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Abstract—In a sensor-aided cognitive radio network, collabo-
rating battery-powered sensors are deployed to aid the network
in cooperative spectrum sensing. These sensors consume energy
for spectrum sensing and therefore deplete their life-time, thus we
study the key issue in minimizing the sensing energy consumed by
such group of collaborating sensors. The IEEE P802.22 standard
specifies spectrum sensing accuracy by the detection and false
alarm probabilities, hence we address the energy minimization
problem under this detection accuracy constraint. Firstly, we
derive the bounds for the number of sensors to simultaneously
guarantee the thresholds for high detection probability and low
false alarm probability. With these bounds, we then formulate the
optimization problem to find the optimal sensing interval and the
optimal number of sensor that minimize the energy consumption.
Thirdly, the approximated analytical solutions are derived to
solve the optimization accurately and efficiently in polynomial
time. Finally, numerical results show that the minimized energy
is significantly lower than the energy consumed by a group
of randomly selected sensors. The mean absolute error of the
approximated optimal sensing interval compared with the exact
value is less than4% and 8% under good and bad SNR conditions,
respectively. The approximated optimal number of sensors is
shown to be very close to the exact number.

I. I NTRODUCTION

Cognitive Radio (CR) envisioned by J. Mitola in [1] has
emerged as the innovative dynamic spectrum access technol-
ogy [2] to improve the current utilization of assigned spectrum.
It is reported by The Federal Communications Commission
(FCC) in [3] that the spectrum is only15% - 85% utilized
depending on geographical and temporal variations. In a cog-
nitive radio network, the unlicensed (secondary) devices can
utilize the licensed spectrum when it is unused by the licensed
(primary) devices. However, the occupied spectrum will need
to be vacated instantly when a primary device starts using itin
order to avoid interfering with the primary transmission. Thus,
spectrum sensing is specified as a mandatory feature within the
IEEE P802.22 standard [4] to enable a CR device to detect and
adapt to the primary usage of a spectrum band. The sensing
performance metric is summarized in IEEE P802.22 in terms
of sensing receiver sensitivity, channel detection time (sensing
interval), detection probability, and false alarm probability.

Hence, improving the sensing performance has emerged as
one of the most important issues in spectrum sensing recently.

Collaborative spectrum sensing by multiple collaborating
sensing devices is studied in [5], [6], [7] to increase the
detection probability. The cooperative spectrum sensing is
also considered in [8] to minimize the total error rate given
the number of sensing nodes and their Signal-to-Noise-Ratio
(SNR). In [9], the problem of maximizing the ratio of the
transmission duration over the entire sensing cycle is studied.
However, for practical purpose of using energy-constrained
sensor network for spectrum sensing in cognitive radio net-
works [10], it is critical to use fewer sensing sensors perform-
ing in a shorter sensing interval in order to preserve as much
energy as possible while still satisfying the requirement for
spectrum detection accuracy. The present paper investigates
this issue in terms of finding the optimal sensing interval and
the optimal number of sensors in order to minimize the total
energy consumption for cooperative spectrum sensing.

This paper studies cooperative spectrum sensing by a power-
constrained sensor network in sensor-aided cognitive radio
networks [10]. These sensors can sense the spectrum band
continuously and reports the detection results to a fusion
center as demonstrated in Fig. 1. In the considered cooperative

Fig. 1. Cooperative spectrum sensing model

spectrum sensing scheme, the fusion center invites a specific
number of sensors in the network to participate in a sensing



group, sayS. Then, the invited sensors independently start
sensing the spectrum and report their observations back to the
fusion center who performs the “OR-rule” fusion mechanism
[11] to make a decision on the availability of the monitored
spectrum.

In this scenario, each sensor uses the energy detection
scheme [12], [5] for spectrum sensing, whose performance
is evaluated by the detection and false alarm probabilities. A
high detection probability means a high accuracy of detecting
the activity of a primary user. A low false alarm probability
indicates a high usage of available spectrum by the secondary
users, due to a low chance that the spectrum is mistakenly
believed to be occupied when it is actually available. Thereis
a tradeoff in keeping high detection probability and low false
alarm probability at the same time in the “OR-rule” fusion
mechanism. The more sensors the higher detection and false
alarm probabilities and vise versa. Hence, this paper first finds
the lower bound and upper bound for the number of sensors
under a given requirement for the spectrum sensing accuracy.

