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Abstract—In a sensor-aided cognitive radio network, collabo- Hence, improving the sensing performance has emerged as
rating battery-powered sensors are deployed to aid the netork  one of the most important issues in spectrum sensing rgcentl
in cooperative spectrum sensing. These sensors consume ®ye  cqjlaporative spectrum sensing by multiple collaborating

for spectrum sensing and therefore deplete their life-timethus we . - - . . .
study the key issue in minimizing the sensing energy consurddy sensing devices is studied in [5], [6], [7] to increase the

such group of collaborating sensors. The IEEE P802.22 staadd ~ detection probability. The cooperative spectrum sensgg i
specifies spectrum sensing accuracy by the detection and sal also considered in [8] to minimize the total error rate given

alarm probabilities, hence we address the energy minimizatn the number of sensing nodes and their Signal-to-NoisesRati
problem under this detection accuracy constraint. Firstly we (SNR). In [9], the problem of maximizing the ratio of the

derive the bounds for the number of sensors to simultaneougl ¢ ission durati th fi f le isiatlid
guarantee the thresholds for high detection probability ard low ransmission auration over the entire sensing cycie Isi

false alarm probability. With these bounds, we then formulae the ~However, for practical purpose of using energy-constrained
optimization problem to find the optimal sensing interval and the  sensor network for spectrum sensing in cognitive radio net-

optimal number of sensor that minimize the energy consumptin.  works [10], it is critical to use fewer sensing sensors perform-
Thirdly, the approximated analytical solutions are derived to ing in a shorter sensing interval in order to preserve as much

solve the optimization accurately and efficiently in polynanial . - . L .
time. Finally, numerical results show that the minimized erergy energy as possible while still satisfying the requirement for

is significantly lower than the energy consumed by a group SPEcCtrum detection accuracy. The present paper investigates
of randomly selected sensors. The mean absolute error of the this issue in terms of finding the optimal sensing interval an

approximated optimal sensing interval compared with the e&ct  the optimal number of sensors in order to minimize the total
value is_Iess thant% and 8% under gopd and bad SNR condition;, energy consumption for cooperative spectrum sensing.
respectively. The approximated optimal number of sensorssi This paper studies cooperative spectrum sensing by a power-
shown to be very close to the exact number. ; . . 7 -
constrained sensor network in sensor-aided cognitiveoradi
|. INTRODUCTION networks [10]. These sensors can sense the spectrum band
Cognitive Radio (CR) envisioned by J. Mitola in [1] hagontinuously and reports the detection results to a fusion
emerged as the innovative dynamic spectrum access techeehter as demonstrated in Fig. 1. In the considered codayerat
ogy [2] to improve the current utilization of assigned spet. P O
It is reported by The Federal Communications Commissic AP Sl BN
(FCCQ) in [3] that the spectrum is only5% - 85% utilized . mesm Y
depending on geographical and temporal variations. In a cc /// L S'PN%Q
nitive radio network, the unlicensed (secondary) devieaas ¢ = 7™ /ZJ{//,{*\A\:W
utilize the licensed spectrum when it is unused by the liedns - !
(primary) devices. However, the occupied spectrum willchee
to be vacated instantly when a primary device starts usiimg it
order to avoid interfering with the primary transmissiohus,
spectrum sensing is specified as a mandatory feature witain
IEEE P802.22 standard [4] to enable a CR device to detect ¢
adapt to the primary usage of a spectrum band. The sens

performance metric is summarized in IEEE P802.22 in terms
of sensing receiver sensitivity, channel detection tinem¢thg spectrum sensing scheme, the fusion center invites a specifi
interval), detection probability, and false alarm proligbi number of sensors in the network to participate in a sensing

Fig. 1. Cooperative spectrum sensing model



group, sayS. Then, the invited sensors independently stare. users who sense the highest SNR of the primary users
sensing the spectrum and report their observations badieto transmission. They study the optimization of the detection
fusion center who performs the “OR-rule” fusion mechanismrobability and false alarm probability separately witlgaed
[11] to make a decision on the availability of the monitoretb (w.r.t) the number of cooperation users. The tradeoff be-
spectrum. tween keeping high detection probability and low false ralar

In this scenario, each sensor uses the energy detectmabability at the same time w.r.t the optimal number of
scheme [12], [5] for spectrum sensing, whose performanceoperation users is not addressed yet.

