC forwarding
process described in Sec. IV in order to give correct forward-
ing without knowing the root cause of failure. When we talk
of a backup configuration, we refer to a configuration that
adheres to (2) and (3).

The purpose of the restricted links is to isolate a node from
routing in a specific backup configurationCi, such as node 5
to the left in Fig. 1. In many topologies, more than a single
node can be isolated simultaneously. In the example to the
right in Fig. 1, three nodes and three links are isolated.

Restricted and isolated links are always given the same
weight in both directions. However, MRC treats links as unidi-
rectional, and makes no assumptions with respect to symmetric
link weights for the links that are not restricted or isolated.
Hence, MRC can co-exist with traffic engineering schemes that
rely on asymmetric link weights for load balancing purposes.

MRC guarantees single-fault tolerance by isolating each
link and node in exactly one backup configuration. In each
configuration, all node pairs must be connected by a finite
cost path that does not pass through an isolated node or an
isolated link. A configuration that satisfies this requirement is
calledvalid:

Definition. A configurationCi is valid if and only if

∀u, v ∈ N : N (pi(u, v)) \ (Si ∪ {u, v}) = ∅

∧ wi(pi(u, v)) < ∞ (4)

We observe that all backup configurations retain a charac-
teristic internal structure, in that all isolated nodes aredirectly
connected to a core of nodes connected by links with normal
weights:

Definition. A configurationbackboneBi = (Si, Ai), Ai ⊆ A
consists of all non-isolated nodes inCi and all links that are
neither isolated nor restricted:

a ∈ Ai ⇔ wi(a) ≤ wmax (5)

A backbone is connected if all nodes inSi are connected
by paths containing links with normal weights only:

Definition. A backboneBi is connectedif and only if

∀u, v ∈ Bi : a ∈ A(pi(u, v)) ⇒ wi(a) ≤ wmax (6)

An important invariant in our algorithm for creating backup
configurations is that the backbone remains connected. Since
all backup configurations must adhere to (2) and (3), we can
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show that a backup configuration with a connected backbone
is equivalent to a valid backup configuration:

Lemma 3.1:A backup configurationCi is valid if and only
if it contains a connected backbone.

Proof: We first show that a connected backbone implies
that Ci is valid. For each node pairu and v, zero, one or
both of u and v are in Si. Assumeu ∈ Si ∧ v ∈ Si.
From the definition of an isolated node and (2),∃u′, v′ ∈
Si : wi(u, u′) = wr ∧ wi(v, v′) = wr. From (6) a ∈
A(pi(u

′, v′)) ⇒ w(a) ≤ wmax. Thus,

wi(pi(u, v)) ≤ 2wr + wi(pi(u
′, v′)) < ∞ (7)

N (pi(u, v)) \ (Si ∪ {u, v}) = ∅ (8)

and (4) follows. A subset of the above is sufficient to show
the same if only one, or none, ofu, v is in Si.

For the converse implication, assumeu, v ∈ Si and node
x ∈ N (pi(u, v)). From (4),x ∈ Si and wi(pi(u, v)) < ∞.
Since by (2) restricted links are always connected to at least
one isolated node, such links can not be part ofA(pi(u, v)),
and all links inA(pi(u, v)) must have normal weights.

In backup configurations, transit traffic is constrained to the
configuration backbone. A restricted link weightwr that is
sufficiently high to achieve this can be determined from the
number of links in the network and the maximal normal link
weight:

Proposition 3.2:Let x be a node isolated in the valid
backup configurationCi. Then, restricted link weight value

wr = |A| · wmax (9)

is sufficiently high to excludex from any shortest path inCi

which does not start or end inx.
Proof: Since all links attached to the isolated nodex

have a weight of at leastwr, the weight of a path throughx
will be at least2 ·wr = 2 · |A| ·wmax. From the definition of an
isolated node and (2), all isolated nodes are directly connected
to the configuration backbone. From (4), any shortest path in
Ci will be entirely contained inBi, except possibly the first
or the last hop. A valid configuration contains a connected
backbone, and the total weight of the sub-path that is within
Bi will be at most|Ai| ·wmax. Since|Ai| < 2|A|, no shortest
path will includex as the transit.

To guarantee recovery after any component failure, every
node and every link must be isolated in one backup configu-
ration. LetC = {C1, ...Cn} be a set of backup configurations.
We say that

Definition. A set,C, of backup configurations iscompleteif

∀a ∈ A,∃Ci ∈ C : wi(a) = ∞

∧ ∀u ∈ N,∃Ci ∈ C : u ∈ Si (10)

A complete set of valid backup configurations for a given
topology can be constructed in different ways. In the next
subsection we present an efficient algorithm for this purpose.

B. Algorithm

The number and internal structure of backup configura-
tions in a complete set for a given topology may vary
depending on the construction model. If more configurations
are created, fewer links and nodes need to be isolated per
configuration, giving a richer (more connected) backbone in
each configuration. On the other hand, if fewer configurations
are constructed, the state requirement for the backup routing
information storage is reduced. However, calculating the min-
imum number of configurations for a given topology graph is
computationally demanding. One solution would be to find all
valid configurations for the input consisting of the topology
graphG and its associated normal link weightsw0, and then
find the complete set of configurations with lowest cardinality.
Finding this set would involve solving the Set Cover problem,
which is known to beNP -complete [13].

Instead we present a heuristic algorithm that attempts to
make all nodes and links in an arbitrary bi-connected topology
isolated. Our algorithm takes as input the directed graphG
and the numbern of backup configurations that is intended
created. If the algorithm terminates successfully, its output is a
complete set of valid backup configurations. The algorithm is
agnostic to the original link weightsw0, and assigns new link
weights only to restricted and isolated links in the backup
configurations. For a sufficiently highn, the algorithm will
always terminate successfully, as will be further discussed in
Sec. III-B.3. This algorithm isolates all nodes in the network,
and hence requires a bi-connected as input. Topologies where
the failure of a single node disconnects the network can be
processed by simply ignoring such nodes, which are then left
unprotected.