Spectrum sensing consumes energy and therefore depletes
the life-time of the power-constrained sensors. Hence, energy
minimization is critical to prolong the life-time of the sensor
network. This paper formulates an optimization problem to
minimize the total energy consumption. It is desirable to gain a
high detection accuracy by using a cooperative group of many
sensors performing a long channel sensing interval, which in
turn consumes more energy. On the other hand, it is also
highly desirable to save as much energy as possible by using
fewer sensors and sensing for a shorter time. This tradeoff is
addressed in the proposed optimization.

Finally, this paper proposes an efficient approximation ap-
proach to analytically and accurately solve the optimization
in polynomial time, since the optimization is shown to be
extremely difficult to solve directly. The approximated an-
alytical solutions for the optimal sensing interval and the
optimal number of sensors are derived accurately. We find
that under good SNR conditions, the mean absolute error
of the approximated optimal sensing interval is less than
4% compared to the exact optimal one. In the worst SNR
conditions, this error is around8%.

The rest of the paper is organized as follows. The related
work is presented in Section II. Then Section III presents
the system model. Next, the energy minimization problem
is addressed in Section IV. Then, Section V proposes an
approximation approach to analytically solve the optimization
problem in polynomial time, which is proved in Appendices
A, B & C. Numerical results are presented in Section VI
to explore the optimization and validate the accuracy of
the approximated optimal solutions. Finally, conclusionsand
future direction are stated in Section VII.

II. RELATED WORK

There have been some recent studies on improving the
performance in cooperative spectrum sensing. Peh and Liang
show in [13] that an optimum performance can be achieved by
the cooperation of only a certain number of secondary users,

i.e. users who sense the highest SNR of the primary users
transmission. They study the optimization of the detection
probability and false alarm probability separately with regard
to (w.r.t) the number of cooperation users. The tradeoff be-
tween keeping high detection probability and low false alarm
probability at the same time w.r.t the optimal number of
cooperation users is not addressed yet.

In [8], Zhang et al. focus on finding an optimal fusion rule
to minimize the summation of false alarm and miss-detection
probabilities by assuming that the number of cognitive radios
and their SNR are known. However, the SNR received by all
cognitive radios changes over the time due to the changing
communication environment. The present paper shows that
in order to find the optimal number of sensors under the
constraint of detection accuracy, knowing in advanced the
number of all sensors in the network is not required.

In [9], Lee and Akyildiz study the problem of maximizing
the ratio of the transmission duration over the entire sensing
cycle. They report that the optimal sensing parameters will
need to be adapted to the number of cooperative sensing users,
which varies over time. Liang et al. also study the sensing
duration problem in [14] as a sensing-throughput tradeoff
to minimize the false alarm probability given the detection
probability threshold. The present paper, on the other hand,
studies the tradeoff in deriving the optimal sensing duration
and the optimal number of sensors while preserving as much
energy as possible under a given detection accuracy constraint.
Optimal cooperative spectrum sensing by minimizing the
energy consumption is also studied in [15]. However, the
tradeoff in keeping a high detection probability and a low
false alarm probability simultaneously in their optimization is
not studied. In addition, the approach in [15] yields a fairly
high error in the approximated results.

The present paper differs from the previous work in terms
of comprehensively studying and formulating the energy min-
imization problem for cooperative spectrum sensing while sat-
isfying a given threshold for detection accuracy. The tradeoff
between the optimal number of sensors and the optimal sens-
ing interval as well as the tradeoff in keeping a high detection
probability and a low false alarm probability simultaneously
are considered and formulated in the proposed optimization
problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Table I lists the main notations used in this paper. The
system model for cooperative spectrum sensing is illustrated in
Fig. 1. The sensor networkN is deployed to detect the activity
of a primary system on a given spectrum band. Each sensori in
N receives the primary signal with an instant SNRγi and this
signal-to-noise-ratio varies from sensor to sensor depending
on the surrounding wireless communication environment. The
details of the studied cooperative spectrum sensing schemeis
presented as follows.