is evaluated by the detection and false alarm probabililes  |n [8], Zhang et al. focus on finding an optimal fusion rule
high detection probability means a high accuracy of detgctito minimize the summation of false alarm and miss-detection
the activity of a primary user. A low false alarm probabilityprobabilities by assuming that the number of cognitive oadi
indicates a high usage of available spectrum by the secgndahd their SNR are known. However, the SNR received by all
users, due to a low chance that the spectrum is mistakegbgnitive radios changes over the time due to the changing
believed to be occupied when it is actually available. There communication environment. The present paper shows that
a tradeoff in keeping high detection probability and lowséal in order to find the optimal number of sensors under the
alarm probability at the same time in the “OR-rule” fusiortonstraint of detection accuracy, knowing in advanced the
mechanism. The more sensors the higher detection and faiggnber of all sensors in the network is not required.

alarm probabilities and vise versa. Hence, this paper firesfi |, [9], Lee and Akyildiz study the problem of maximizing

the lower bound and upper bound for the number of SensQfs (4tig of the transmission duration over the entire sensi
under a given requirement for the spectrum sensing accurgGy je They report that the optimal sensing parameters will
Spectrum sensing consumes energy and therefore deplgiesy 1o he adapted to the number of cooperative sensing users
the life-time of the power-constrained sensors. Hencelgne yich varies over time. Liang et al. also study the sensing
m|n|m|zat|0n is critical to prolong the Ilfe.-t|.me.of the s8OT 4, ation problem in [14] as a sensing-throughput tradeoff
ngtv_vo_rk. This paper formulates an opt|m|zat|qn pfo‘?'em ® minimize the false alarm probability given the detection
minimize the total energy consumption. Itis desirable tm@a 5 apility threshold. The present paper, on the other hand
high detection accuracy by using a cooperative group of magy,jjes the tradeoff in deriving the optimal sensing dorati
sensors performing a long channel sensing interval, which d,q the optimal number of sensors while preserving as much

turn consumes more energy. On the other hand, it is alsfergy as possible under a given detection accuracy cantstra
highly desirable to save as much energy as possible by USitimal cooperative spectrum sensing by minimizing the

fewer sensors and sensing for a shorter time. This tradeoffe|nergy consumption is also studied in [15]. However, the

addressed in the proposed optimization. tradeoff in keeping a high detection probability and a low

Finally, this paper proposes an efficient approximation agsise ajarm probability simultaneously in their optimipatis
proach to analytically and accurately solve the optim@ati + <t died. In addition, the approach in [15] yields a fairl
in polynomial time, since the optimization is shown to b?ligh error in the approximated results.

extremely difficult to solve directly. The approximated an- : . :
) . . o The present paper differs from the previous work in terms
alytical solutions for the optimal sensing interval and the

optimal number of sensors are derived accurately. We fiﬁépomprehen3|vely studying and formulating the energy-min

that under good SNR conditions, the mean absolute er|m|zat|on problem for cooperative spectrum sensing whale s

oy . b
of the approximated optimal sensing interval is less th |#y|ng a given threshold for detection accuracy. The todide

: etween the optimal number of sensors and the optimal sens-
4% compared to the exact optimal one. In the worst SNR™ . . . . :
. . . Ing interval as well as the tradeoff in keeping a high detecti
conditions, this error is aroungl%. . 2
. . grobablhty and a low false alarm probability simultanelgus
The rest of the paper is organized as follows. The relatéd ; . A
. ) : ! gre considered and formulated in the proposed optimization
work is presented in Section Il. Then Section Ill presents
ST rpnroblem.
the system model. Next, the energy minimization proble
is addressed in Section IV. Then, Section V proposes an
approximation approach to analytically solve the optiriga
problem in polynomial time, which is proved in Appendices
A, B & C. Numerical results are presented in Section VI
to explore the optimization and validate the accuracy of Table | lists the main notations used in this paper. The
the approximated optimal solutions. Finally, conclusiamsl system model for cooperative spectrum sensing is illusdrat
future direction are stated in Section VII. Fig. 1. The sensor network’ is deployed to detect the activity
of a primary system on a given spectrum band. Each sémsor
N receives the primary signal with an instant SNRand this
There have been some recent studies on improving thignal-to-noise-ratio varies from sensor to sensor depgnd
performance in cooperative spectrum sensing. Peh and Liamgthe surrounding wireless communication environmeng Th
show in [13] that an optimum performance can be achieved begtails of the studied cooperative spectrum sensing sclieme
the cooperation of only a certain number of secondary usepsesented as follows.