The algorithm can be implemented either in a network
management system, or in the routers. As long as all routers
have the same view of the network topology, they will compute
the same set of backup configurations.

1) Description: Algorithm 1 loops through all nodes in the
topology, and tries to isolate them one at a time. A link is
isolated in the same iteration as one of its attached nodes.
The algorithm terminates when either all nodes and links in
the network are isolated in exactly one configuration, or a
node that cannot be isolated is encountered. We now specify
the algorithm in detail, using the notation shown in Tab. I.

a) Main loop: Initially, n backup configurations are
created as copies of the normal configuration. A queue of
nodes (Qn) and a queue of links (Qa) are initiated. The node
queue contains all nodes in an arbitrary sequence. The link
queue is initially empty, but all links in the network will have
to pass through it. Methodfirst returns the first item in the
queue, removing it from the queue.

When a nodeu is attempted isolated in a backup config-
uration Ci, it is first tested that doing so will not disconnect
Bi according to definition (6). Theconnected method at
line 13 decides this by testing that each ofu’s neighbors can
reach each other without passing throughu, an isolated node,
or an isolated link in configurationCi.

If the connectivity test is positive, functionisolate is
called, which attempts to find a valid assignment of isolated
and restricted links for nodeu as detailed below. If successful,
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Algorithm 1 : Creating backup configurations.

for i ∈ {1 . . . n} do1
Ci ← (G, w0)2
Si ← ∅3
Bi ← Ci4

end5
Qn ← N6
Qa ← ∅7
i ← 18
while Qn 6= ∅ do9

u ← first (Qn)10
j ← i11
repeat12

if connected(Bi \ ({u}, A(u))) then13
Ctmp ← isolate(Ci, u)14
if Ctmp 6= null then15

Ci ← Ctmp16
Si ← Si ∪ {u}17
Bi ← Bi \ ({u}, A(u))18

i ← (i mod n) + 119
until u ∈ Si or i=j20
if u /∈ Si then21

Give up and abort22

end23

isolate returns the modified configuration and the changes
are committed (line 16). Otherwise no changes are made inCi.

If u was successfully isolated, we move on to the next node.
Otherwise, we keep trying to isolateu in every configuration,
until all n configurations are tried (line 20). Ifu could not
be isolated in any configuration, a complete set of valid
configurations with cardinalityn could not be built using
our algorithm. The algorithm will then terminate with an
unsuccessful result (line 22).

Function isolate(Ci, u)

Qa ← Qa + (u, v), ∀(u, v) ∈ A(u)1
while Qa 6= ∅ do2

(u, v) ← first (Qa)3
if ∃j : v ∈ Sj then4

if wj(u, v) = wr then5
if ∃(u, x) ∈ A(u)Â(u, v) : wi(u, x) 6= ∞ then6

wi(u, v) ← wi(v, u) ← ∞7
else8

return null9

else if wj(u, v) = ∞ and i 6= j then10
wi(u, v) ← wi(v, u) ← wr11

else12
if ∃(u, x) ∈ A(u)Â(u, v) : wi(u, x) 6= ∞ then13

wi(u, v) ← wi(v, u) ← ∞14
else15

wi(u, v) ← wi(v, u) ← wr16
Qn ← v + (Qn \ v)17
Qa ← (v, u)18

end19
return Ci20

b) Isolating links: Along with u, as many as possible of
its attached links are isolated. The algorithm runs throughthe
links A(u) attached tou (lines 2-3 in functionisolate).

It can be shown that it is an invariant in our algorithm that
in line 1, all links in Qa are attached to nodeu. The node
v in the other end of the link may or may not be isolated in
some configuration already (line 4). If it is, we must decide
whether the link should be isolated along withu (line 7),
or if it is already isolated in the configuration wherev is
isolated (line 11). A link must always be isolated in the same
configuration as one of its end nodes. Hence, if the link was
not isolated in the same configuration asv, it mustbe isolated
along with nodeu.

Before we can isolate the link along withu, we must test
(line 6) thatu will still have an attached non-isolated link, in
accordance to the definition of isolated nodes. If this is not
the case,u can not be isolated in the present configuration
(line 9).

In the case that the neighbor nodev was not isolated in
any configuration (line 12), we isolate the link along withu
if there exists another link not isolated withu (line 14). If the
link can not be isolated together with nodeu, we leave it for
nodev to isolate it later. To make sure that this link can be
isolated along withv, we must processv next (line 17, selected
at line 10 in Alg. 1), and link(v, u) must be the first among
the links originating from nodev to be processed (line 18,
selected at line 2).

2) Output: We show that successful execution of Algo-
rithm 1 results in a complete set of valid backup configu-
rations.

Proposition 3.3: If Alg. 1 terminates successfully, the pro-
duced backup configurations adhere to (2) and (3).

Proof: Links are only given weightswr or ∞ in the
process of isolating one of its attached nodes, and (3) follows.
For restricted links, (2) requires that only one of the attached
nodes are isolated. This invariant is maintained in line 7 in
function isolate by demanding that if a node attached to
a restricted link is attempted isolated, the link must also be
isolated. Hence it is impossible to isolate two neighbor nodes
without also isolating their connecting link, and (2) follows.

Proposition 3.4: If Alg. 1 terminates successfully, the
backup configurations setC = {C1, C2, . . . , Cn} is complete,
and all configurationsCi ∈ C are valid.