TABLE I

Symbol Definition
N The set all sensors in the network
S The group of sensors for cooperative spectrum sensing
γi Signal-to-noise ratio (SNR) at sensori (dB)

γmin The minimum SNR among the sensors (dB)
σn The ground noise (dB)

N(µi, σ
2

i ) Chi-square distribution with meanµi and varianceσ2

i
λ Energy threshold used by the energy detector (dB)
W The spectrum bandwidth (Hz)
P̂di Single-node detection probability of sensori

P̂fi Single-node false alarm probability of sensori

P̂ min
d

The minimum single-node detection probability
P̂ max

f
The maximum single-node false alarm probability

Qd Cooperative detection probability of the sensing groupS

Qf Cooperative false alarm probability of the sensing group
Q̄d Threshold for cooperative detection probability
Q̄f Threshold for cooperative false alarm probability
ts The spectrum sensing interval (sec)
t∗s The optimal spectrum sensing interval (sec)
n The number of sensors included inS
n∗ The optimal number of sensors included inS

Q(z) The Gaussian Q-function of a random variablez [16]

A. Maximum A Posteriori (MAP) Energy Detection for Spec-
trum Sensing

In this paper, we follow the approach of MAP energy
detection scheme describing in [9] as follows. By adopting
the energy detection scheme [12], [5] for the spectrum sensing,
each sensori detects the presence of the primary user by the
single-node detection and false alarm probabilitiesPdi and
Pfi, respectively. This sensor receives the primary signalri(t)
in the following form [12]:

ri(t) =

{

ni(t) hyphothesisH0

si(t) + ni(t) hyphothesisH1
(1)

where,H0 and H1 are the hypotheses corresponding to “no
signal transmitted” and “signal transmitted”, respectively. si(t)
is the received signal waveform andni(t) is a zero-mean
additive white Gaussian noise (AWGN). HencePdi and Pfi

are derived as follows [12]:

Pdi = Pr[Yi > λ|H1]

Pfi = Pr[Yi > λ|H0]
(2)

where λ is the energy detection threshold for every sensor.
The test or decision statisticYi ∼ N(µi, σ

2
i ) is the Chi-

square distribution and can be approximated as a Gaussian
distribution as [12], [9, Ref. 13]:

Yi ∼

{

N
(

uσ2
ni, 2uσ4

ni

)

, H0

N
(

u(σ2
ni + σ2

si), 2u(σ2
ni + σ2

si)
2
)

, H1

whereu = 2tsW is the number of samples.ts is assumed to
be the same for every sensor.σ2

ni andσ2
si are the variance of

the noiseni(t) and the received signalsi(t), respectively. The
SNR is derived as:γi = σ2

si/σ2
ni. Without loss of generality,

the variance of the noise is assumed to be the same at every
sensor and is simply denoted byσn. Thus, the tail probability
of the Gaussian distribution,Pr[Y > λ], can be derived in

terms of the GaussianQ-function [16] as:

Pr[Y > λ] = Pr

[

Y − µ

σ
>

λ − µ

σ

]

= Q

(

λ − µ

σ

)

, Q(z) =
1√
2π

∫ ∞

z

e−
x2

2 dx (3)

Then,Pdi andPfi can be easily derived as follows:














Pdi = Q

(

λ − 2tsW (γi + 1)σ2
n

2
√

tsW (γi + 1)σ2
n

)

(4)

Pfi = Q

(

λ − 2tsWσ2
n

2
√

tsWσ2
n

)

(5)

In addition, the traffic pattern of the primary user can be
modeled as a two state independent and identically distributed
(i.i.d) ON-OFF random process [17], whose ON and OFF
periods are exponentially distributed with the means in terms
of time asTon andToff , respectively. Hence, sensori detects
the monitored spectrum availability by the following single-
node detection and false alarm probabilities [9]:

P̂di =Pon.Pdi =
Ton

Ton + Toff
.Pdi

P̂fi =Poff .Pfi =
Toff

Ton + Toff
.Pfi

(6)

Since,Pdi is monotonically increasing w.r.t the sensing in-
terval and the SNR, the sensors that experience the lowest SNR
will yield the lowest detection probabilities or the least ac-
curate detection. Thus, by excluding these weak-SNR sensors
from the spectrum sensing group, the total energy consumption
might be reduced while the total detection probability is still
kept high.