IIl. SYSTEM MODEL AND PROBLEM FORMULATION

Il. RELATED WORK



TABLE |

Symbol Definition
N The set all sensors in the network
S The group of sensors for cooperative spectrum sensing
i Signal-to-noise ratio (SNR) at senso(dB)

AN The minimum SNR among the sensors (dB)
on The ground noise (dB)

N(ui,02) | Chi-square distribution with mean; and variancer?

A Energy threshold used by the energy detector (dB)

w The spectrum bandwidth (Hz)

Py Single-node detection probability of sengor
Pfi Single-node false alarm probability of sensor
P(;'”'" The minimum single-node detection probability
P}”‘” The maximum single-node false alarm probability
Qa4 Cooperative detection probability of the sensing gr&up
Qs Cooperative false alarm probability of the sensing group
Qq Threshold for cooperative detection probability
Q ! Threshold for cooperative false alarm probability
ts The spectrum sensing interval (sec)
t* The optimal spectrum sensing interval (sec)
n The number of sensors included $h
n* The optimal number of sensors includedSn
Q(z) The Gaussian Q-function of a random variabl§16]

A. Maximum A Posteriori (MAP) Energy Detection for Spec-
trum Sensing

In this paper, we follow the approach of MAP energy
detection scheme describing in [9] as follows. By adopting Since, Py;
the energy detection scheme [12], [5] for the spectrum sgnsi L

terms of the Gaussia@-function [16] as:

o] o(ie)
g g

RW>M—R[

5 Q) = w% / e da 3)
Then, Py and Py; can be easily derived as follows:
A =2t W (v + 1)02>
Py = n 4
! Q( 2VEW (7 + 1)02 @
A — 2t Wo?
P = L) 5
; @(WSWU%) (5)

In addition, the traffic pattern of the primary user can be
modeled as a two state independent and identically disédbu
(i.i.d) ON-OFF random process [17], whose ON and OFF
periods are exponentially distributed with the means imger
of time asT,, andT,;y, respectively. Hence, sensodetects
the monitored spectrum availability by the following siegl
node detection and false alarm probabilities [9]:

TO”L

Py =Py .Pgy = ——2
¢ ¢ Ton+Toff

Pa;

6
Ty’ (6)
Ton + Toff s

is monotonically increasing w.r.t the sensing in-

Py =Popp-Pri =

terval and the SNR, the sensors that experience the lowdst SN

each sensor detects the presence of the primary user by MG yield the lowest detection probabilities or the least a

single-node detection and false alarm probabilitieg and
Py;, respectively. This sensor receives the primary signa)
in the following form [12]:

o hyphothesisH
Tl(t) B { Si(t) + ni(t)

hyphothesisi, (1)

curate detection. Thus, by excluding these weak-SNR sgnsor
from the spectrum sensing group, the total energy consompti
might be reduced while the total detection probability i# st
kept high.

B. A Cooperative Scheme for Spectrum Sensing

where, Hy and H, are the hypotheses corresponding to “no As described earlier in Section | and Fig. 1, the fusion aente

signal transmitted” and “signal transmitted”, respedtive; (¢)

performs the “OR-rule” [11] to derive the cooperative detec

is the received signal waveform ant(t) is a zero-mean tion and false alarm probabiliti€g, and@ ; from aggregating

additive white Gaussian noise (AWGN). Henék; and Py;
are derived as follows [12]:
Py, = P.[Y; > \|H,]

2
Pfi:PT[Y;‘>)\|H0] ()

the single-node detection and false alarm probabilitidgciv
are estimated from the test or decision statistic (2) preioy
the sensors in the cooperative sensing grBupespectively.

The decision on the occupancy of the monitoring spectrurn wil
then be concluded by comparirfg; and Q; with the given

where ) is the energy detection threshold for every sensdfresholds for detection accurady, and @y, respectively.

The test or decision statisti®; ~ N(u;,o?) is the Chi-

i

By performing the “OR-rule” Q4 and Q¢ can be derived as

square distribution and can be approximated as a Gausd@PWs [S]:

distribution as [12], [9, Ref. 13]:

i |

N (u02

ni’2uo’§n’) ’
N (u(or; +0%),2u(on; + 05)?) ,

Hy
H,

whereu = 2t,WW is the number of samples, is assumed to

Qu=1-[]0 - Pu)

—.

@
I
A

()

(1 Py

—.