Proof: Initially, all links in all configurations have
original link weights. Each time a new node and its connected
links are isolated in a configurationCi we verify that the
backbone in that configuration remains connected. When the
links are isolated, it is checked that the node has at least one
neighbor not isolated inCi (line 14 in Functionisolate).
When isolating a node, we also isolate as many as possible of
the connected links. A link is always isolated in the same
configuration as one of its attached nodes. If this is not
possible, the node is not isolated (isolate, line 9). From
Lemma 3.1, the altered configuration remains valid.

The algorithm runs through all nodes. If one node cannot
be isolated, the algorithm aborts (line 22 in Alg. 1). If it does
terminate with success, all nodes and links are isolated in one
configuration, thus the configuration set is complete.

3) Termination: The algorithm runs through all nodes try-
ing to make them isolated in one of the backup configurations
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and will always terminate with or without success. If a
node cannot be isolated in any of the configurations, the
algorithm terminates without success. However, the algorithm
is designed so that any bi-connected topology will result ina
successful termination, if the number of configurations allowed
is sufficiently high.

Proposition 3.5:Given a bi-connected graphG = (N,A),
there will exist n ≤ |N |, so that Alg. 1 will terminate
successfully.

Proof: Assumen = |N |. The algorithm will create
|N | backup configurations, isolating one node in each backup
configuration. In bi-connected topologies this can always be
done. Along with a nodeu, all attached links except one,
say (u, v), can be isolated. By forcing nodev to be the next
node processed (isolate line 17), and the link(v, u) to be
first amongA(v) (line 18), nodev and link (v, u) will be
isolated in the next configuration. This can be repeated until
we have configurations so that every node and link is isolated.
This holds also for the last node processed, since its last link
will always lead to a node that is already isolated in another
configuration. Since all links and nodes can be isolated, the
algorithm will terminate successfully.

Ring topologies represent the worst-case input for our
algorithm since all|N | nodes have two links each and would
have to be isolated in different configurations in order to close
the loop described in Prop. 3.5. In bi-connected networks
with higher connectivity it is often possible to reuse the
configurations and terminate the algorithm with a lowern.
In Sec. V we analyze the number of backup configurations
created by Alg. 1 for different input network topologies.

4) Complexity: The complexity of the proposed algo-
rithm is determined by the loops and the complexity of
the connected method. This method performs a procedure
similar to determining whether a node is an articulation point
in a graph, bound to worst caseO(|N |+|A|). Additionally, for
each node, we run through all adjacent links, whose number
has an upper bound in the maximum node degree∆. In
the worst case, we must run through alln configurations to
find a configuration where a node can be isolated. The worst
case running time for the complete algorithm is then bound
by O(n∆|N ||A|). The running time on a standard desktop
computer varies from sub-second for small topologies to a
few seconds for topologies with several hundred nodes.

IV. L OCAL FORWARDING PROCESS

Given a sufficiently highn, the algorithm presented in
Sec. III will create a complete set of valid backup configu-
rations. Based on these, a standard shortest path algorithmis
used in each configuration to calculate configuration specific
forwarding tables. In this section, we describe how these
forwarding tables are used to avoid a failed component.

When a packet reaches a point of failure, the node adjacent
to the failure, called thedetecting node, is responsible for
finding a backup configuration where the failed component is
isolated. The detecting node marks the packet as belonging
to this configuration, and forwards the packet. From the
packet marking, all transit routers identify the packet with the
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Fig. 2. Packet forwarding state diagram.

selected backup configuration, and forward it to the egress
node avoiding the failed component.

Consider a situation where a packet arrives at nodeu,
and cannot be forwarded to its normal next-hopv because
of a component failure. The detecting node must find the
correct backup configuration without knowing the root cause
of failure, i.e., whether the next-hop nodev or link (u, v) has
failed, since this information is generally unavailable.

Let C(u) denote the backup configuration where nodeu
is isolated, i.e.,C(u) = Ci ⇔ u ∈ Si. Similarly, let
C(u, v) denote the backup configuration where the link(u, v)
is isolated, i.e.,C(u, v) = Ci ⇔ wi(u, v) = ∞. Assuming
that noded is the egress (or the destination) in the local
network domain, we can distinguish between two cases. If
v 6= d, forwarding can be done in configurationC(v), where
both v and (u, v) will be avoided. In the other case,v = d,
the challenge is to provide recovery for the failure of link
(u, v) when nodev is operative. Our strategy is to forward
the packet using a path tov that does not contain(u, v).
Furthermore, packets that have changed configuration before
(their configuration ID is different than the one used inC0),
and still meet a failed component on their forwarding path,
must be discarded. This way packets loops are avoided, also
in the case that noded indeed has failed. The steps that are
taken in the forwarding process by the detecting nodeu are
summarized in Fig. 2.

Assume there is only a single component failure in the
network, detected by nodeu on path to the network-local
destinationd via nodev.

Proposition 4.1:Node u selects configurationCi so that
v 6∈ N (pi(u, d)), if v 6= d.

Proof: Nodeu selectsC(v) in step 2. Nodev is isolated
in C(v) and will not be in the shortest pathpi(u, d) according
to proposition 3.2.

Proposition 4.2:Node u selects configurationCi so that
(u, v) 6∈ A(pi(u, d)).

Proof: If v 6= d, node u selectsC(v) in step 2, and
neither nodev nor link (u, v) will be in the shortest path



7

a)

u

v

C(u) = C(v)

b)

u
v

C(v)

c)

u
v

C(u)

Fig. 3. When there is an error in the last hopu → v, a packet must be
forwarded in the configuration where the connecting link is isolated. The figure
shows isolated nodes (shaded color), restricted links (dashed), and isolated
links (dotted). In cases (a) and (b),C(u, v) = C(v), and the forwarding will
be done inC(v). In case (c),C(u, v) 6= C(v), and the forwarding will be
done inC(u).

pi(u, d).
Assume thatv is the egress node for destinationd. Remem-

ber that according to (3),C(u, v) = C(u) ∨ C(u, v) = C(v).
We distinguish between three possible cases, illustrated in
Fig. 3.

If C(u) = Ci andC(v) = Ci as in Fig. 3a, thenC(u, v) =
Ci according to the definition of an isolated node and (2).
Forwarding step 2 will selectC(v) = Ci and A(pi(u, v))
does not contain(u, v).

If C(u) = Ci, C(v) = Cj , i 6= j, and C(u, v) = Cj as
in Fig. 3b, forwarding step 2 will selectC(v) = Cj and
A(pj(u, v)) does not contain(u, v).

Finally, if C(u) = Ci, C(v) = Cj , i 6= j, andC(u, v) = Ci

as in Fig. 3c, forwarding step 2 will selectC(v) = Cj . Link
(u, v) is not isolated inCj , and will be returned as the next
hop. Step 3 will detect this, and step 4 will selectC(u) = Ci

andA(pi(u, v)) does not contain(u, v).

A. Implementation issues

The forwarding process can be implemented in the routing
equipment as presented above, requiring the detecting node
u to know the backup configurationC(v) for each of its
neighbors. Nodeu would then perform at most two additional
next-hop look-ups in the case of a failure. However, all
nodes in the network have full knowledge of the structure
of all backup configurations. Hence, nodeu can determine in
advance the correct backup configuration to use if the normal
next hop for a destinationd has failed. This way the forwarding
decision at the point of failure can be simplified at the cost
of storing the identifier of the correct backup configurationto
use for each destination and failing neighbor.

For the routers to make a correct forwarding decision, each
packet must carry information about which configuration it
belongs to. This information can be either explicit or implicit.
An explicit approach could be to use a distinct value in the
DSCP field of the IP header to identify the configuration.
As we will see shortly, a very limited number of backup
configurations are needed to guarantee recovery from all single
link or node failures, and hence the number of needed values
would be small. A more implicit approach would be to assign
a distinct local IP address space for each backup configuration.
Each node in the IGP cloud would get a separate address in
each configuration. The detecting node could then encapsulate

recovered packets and tunnel them shortest path in the selected
backup configuration to the egress node. The packets would
then be decapsulated at the egress and forwarded from there as
normal towards the final destination. The drawback with this
method is the additional processing and bandwidth resource
usage associated with tunneling.

Recent IETF standardization work on Multi Topology rout-
ing mechanisms [14], [15] provides a useful framework for
MRC implementation. These IETF drafts specify how routers
can exchange information about the link weights used in sev-
eral logical topologies, and build topology specific forwarding
tables. Use of these drafts for providing proactive recovery is
sketched in [16].

V. PERFORMANCEEVALUATION

MRC requires the routers to store additional routing config-
urations. The amount of state required in the routers is related
to the number of such backup configurations. Since routing in
a backup configuration is restricted, MRC will potentially give
backup paths that are longer than the optimal paths. Longer
backup paths will affect the total network load and also the
end-to-end delay.

Full, global IGP re-convergence determines shortest paths
in the network without the failed component. We use its
performance as a reference point and evaluate how closely
MRC can approach it. It must be noted that MRC yields the
shown performance immediately after a failure, while IP re-
convergence can take seconds to complete.

A. Evaluation setup

We have implemented the algorithm described in Sec. III-B
and created configurations for a wide range of bi-connected
synthetic and real topologies2. The synthetic topologies are
obtained from the BRITE topology generation tool [17] using
the Waxman [18] and the Generalized Linear Preference (GLP)
[19] models. The number of nodes is varied between 16 and
512 to demonstrate the scalability. To explore the effect of
network density, the average node degree is 4 or 6 for Waxman
topologies and 3.6 for GLP topologies. For all synthetic
topologies, the links are given unit weight. The real topologies
are taken from the Rocketfuel topology database [20].

For each topology, we measure the minimum number of
backup configurations needed by our algorithm to isolate every
node and link in the network. Recall from Sec. III-B that
our algorithm for creating backup configurations only takes
the network topology as input, and is not influenced by the
link weights. Hence, the number of configurations needed
is valid irrespective of the link weight settings used. For
the Rocketfuel topologies, we also measure the number of
configurations needed if we exclude the nodes that can be
covered byLoop-Free Alternates(LFA) [21]. LFA is a cheaper
fast reroute technique that exploits the fact that for many
destinations, there exists an alternate next-hop that willnot
lead to a forwarding loop. If such alternate paths exist for

2Our simulation software is available at
http://simula.no/research/networks/software/
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Fig. 4. The COST239 network

all traffic that is routed through a node, we can rely on LFA
instead of protecting the node using MRC.

Based on the created configurations, we measure the backup
path lengths (hop count) achieved by our scheme after a node
failure. For a selected class of topologies, we evaluate how
the backup path lengths depend on the number of backup
configurations.

The shifting of traffic from the normal path to a recovery
path changes the load distribution in the network, and can in
some cases lead to congestion and packet loss. We therefore
test the effect our scheme has on the load distribution after
a failure. To do this, we have performed simulations of the
European COST239 network [22] shown in Fig. 4, designed
to connect major cities across Europe. All links in the network
have equal capacity. To achieve a good load distribution and
minimize the chances of congestion in the failure-free case,
we adopt the link weight optimization heuristic introduced
in [23]. They define a piecewise linear cost functionΦ that
is dependent on the loadl(a) on each of the linksa in the
network.Φ is convex and resembles an exponentially growing
function. They then introduce a local search heuristic thattries
to minimize the value ofΦ by randomly perturbing the link
weights. This local search heuristic has been shown to give
performance that is close to the optimal solution that can be
achieved by a connection oriented technology like MPLS.