Il
-

Qr=1-

K2

be the same for every sensef, ando?, are the variance of wheren is the number of the sensors $ The single-node

the noisen;(t) and the received signal(t), respectively. The probabilities P;; and Pfi derived by (6) are reported to the
SNR is derived asy; = o2 /02,. Without loss of generality, fusion center by each individual sensan the sensing group

the variance of the noise is assumed to be the same at everyhis scheme shows that wharincreasesg); will increase
sensor and is simply denoted by;. Thus, the tail probability and as a consequence the accuracy of the primary user being
of the Gaussian distribution?.[Y" > )], can be derived in detected also increases. However, the higher the value of



the higher the cooperative false alarm probability which given threshold. More importantly, the higher the minimum

in turn causes a higher chance that a spectrum opportursffR among the sensors, the fewer sensors are required. Thus,

will be missed. In addition, the more sensors include®jn the fusion center should only invite the sufficiently highFESN

the more energy is consumed for spectrum sensing, whisbnsors. Furthermore, the upper bound indicates an irbalua

is undesirable since the sensors have limited power resounghysical meaning on the specification of the threshQlg

Hence, finding an optimal size of the groS@s an important The threshold); cannot be as low as possible, since the low

issue to be solved in this paper. Q requires the small number of sensors, which might break
Furthermore, energy-efficient selection of the appropriathe detection accuracy by violating (11). Hence, the tréfdeo

sensors to be included ® is also an important problem. Forin keeping@, high and@, low simultaneously is addressed

example, how to efficiently coordinate and select the sensam formulating the optimization problem in this paper.

that experience the highest SNR and that are well separated

from each other in order to avoid correlation shadowing in ] ] )

the cooperative spectrum sensing is an essential quedtim, B+ OPtimal Sensing Interval & Optimal Number of Sensors to

issue is raised as the future work of this paper. Minimize the Energy Consumption

IV. ENERGY MINIMIZING IN COOPERATIVE SPECTRUM For energy efficiency, the lower bound forin (11) is used -
SENSING as the minimum number of sensors included in the sensing

A Bound for the Number of Sensors group S. H_ov_ve\_/e_r, it does not mean that is optimal in
~ - terms of minimizing the total energy consumed by gr&ip
Given the thresholde); and @) for cooperative detection for cooperative spectrum sensing. Equation (4) shows that
and false alarm probabilities, respectively, the cont&iQa >  the longer the sensing interval, the higher the detection
Qa4 andQy < Qy are needed to satisfy the detection accurag¢cyracy, hence fewer sensors are needed and consequently
and to be confident that a spectrum opportunity is not missggsg energy will be spent. On the other hand, the higher
Thus, the cooperative scheme (7) yields: the more energy is consumed for spectrum sensing. This paper
. addresses that important tradeoff in formulating the egnerg
(1-Pg)  (8) minimization problem as follows.
Let §E°° denote the sensing energy consumption per time
©) unit during the spectrum sensing interv@l’*® is assumed to
be the same for every sensor in the network. Hence, during
o A ts, each sensarconsumes a sensing eneriy?® = t 0 E°°.
As denoted in Table 1P/*" and Pj*** can be derived as:  The minimization of the total sensing energy consumed by
groups is then formulated as:

n

1-J[0-Pu) > Que1-Qu>

i=1 i
n

1-[[a-Pr) <Qre1-Q; <

i=1

—.

Il
-

(1- Py

—.

@
I
s

pmin A— 2tSW(’7mln + 1)0121
Pd = on-Q - By
VLW (ymin + 1)o2 (10) n
A~ ~ R . ss O ss
P —max{Py;, i=[1...n]} NIIDIII&ZG. Zl AE 2 ntdE
where the minimum SNRy™" = min{~;}. Then: log(1 — O
i) & Minimize: 08(1=Qa) , spss (19

o n ) ts 10 1— Pmin
(1— Bpimyr > T - Pus) s -5
=1

Equation (12) can be further refined by the observation
(1— Pp,) _that the_ absolute functioflog(1 — Pmim)| is monotonically
' increasing w.r.tP;**" as:

=

(1 _ p}naz)n <
1
Hence, the conditions (8) and (9) will be satisfied if the

.
Il

following inequalities are kept: Minimize:  |log(1 — Qd)|.5E55.t—SA_
. . b |log(1 — Py
{ 1— Qf <(1— P}naz)n @Maxmtlize: Tog(l = O 0E= "t
which require the bounds fot as follows: P Q (z—itv"v"((]::fll)ﬁ)