The COST239 network is selected for this evaluation be-
cause of its resilient network topology. By using this network,
we avoid a situation where there exists only one possible
backup path to a node. The differences with respect to link
loads between different recovery strategies will only be visible
when there exists more than one possible backup path. In the
COST239 network each node has a node degree of at least
four, providing the necessary maneuvering space.

For our load evaluations, we use a gravity-style traffic
matrix where the traffic between two destinations is based
on the population of the countries they represent [22]. For
simplicity, we look at constant packet streams between each
node pair. The traffic matrix has been scaled so that the load
on the most utilized link in the network is about 2/3 of the
capacity. We use shortest path routing with equal splitting
of traffic if there exists several equal cost paths towards a
destination.
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Fig. 5. The number of backup configurations required for a widerange of
BRITE generated topologies. As an example the bar name wax-2-16 denotes
that the Waxman model is used with a links-to-node ratio of 2, and with 16
nodes.

TABLE II

NUMBER OF BACKUP CONFIGURATIONS FOR SELECTED REAL WORLD

NETWORKS

Network Nodes Links Confs LFA Confs
Sprint US (POP) 32 64 4 17 4
Sprint US (R) 284 1882 5 186 5
Geant 19 30 5 10 4
COST239 11 26 3 10 2
German Telecom 10 17 3 10 -
DFN 13 37 2 13 -

B. Number of Backup Configurations

Figure 5 shows the minimum number of backup configura-
tions that Alg. 1 could produce in a wide range of synthetic
topologies. Each bar in the figure represents 100 different
topologies given by the type of generation model used, the
links-to-node ratio, and the number of nodes in the topology.
Tab. II shows the minimum number of configurations Alg. 1
could produce for selected real world topologies of varying
size. For the Sprint US network, we show results for both the
POP-level and router level topologies. The table also shows
how many nodes that are covered by LFAs, and the number of
configurations needed when MRC is used in combination with
LFAs. Since some nodes and links are completely covered by
LFAs, MRC needs to isolate fewer components, and hence
the number of configurations decreases for some topologies.
We see that for the COST239 network, all nodes except one
is covered by LFAs. However, we still need two backup
configurations to cover this single node, because isolatingall
the attached links in a single configuration would leave the
node unreachable.

The results show that the number of backup configurations
needed is usually modest; 3 or 4 is typically enough to isolate
every element in a topology. No topology required more than
six configurations. In other words, Alg. 1 performs very well
even in large topologies. The algorithm fails only if it meets a
node that if isolated disconnects the backbone in each of the
n backup configurations. The algorithm often goes through all
network nodes without meeting this situation even ifn is low,
and is more successful in topologies with a higher average
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Fig. 6. Backup path lengths in the case of a node failure.

node degree. The running time of our algorithm is modest;
about 5 seconds for the router level Sprint US network.

In Sec. III-B we stated the problem of finding a minimal
complete set of valid configurations can be transformed to the
Set Covering problem. It has long been known that heuristic
algorithms can efficiently approximate an optimal solution
to this problem [24], which makes the good performance of
Alg. 1 less surprising.

This modest number of backup configurations shows that
our method is implementable without requiring a prohibitively
high amount of state information.

C. Backup Path Lengths

Fig. 6 shows path length distribution of the recovery paths
after a node failure. The numbers are based on 100 different
synthetic Waxman topologies with 32 nodes and 64 links. All
the topologies have unit weight links, in order to focus more
on the topological characteristics than on a specific link weight
configuration. Results for link failures show the same tendency
and are not presented.

For reference, we show the path length distribution in the
failure-free case (“IGP normal”), for all paths with at least
two hops. For each of these paths, we let every intermediate
node fail, and measure the resulting recovery path lengths
using global IGP rerouting, local rerouting based on the full
topology except the failed component (“Optimal local”), as
well as MRC with 5 backup configurations.

We see that MRC gives backup path lengths close to those
achieved after a full IGP re-convergence. This means that the
affected traffic will not suffer from unacceptably long backup
paths in the period when it is forwarded according to an MRC
backup configuration.

Algorithm 1 yields richer backup configurations as their
number increases. In Fig. 7 we have plotted the average backup
path lengths for the 75 of the 100 input topologies that could
be covered using 3 backup configurations. The figure shows
that the average recovery path length decreases as the number
of backup configurations increases.

D. Load on Individual Links

In order to evaluate the routing performance while MRC
is used to recover traffic, we measure the throughput on each

Path lengths vs. number of configurations
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Fig. 7. Average backup path lengths in the case of a node failure as a
function of the number of backup configurations.
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Fig. 8. Load on all unidirectional links in the failure free case, after IGP re-
convergence, and when MRC is used to recover traffic. Shows each individual
links worst case scenario.

unidirectional link for every possible link failure. We then find
the maximum link utilization over all failures for each link.
Five backup configurations were used.

Figure 8 shows the maximum load on all links, which are
indexed from the least loaded to the most loaded in the failure-
free case. The results indicate that the restricted routingin
the backup topologies result in a worst case load distribution
that is comparable to what is achieved after a complete IGP
rerouting process.

However, we see that for some link failures, MRC gives
a somewhat higher maximum link utilization in this network.
The maximum link load after the worst case link failure is
118% with MRC, compared to 103% after a full IGP re-
convergence. In the next section, we discuss a method for
improving the post failure load balancing with MRC.

VI. RECOVERY LOAD DISTRIBUTION

MRC recovery is local, and the recovered traffic is routed in
a backup configuration from the point of failure to the egress
node. This shifting of traffic from the original path to a backup
path affects the load distribution in the network, and might
lead to congestion. In our experience, the effect a failure has
on the load distribution when MRC is used is highly variable.
Occasionally the load added on a link can be significant, as
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we saw in Fig. 8. In this section, we describe an approach for
minimizing the impact of the MRC recovery process on the
post failure load distribution.

If MRC is used for fast recovery, the load distribution in
the network during the failure depends on three factors:

(a) The link weight assignment used in the normal config-
urationC0,

(b) The structure of the backup configurations, i.e., which
links and nodes are isolated in eachCi ∈ {C1, . . . , Cn},

(c) The link weight assignments used in the backbones
B1, . . . , Bn of the backup configurations.

The link weights in the normal configuration (a) are im-
portant since MRC uses backup configurations only for the
traffic affected by the failure, and all non-affected traffic
is distributed according to them. The backup configuration
structure (b) dictates which links can be used used in the
recovery paths for each failure. The backup configuration link
weight assignments (c) determine which among the available
backup paths are actually used.

Network operators often plan and configure their network
based on an estimate of the traffic demands from each ingress
node to each egress node. Clearly, the knowledge of such
demand matrixD provides the opportunity to construct the
backup configurations in a way that gives better load balancing
and avoids congestion after a failure. We propose a procedure
to do this by constructing a complete set of valid configura-
tions in three phases. First, the link weights in the normal
configuration are optimized for the given demand matrix
D while only taking the failure free situation into account.
Second, we take advantage of the load distribution in the
failure free case to construct the MRC backup configurations
in an intelligent manner. Finally, we optimize the link weights
in the backbones of the backup configurations to get a good
load distribution after any link failure.

Since the optimization procedure described in this section
uses random search and relies on an estimate of the traffic
matrix, it can only be implemented by a central network
management unit. The link weight optimization is a computing
intensive process, and should be conducted as a background
refinement process.

The improvement of this proposal compared to the MRC
backup configuration generation described in Sec. III is the
congestion avoidance during MRC recovery. The functionality
with respect to single link or node failure recovery guarantees
is unchanged. Since the backup configurations are only used to
route recovered traffic, we can optimize the structure and link
weights used in these configurations for the different failure
scenarios without sacrificing performance in the failure free
case. We restrict ourselves to link failures in the optimization
phase in order to limit the calculation complexity. A more
detailed description of this procedure can be found in [25].

A. Algorithm

We first optimize the link weights in the normal config-
uration C0, so that the cost of routing the demandsD is

minimized. For this purpose we use the link weight optimiza-
tion heuristic and the cost functionΦ introduced in [23], as
described in the evaluation method in Sec. V.

Using the optimized link weights inC0, we calculate the
load l(a) on each unidirectional link in the network in the
failure-free case. In Alg. 3 this information is used to construct
backup configurationsC1, . . . , Cn. The intuition behind our al-
gorithm is that we want the amount of traffic that is potentially
recovered in each backup configuration to be approximately
equal. We want to avoid that the failure of heavily loaded
links results in large amounts of traffic being recovered in
backup configurations with a sparse backbone. Instead, this
traffic should be routed in a rich (well connected) backbone,
where we have a better chance of distributing it over less
loaded links by setting appropriate link weights.

To implement this load-aware algorithm we calculate the
potential of each node in the network and the potential of
each backup configuration:

Definition. The potentialγ(u) of a nodeu is the sum of the
load on all its incoming and outgoing links:

γ(u) =
∑

v∈N

(l(u, v) + l(v, u)) (11)

Definition. The potentialγi of a backup configurationCi is
the sum of the potential of all nodes that are isolated inCi:

γi =
∑

u∈Si

γ(u) (12)

Our modified backup configuration construction method is
defined in Alg. 3. As in Alg. 1, the input to our algorithm for
generating backup configurations is the normal configuration
C0, and the numbern of backup configurations we want to
create. We start our configuration generation algorithm by
ordering all nodes with respect to their potential and assigning
each node to a tentative backup configurationCT(u) (line 6 in
Alg. 3), so that the potentialγi of each backup configuration
is approximately equal:

γi ≈ γj , i, j ∈ {1, . . . , n} (13)

The nodes with the smallest potential are assigned toC1, those
with somewhat higher potential toC2, and so on with the
nodes with the highest potential inCn.

We then go through all nodes in the network, and attempt
to isolate each nodeu in its tentative backup configuration
(line 10). For some nodes, this might not be possible without
breaking the definition of a connected backbone given in (5).
This node is then attempted isolated in backup configuration
Ci+1, Ci+2 and so on (line 20), until all backup configurations
are tried. If a node can not be isolated in any of the backup
configurations, we give up and abort. Note that when nodes can
not be isolated in the backup configuration it was assigned to,
this will disturb the desired property of equalizingγi among
the backup configurations. However, in our experience this
typically only happens for a very limited number of nodes,
and the consequences are not severe.

The outcome of this algorithm is dependent on the network
topology and the traffic demand matrixD. If the load is close



11

Algorithm 3 : Load-aware backup configurations.

for i ∈ {1 . . . n} do1
Ci ← (G, w0)2
Si ← ∅3

end4
Qn ← N5
assign CT(Qn, γ, ascending)6
Qa ← ∅7
while Qn 6= ∅ do8

u ← first (Qn)9
i = CT(u)10
j ← i11
repeat12

if connected(Bi \ ({u}, A(u))) then13
Ctmp ← isolate(Ci, u)14
if Ctmp 6= null then15

Ci ← Ctmp16
Si ← Si ∪ {u}17
Bi ← Bi \ ({u}, A(u))18

else19
i ← (i mod n) + 120

until u ∈ Si or i=j21
if u /∈ Si then22

Give up and abort23

end24

to equally distributed on the links before a failure, we end
up with approximately the same number of nodes isolated in
each backup configuration. If the traffic distribution is more
skewed, the algorithm typically ends up with isolating many
nodes with a small potential inC1, while only very few nodes,
with a high potential, are isolated in backup configurationCn.
This is in accordance with the goal of having a rich backbone
in which to reroute traffic after the failure of heavily loaded
links.