{ log(1 — Qu) W e { log(1 - Q;) ‘. [log(1 — Qu)|-0E~" o

< Maximize:
— < - J (11)
log(1 — PJ»™) log(1 — Pprer)

Without loss of generality, it is assumed thak*s, T,,,
where[.] and|.| denote the ceiling and flooring functions forand T, ; are known and independent of the sensing interval
the rounding of a real number to an integer, respectively. and thatQ, is given. Thus, the optimal sensing intervl
The lower bound shows that the higher single-node detdbat minimizes the total sensing energy consumed by the
tion probability, the fewer sensors are needed to guaramteeooperative spectrum sensing groipcan be solved by the



following maximization problem: V. ANALYTICAL SOLUTIONS FOR THEENERGY

Q (A—ztsvv(wmﬂ)ai) MINIMIZATION PROBLEM
t; = argmax 2VEW G )7 (13) i i imati
s to ts This section presents an approximation approach to accu-
subject to: rﬁtelfy sol\:e .the ofptri]mization _(13)]c in p_olynomial time. Ribca
e >0 (13a) the formulation of the Gaussia@-function as [16]:
log(1 - Qy) A 1 /“,ﬁ
Co < — 13b Qz) = — e 2dx 15
2 ogll = P} (13b) (22— | (15)
. A — 2t W (™" 4 1) o2
where: i where: » — —— (?m_n +1 )Zn
_ log(1 — Qq) VEsW (y™ +1)oy
log(1 — P7™") ‘ The exponential characteristic §f(z) implies that solving
Prin —p_ 0 A =26, W (™" + 1)o2 (13) analytically is extremely difficult. Hence, approxitioe
T hom 2\t W (ymin 4 1)o2 approaches can be proposed to make (13) solvable. For exam-
R </\ _ ot W02> ple, [15] considers these approximations:
maxr _ P Q o et n
f of f
2/t Waok 1 .
_ _ _ o/ S if 2 >0 (16)
Obviously, solving (13) directly and analytically is ex- Q(z) ~ 2 1
tremely difficult due to the exponential characteristic bé t 1 _ 222 if 2 <0 (17)
Q-function. Hence, Section V presents an approximation ap- 2
proach to efficiently solve this optimization problem. and shows that when is positive,t* can be found as:
C. Discussion on the Optimization’s Constraint
As discussed earlier in subsection IV-A, there is a tradeoff o 1 A2 11
in satisfying a high threshol@, for the cooperative detection % 4(ymin 4 1)204

probability and a low threshold; for the cooperative false

alarm probability at the same time. The meaning of thidowever, this approximation produces aro@ids error com-
tradeoff indicates in keeping the upper boundrofw.r.t a pared to the exact result of the original optimization, vhhis
given thresholdQ,) satisfying the constraint (13)b of themainly due to the high inaccuracy of the approximation (16)
optimization problem (13). The detailed discussion on thisr Q(z > 0). In the following, more accurate and polynomial
issue is presented as follows. Recall the constraint (18)b atime analytical solutions are derived.

o log(1 — Qq) < log(1—Qy)

o log(1 — Prmin) ~ log(1 — p;maz) A. Linearization when 0.5 > z > —0.5
The following transformations are then derived to reason |t is observed from thé-function that its curvature is close
about the specific requirement of the threshQlg to linear whenz varies from —0.5 to 0.5. The following
) log(1 — ]g,*mam) ) linearization is proposed for that variation efto accurately
log(1 —Qy) < . log(1 — Qq) and analytically solve the optimization (13). Recall thetiah
log(1 — P;m™™") derivative @ope) of the Q-function as:

1og(1715;m”)

= elog(lféf) <e log(1—P7mm) " log(1-Ca) A 8((@(2)) 1 —22
_— Slope = =5 = =~ /a=¢
7 ) ) los1- ) z 2
& Qr=2Qp=1-(1-Qq) """ (14)

_ _ o The curvature of the linearization can be approximated as
wheret; is the optimal sensing interval of (13) and: Slope(z = 0) = ———, hence the linearization is derived:

Var!
A = 265W (4™ 4+ 1)02
2 /R (7 + 1)

A= 2t:Wa?
o a2 Substituting (18) into (13) and following the transfornoets

2\/txWoa?
_ _ o s Tn _ _ in Appendix A, t* can be found analytically as:
The inequality (14) indicates that with a given threshold

P;mln =FP,n.Q < (18)