B. Weight Optimization

When the backup configurationsC1, . . . , Cn are created,
our third phase consists of optimizing the link weights usedin
these configurations so that the recovered traffic is distributed
over less utilized links. We use a weight search heuristic
similar to the one used in the failure free case, and we adopt
the cost functionΦ introduced in [23]. Our goal is to find
a weight functionwi for each configuration, so that the cost
Φ of routing the demands through the network is as small as
possible after any link failure. However, evaluating theΦ for
a given weight setting is a complex task because it involves
recalculating the load on all links in the network. In order
to get a method that scales to large networks, we identify a
limited set ofcritical link failures. We then optimize the link
weights taking only the critical link failures into account.

Let Φa denote the cost of routing the demands through the
network when linka has failed. We define the critical link
setLC as thek links that give the highest value ofΦa upon
failure, i.e.,LC is the set of links with cardinalityk so that
∀a ∈ LC , b /∈ LC : Φa ≥ Φb. The setting ofk can be used to
balance the result precision with the computation complexity.
Note that the initial calculation ofLC is performed after we
have optimizedw0, but before we have optimizedw1, . . . , wn.

To capture possible changes caused by the altered link weights
in the backup configurations, the set of critical link failures is
periodically updated during the link weight search.

With MRC, there is a dependency between a particular
link failure and the backup configurations that are used to
recover the traffic, as explained in Sec. IV. This means that
for the failure of a particular link(u, v), the distribution of
recovered traffic is determined only by the link weights in the
backup configurations where nodesu and v are isolated. We
take advantage of this to further reduce the number of cost
evaluations performed in our local search heuristic. For each
backup configurationCi, we defineLi ⊆ LC as the set of
critical links whose failure results in recovered traffic being
routed according toCi:

Definition. The set of critical linksLi of a configurationCi

is

Li = {a ∈ LC |a /∈ Bi} (14)

Given the set of critical link failures for each backup con-
figuration, we run the local search heuristic with the objective
of minimizing the sum

∑
a∈LC

Φa. Each time we change a
link weight wi(a) in backup configurationi, we only need to
evaluate the resulting costΦa after the failure of each linka
in Li. For all other link failures, this cost will be the same.

The local search heuristic terminates and returns the weight
setting that gives the lowest value of the objective function
after a given number of iterations.

C. Evaluation

To evaluate our load aware construction algorithm, we com-
pute the worst case load on each link after a link failure, and
compare it to the results achieved by the original algorithm.
We reuse the evaluation framework from Sec. V, and set the
critical link set sizek to 20.

In the top panel in Fig. 9, we show the worst case link loads
for the load aware MRC (“Optimized MRC”) and after a full
IGP re-convergence on the new topology. The links are sorted
by the load in the failure-free case. The top panel in Fig. 9 is
directly comparable to Fig. 8. We see that the worst case load
peaks for the optimized MRC are somewhat reduced compared
to the standard MRC. The maximum link load after the worst
case link failure has been reduced from 118% to 91%, which
is better than what is achieved after a full IGP re-convergence.
This is possible since the re-converged network will choose
the shortest available path, while MRC in this case manages
to route the recovered traffic over less utilized links.

The effect of the proposed recovery load balancing is
highlighted in the bottom panel of Fig. 9, where the optimized
and standard MRC are directly compared. Here, the links are
sorted by their load after a worst case failure using standard
MRC. We see how the optimized MRC often manages to route
traffic over less utilized links after the failure of a heavily
loaded link.

Note that the optimizations described here will only have an
effect if the network topology allows more than one possible
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Fig. 9. Load on all unidirectional links in the COST239 network after
the worst case link failure. a)Optimized MRC vs complete IGP rerouting.
b)Standard vs optimized MRC.

backup path after a failure. We have also run our optimizations
on less connected networks than COST239, without achieving
any significant improvements over the method described in
Sec. III.

For small networks like COST239, our link weight op-
timization is performed in seconds or minutes. For larger
networks the optimizations can take several hours, and should
be conducted as a background refinement process. Note that
updating the link weights in the backup configurations can be
done without consequences for the traffic, since no traffic is
routed there during normal operation.

VII. R ELATED WORK

Much work has lately been done to improve robustness
against component failures in IP networks [10]. In this sec-
tion, we focus on the most important contributions aimed at
restoring connectivity without a global re-convergence. Tab. III
summarizes important features of the different approaches.
We indicate whether each mechanism guarantees one-fault
tolerance in an arbitrary bi-connected network, for both link
and node failures, independent of the root cause of failure
(failure agnostic). We also indicate whether they solve the”last
hop problem”.

Network layer recovery in the timescale of milliseconds has
traditionally only been available for networks using MPLS

with its fast reroute extensions [26]. In the discussion below,
we focus mainly on solutions for connectionless destination-
based IP routing. A related survey can be found in [27].

IETF has recently drafted a framework called IP fast reroute
[30] where they point at Loop-Free Alternates (LFAs) [21]
as a technique to partly solve IP fast reroute. From a node
detecting a failure, a next hop is defined as an LFA if this
next hop will not loop the packets back to the detecting node
or to the failure. Since LFAs do not provide full coverage,
IETF is also drafting a tunneling approach based on so called
“Not-via” addresses to guarantee recovery from all single link
and node failures [11]. Not-via is the connectionless version
of MPLS fast reroute [26] where packets are detoured around
the failure to the next-next hop. To protect against the failure
of a component P, a special Not-via address is created for this
component at each of P’s neighbors. Forwarding tables are
then calculated for these addresses without using the protected
component. This way, all nodes get a path to each of P’s
neighbors, without passing through (“Not-via”) P. The Not-via
approach is similar to MRC in that loop-free backup next-hops
are found by doing shortest path calculations on a subset of
the network. It also covers against link and node failures using
the same mechanism, and is strictly pre-configured. However,
the tunneling approach may give less optimal backup paths,
and less flexibility with regards to post failure load balancing.

Narvaez et al. [28] propose a method relying on multi-hop
repair paths. They propose to do a local re-convergence upon
detection of a failure, i.e., notify and send updates only to
the nodes necessary to avoid loops. A similar approach also
considering dynamic traffic engineering is presented in [31].
We call these approacheslocal rerouting. They are designed
only for link failures, and therefore avoid the problems of
root cause of failure and the last hop. Their method does
not guarantee one-fault-tolerance in arbitrary bi-connected
networks. It is obviously connectionless. However, it is not
strictly pre-configured, and can hence not recover traffic in
the same short time-scale as a strictly pre-configured scheme.

Nelakuditi et al. [8] propose using interface specific for-
warding to provide loop-free backup next hops to recover
from link failures. Their approach is called failure insensitive
routing (FIR). The idea behind FIR is to let a router infer
link failures based on the interface packets are coming from.
When a link fails, the attached nodes locally reroute packets
to the affected destinations, while all other nodes forward
packets according to their pre-computed interface specific
forwarding tables without being explicitly aware of the failure.
In another paper, they have also proposed a similar method,
named Failure Inferencing based Fast Rerouting (FIFR), for
handling node failures [29]. This method will also cover link
failures, and hence it operates independent of the root cause of
failure. However, their method will not guarantee this for the
last hop, i.e., they do not solve the ”last hop problem”. FIFR
guarantees one-fault-tolerance in any bi-connected network,
it is connectionless, pre-configured and it does not affect the
original failure-free routing.

Our main inspiration for using multiple routing functions
to achieve failure recovery has been a layer-based approach
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TABLE III

CONCEPTUAL COMPARISON OF DIFFERENT APPROACHES FOR FASTIP RECOVERY

Scheme Guaranteed in Node Link Pre- Connec- Failure Last
bi-connected faults faults configured tionless agnostic hop

MRC yes yes yes yes yes yes yes
Not-via tunneling [11] yes yes yes yes yes yes yes
Local rerouting [28] no no yes no yes N/A N/A
FIR [8] yes no yes yes yes N/A N/A
FIFR [29] yes yes yes yes yes yes no
LFA [21] no yes yes yes yes yes yes
MPLS FRR [26] yes yes yes yes no no N/A
Rerouting (OSPF) yes yes yes no yes yes yes

used to obtain deadlock-free and fault-tolerant routing in
irregular cluster networks based on a routing strategy called
Up*/Down* [32]. General packet networks are not hampered
by deadlock considerations necessary in interconnection net-
works, and hence we generalized the concept in a technology
independent manner and named it Resilient Routing Layers
[33][34]. In the graph-theoretical context, RRL is based on
calculating spanning sub topologies of the network, called
layers. Each layer contains all nodes but only a subset of the
links in the network. In this paper we refine these ideas and
adapt them to an IP setting.

None of the proactive recovery mechanisms discussed above
take any measures towards a good load distribution in the
network in the period when traffic is routed on the recovery
paths. Existing work on load distribution in connectionless
IGP networks has either focused on the failure free case [23],
[35], [36], or on finding link weights that work well both in
the normal case and when the routing protocol has converged
after a single link failure [37], [38], [39].

Many of the approaches listed provide elegant and efficient
solutions to fast network recovery, however MRC and Not-
via tunneling seems to be the only two covering all evaluated
requirements. However, we argue that MRC offers the same
functionality with a simpler and more intuitive approach,
and leaves more room for optimization with respect to load
balancing.

VIII. C ONCLUSION

We have presented Multiple Routing Configurations as an
approach to achieve fast recovery in IP networks. MRC is
based on providing the routers with additional routing config-
urations, allowing them to forward packets along routes that
avoid a failed component. MRC guarantees recovery from
any single node or link failure in an arbitrary bi-connected
network. By calculating backup configurations in advance, and
operating based on locally available information only, MRC
can act promptly after failure discovery.

MRC operates without knowing the root cause of failure,
i.e., whether the forwarding disruption is caused by a node
or link failure. This is achieved by using careful link weight
assignment according to the rules we have described. The link
weight assignment rules also provide basis for the specification
of a forwarding procedure that successfully solves the lasthop
problem.

The performance of the algorithm and the forwarding
mechanism has been evaluated using simulations. We have

shown that MRC scales well: 3 or 4 backup configurations
is typically enough to isolate all links and nodes in our test
topologies. MRC backup path lengths are comparable to the
optimal backup path lengths—MRC backup paths are typically
zero to two hops longer. We have evaluated the effect MRC
has on the load distribution in the network while traffic is
routed in the backup configurations, and we have proposed
a method that minimizes the risk of congestion after a link
failure if we have an estimate of the demand matrix. In the
COST239 network, this approach gave a maximum link load
after the worst case link failure that was even lower than after
a full IGP re-convergence on the altered topology. MRC thus
achieves fast recovery with a very limited performance penalty.
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[33] A. F. Hansen, T.Čičić, S. Gjessing, A. Kvalbein, and O. Lysne, “Re-
silient routing layers for recovery in packet networks,” inProceedings of
International Conference on Dependable Systems and Networks (DSN),
June 2005.

[34] A. Kvalbein, A. F. Hansen, T.̌Cičić, S. Gjessing, and O. Lysne, “Fast
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