Q0.5 > z > —0.5) ~

N~
)
3

Pﬂ”—%ﬁ@<

Qg for the cooperative detection probability, the requiretmen

- . . | 3A 3\
threshold@ for the cooperative false alarm probability must; = — | —m /1 + i T g2 + 7+ o T o2
be lower-bounded by)’; in order to hold the optimality of m(ymit +1)o (ym +1)or

the proposed optimization problem. (19)



B. Approximation when z > 0.5 modeled asly,, = 1 s, Toyy = 2 s [9]. The monitored
threshold and the ground noise are chosen as4.5 dB and
(20) o, = —10dB, respectively. The detection accuracy thresholds

_ e o _ Qa = 0.9, and Q; = 0.1 are followed the IEEE P802.22
Then, following thf der{vailons in Appendix B in solving thestandard. The performance of the proposed optimization and
optimization (13),t5 = g-u* can be found as the root of thegpproximation approach is validated through a wide range of
following polynomial of degree four: the minimum SNR from-30 dB to 50 dB.
patt + paid + pou® +pru—+po =0 (21) Firstly, the minimum energy consumption is validated com-
) paring with the energy consumed by a random group formed
where: .

. ) by randomly selecting the number of sensors from the range
u=tW,andA =2(y"" +1)o, [1,60]. This range is similar to that of the approximated op-
ps = 4A* timal number of sensor solved by the proposed approximated

_ 4 solutions. Even that the sensing interval yielded by theloam
p3 =154 ; A ) :

L 9A%(847 — 402 — A case (the thick-dashed curves in Fig. 3) is sometimes smalle
p2 = 24%( B —Ad4) than the optimal value, the optimization always produces th
p1L=17A°A minimum energy consumption as shown in Fig. 2. The total
po = 4X*

C. Approximation when z < —0.5

Whenz < —0.5, (17) cannot be used in solving (13). Thus
this subsection focuses on finding an approximation that h
the similar Sope as that of the originalQ-function. Since
Q(z < 0) is monotonically increasing when is decreasing
below zero, then the following approximation is propose
whenz < —0.5:

1 _ (240.5)2
3

Q(z > 0.5) = ¢

0.05

- -

0.045 Exact Minimum Energy

f —%— - Approximated Minimum Energy
I = = = Random Energy

<

0.04

0.035

0.03,

0.025

I —

0.02
Q(z < 0) &~ z.Slope = —%e*% (22)

Hence, following the derivations in Appendix C, the approxi e U '

mated optimal sensing interval can be found as the root of t uooﬁ*ﬁbﬁmw
following cubic function: AN sen

P

0.015

Minimum Total Consumed Energy (J)

-30 -20 -10 0 10 20 30 40 50
Minimum SNR (dB)
wWHau+bu+c=0 (23) Fig. 2. Comparing the total energy consumption.
where: energy consumed by the optimal group of sensors is around
w—t.W 333.97% less than the total energy consumed by the random
— Us

group. Huge energy saving under very high SNR condition is
yielded since the proposed optimization produces mucttehor

2(y™in 4 1)02 — A

2(ymm + 1)o7 optimal sensing interval.
b— _)\2+6)\(7’m"+1)ai Fig. 2 also validates the accuracy of the approximated
(2(ymin +1)02)? solutions compared with the exact results as shown in the
A 3 dash-dot-asterisk curve and the solid curve, respectivéig
c= (W) MAE between these curves is arou®82%, which is caused

mainly under very low SNR conditions. The results also
show that when the minimum SNR increases, less energy is
This section presents numerical calculation to validage tltonsumed, which confirms the observation discussed earlier
approximated optimal results solved by the proposed approactthe influence of the SNR condition to the cooperative spattru
compared with thexact optimal results of the optimization. sensing problem. In particular, the high energy consumptio
The minimum energy consumption is also validated comparingder very low SNR condition implies the weakness of the
with the random energy consumed by the random groupenergy detector scheme at low SNR.
formed by a random number of sensors. In all comparisions,The validation of the accuracy of the proposed solutions
the exact optimal results are numerically estimated froB) (lis also presented in Fig. 3 where the approximated optimal
in Matlab. Mean absolute error (MAE) is used to validate of sensing interval (the dash-dot-asterisk curve) is verseslo
the accuracy of the approximated optimal results. to the exact optimal results (the solid curve). It shows here
In all the calculations, the following setting are usedagain that the higher the minimum SNR, the shorter time the
0E** = 0.05 J; the ON-OFF period of the primary user issensing group performs spectrum sensing while still satigf

VI. NUMERICAL RESULTS
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the required detection accuracy. In addition, in the rargé probability when the SNR condition is very bad. It suggests
dB to 50 dB for the minimum SNR, the MAE produced by

the proposed solutions (23), (19), and (21) are aradud%, 01y
4.0%, and2.13%, respectively. The highest error caused und:
the lowest SNR condition.

Fig. 4 presents the approximated optimal number of sens:
(the dashed bar) and the exact optimal result (the solid be
It shows that the difference between the approximated aad -
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that the fusion center should either only invite the high SNR
sensors for cooperative spectrum sensing or accept higher
tolerance for the cooperative false alarm probability uneey

L EL e S low SNR situations.
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Fig. 4. The optimal number of sensor. VIl. CONCLUSION

exact results is very small. It is also observed that theebett This paper has studied the minimization of the total en-
the SNR condition the higher optimal number of sensorergy consumed by a group of power-constraint sensors for
The reason is that the proposed energy minimization pradu@®operative spectrum sensing in sensor-aided cognitiie ra
much shorter optimal sensing interval under the good SNitworks. Firstly, the lower bound and upper bound for the
condition. However, it needs to guarantee the given detectinumber of sensors are found under the detection accuracy
accuracy, hence the sufficient number of sensors will needttmesholds. Then, with the derived bounds, the optimimatio
be included during the optimization as shown in Fig. 4.  problem to minimize the total sensing energy consumption is
Finally, figures 5 and 6 show the validations of the minimurformulated. Next, the approximated analytical solutioms a
cooperative detection probability and the maximum falsenal found to solve the optimization accurately and efficiently i
probability yielded by the optimization. The result in Fig. polynomial time. Finally, numerical calculations show ttha
indicates that the proposed solutions produce accuraee-dethe minimized energy is significantly lower than the energy
tion by keeping the minimum cooperative detection proliigbil consumed by a group of randomly selected sensors. The
above a given threshold. Fig. 6, on the other hand, restatggproximated optimal number of sensors is shown to be very
the tradeoff in keeping very low cooperative false alarrdlose to the exact number. Under good SNR conditions, the



mean absolute error of the approximated optimal sensiby substituting (A.2) as:
interval is less thar% compared to the exact value. In the
worst SNR conditions, this error is arourdd. It has also At WA  A+tWA _V 2m

observed that the energy detector scheme does not perform VisWA 2Vt WA 2
well at very low SNR conditions, which cause higher energy N 3Nt WA — A
consumption for cooperative spectrum sensing. t; WA
This paper has also observed and discussed that energy- < (3\ —t,WA)? = 2nt W A?
efficient selection of the appropriate sensors to be indude & [LWA- (BA+ wA)]2 — GATA + w2 A2

in the cooperative spectrum sensing group is an important
problem. The question of how to efficiently coordinate and Finally, the optimal sensing interval is found as:
select the sensors that experience the highest SNR and¢hat a
well separated from each other in order to avoid correlation 1 3\ 3\

L . L =—|-m/1l+—st+t1+t
shadowing in cooperative spectrum sensing is addrességast W m(ymin + 1)o2 2(ymin 4 1)o2
future direction of this paper. (A.2)

APPENDIXA

PROOF OFTHE OPTIMAL RESULT (19) APPENDIXB

PROOF OFTHE OPTIMAL RESULT (21)

Proof: The first derivative of (13) can be derived as: Proof: Substituting (20) into (A.1) yields:
1 _ (240.5)2
o (=) Q) 8z 4 _ (e 2 )%t 1 _Grosy
7( i ) =0 < 9z atszs Q(Z):o I a— .6ts.s—2e
o P tg o (4522420 (B.1)
—(2+ =) =—.1s= .
@) 92, _oe) (A1) 2’ 0t,

0z Ots
By denotingA £ 2(y™™ +1)02 and substituting (A.2) into

A—2t, W (™" +1)0> (B.1), t¥ can be found as follows:

wherez = SV (T 103 Then this is derived:
' A—tWA 1\ A+t WAY
5 o (A—ztsvv(y"ﬁ"ﬂ)ai) VEsWA 2 WEWA )
= Wfs_W(;m"“)”% s o ATEWA N (LA
s o W(ﬁmmgz) | 4VEWA 2t W A2
B o 2E2VEW (Y™ + 1oy L e VEWAR A+ LWA) = 26 WA)? + 48, WA - 2)2
. 2 s
(2VEW (v +1)032) & WA+t WA = [2(6,WA)? + 4, WA — 23]
X min 0_2
(A= 26, W (ymin 4 1)g2) 2T O ) O ) sl (T 4 W o = 0
(2T W (ymin + 1)0%)2 s where: )
. . _ _ 4
_2w(,ym1n 4 1)07212\/155—1/‘/(,7771171 4 1)0.721 Pa = ) 24A ) pP3 = 15A
= p 51 - p2 = 2A%(8A% —4X* — \A)
AW (ymin + 1)202 2 42 4
min 2 w min 2 P = 17A°4 Po = 4A
(A =2t,W (™" +1)02) '\/ts_Ww +1)o; (B.2)
AW (120 .
_ At 2t W (y™" + 1)02 (A2)
C AVEW . (ymin 4 1)02 ' APPENDIXC
PROOF OFTHE OPTIMAL RESULT (23)
Using the approximation (18) yields the following: Proof: Whenz < —0.5, (22) is used, then:
22
a3 — \/ZQ—F) 0z 1 z a(—\/%‘f?) 0z z 22
—= Ve =~ — — e = ez
0z Ot 2 or 0z Ot 2T
0z V2T 1 22 o] Oz z 22
I el A3 s |- T(1—2%)| s = — 2
AT 2 (A-3) 7zt =) gy NoTH
& [1- z2] . 02 te=2 (C.1



Substituting (A.2) into (C.1) leads to the following result [11] P. K. Varshney,Distributed Detection and Data Fusion, ser. Signal
processing and data fusion, C. S. Burrus, Ed. New York: §prin

[(/\ — 2, W (™" 4+ 1)02 - 1} {A + 2t W (y™" + 1)02 1997.

ST ~in D) T 17 ~min 5> | [12] F. Digham, M.-S. Alouini, and M. K. Simon, “On the energgtection
2 tsz + 1)Un 4 tsW.(’y + 1)0” of unknown signals on the energy detection of unknown sgyoaier

A — 2t W (y™n 4+ 1)02 fading channels,1EEE ICC, vol. 5, pp. 3575-3579, May 2003.
= . [13] E. Peh and Y.-C. Liang, “Optimization for cooperativensing in
2y tSW(’me + 1)0721 cognitive radio networks,1EEE WCNC, pp. 27-32, March 2007.
g pp
. 2 . 9 . [14] Y.-C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, “Sewsi
Denoting A = 2(y™" + 1)o7, then: throughput tradeoff for cognitive radio networkdEEE Transactions
on Wireless Communications, vol. 7, no. 4, pp. 1326-1337, April 2008.
()‘ — tsWA)2 -1 A+t WA — A—t, WA [15] H. N. Pham, Y. Zhang, P. E. Engelstad, T. Skeie, and Fas&én,
VisWA | 2, /ts W A VWA “Optimal cooperative spectrum sensing in cognitive senstworks,”In
5 5 21172 A2 The 5th International Wireless Communications and Mobile Computing
o M- ts(2AWA + WA?) +ts*W2A" A+t WA Conference (IWCMC), June 2009.
t. W A2 ’ 2 [16] I. S. Gradshteyn and I. M. RyzhikTabIg_of Integrals, Seri&c,‘ and
-\ WA Products, 7th ed., A. Jeffrey and D. Zwillinger, Eds. Elsevier, Feb.
=A—tls 2007.
ANt (2AW A+ W A2 t2W2A2) (N +t. WA [17] C.-T. Chou, S. N. Shankar, H. Kim, and K. G. Shin, “Whatamow
< ( S( + ) tis ) ( tis ) much to gain by spectrum agility?EEE Journal on Selected Areasin
=2t WA\ — t,WA) Communications (JSAC), vol. 25, no. 3, pp. 576-588, April 2007.
& BWPAS +2(W2A3 — AW2A?) — t, (WA + 3AW A?)
+ A =0
A-) A2 +3)A A\ °
3 2
& vt u |l —— | U —— )+ | = =0
s w4 au+bu+c=0 ,whereww =t,W (C.2)

Thus,t! is solved as a root of (C.2) as follows:

S

1
th = W [max(z1,x2,23)] , where:

T =S+ —%
{m;(s+t)?g+g§(st)j

3= —5(s +1) = g5 — Ps —1)j

s= VTR [ e
{t:(r_\/mﬁ and ngabc—gﬁid—zbf*
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