B. A Cooperative Scheme for Spectrum Sensing

As described earlier in Section I and Fig. 1, the fusion center
performs the “OR-rule” [11] to derive the cooperative detec-
tion and false alarm probabilitiesQd andQf from aggregating
the single-node detection and false alarm probabilities, which
are estimated from the test or decision statistic (2) provided by
the sensors in the cooperative sensing groupS, respectively.
The decision on the occupancy of the monitoring spectrum will
then be concluded by comparingQd and Qf with the given
thresholds for detection accuracȳQd and Q̄f , respectively.
By performing the “OR-rule”,Qd andQf can be derived as
follows [5]:

Qd = 1 −
n
∏

i=1

(1 − P̂di)

Qf = 1 −
n
∏

i=1

(1 − P̂fi)

(7)

wheren is the number of the sensors inS. The single-node
probabilitiesP̂di and P̂fi derived by (6) are reported to the
fusion center by each individual sensori in the sensing group
S. This scheme shows that whenn increases,Qd will increase
and as a consequence the accuracy of the primary user being
detected also increases. However, the higher the value ofn,



the higher the cooperative false alarm probabilityQf which
in turn causes a higher chance that a spectrum opportunity
will be missed. In addition, the more sensors included inS,
the more energy is consumed for spectrum sensing, which
is undesirable since the sensors have limited power resource.
Hence, finding an optimal size of the groupS is an important
issue to be solved in this paper.

Furthermore, energy-efficient selection of the appropriate
sensors to be included inS is also an important problem. For
example, how to efficiently coordinate and select the sensors
that experience the highest SNR and that are well separated
from each other in order to avoid correlation shadowing in
the cooperative spectrum sensing is an essential question.This
issue is raised as the future work of this paper.

IV. ENERGY M INIMIZING IN COOPERATIVE SPECTRUM

SENSING

A. Bound for the Number of Sensors

Given the thresholds̄Qd and Q̄f for cooperative detection
and false alarm probabilities, respectively, the conditionsQd ≥
Q̄d andQf ≤ Q̄f are needed to satisfy the detection accuracy
and to be confident that a spectrum opportunity is not missed.
Thus, the cooperative scheme (7) yields:

1 −
n
∏

i=1

(1 − P̂di) ≥ Q̄d ⇔ 1 − Q̄d ≥
n
∏

i=1

(1 − P̂di) (8)

1 −
n
∏

i=1

(1 − P̂fi) ≤ Q̄f ⇔ 1 − Q̄f ≤
n
∏

i=1

(1 − P̂fi) (9)

As denoted in Table I,̂Pmin
d and P̂max

f can be derived as:

P̂min
d =Pon.Q

(

λ − 2tsW (γmin + 1)σ2
n

2
√

tsW (γmin + 1)σ2
n

)

P̂max
f = max{P̂fi, i = [1 . . . n]}

(10)

where the minimum SNR:γmin = min{γi}. Then:






















(1 − P̂min
d )n ≥

n
∏

i=1

(1 − P̂di)

(1 − P̂max
f )n ≤

n
∏

i=1

(1 − P̂fi)

Hence, the conditions (8) and (9) will be satisfied if the
following inequalities are kept:

{

1 − Q̄d ≥ (1 − P̂min
d )n

1 − Q̄f ≤ (1 − P̂max
f )n

which require the bounds forn as follows:
⌈

log(1 − Q̄d)

log(1 − P̂min
d )

⌉

≤ n ≤
⌊

log(1 − Q̄f )

log(1 − P̂max
f )

⌋

(11)

where⌈.⌉ and⌊.⌋ denote the ceiling and flooring functions for
the rounding of a real number to an integer, respectively.

The lower bound shows that the higher single-node detec-
tion probability, the fewer sensors are needed to guaranteea

given threshold. More importantly, the higher the minimum
SNR among the sensors, the fewer sensors are required. Thus,
the fusion center should only invite the sufficiently high SNR
sensors. Furthermore, the upper bound indicates an invaluable
physical meaning on the specification of the thresholdQ̄f .
The thresholdQ̄f cannot be as low as possible, since the low
Q̄f requires the small number of sensors, which might break
the detection accuracy by violating (11). Hence, the tradeoff
in keepingQ̄d high andQ̄f low simultaneously is addressed
in formulating the optimization problem in this paper.

B. Optimal Sensing Interval & Optimal Number of Sensors to
Minimize the Energy Consumption

For energy efficiency, the lower bound forn in (11) is used
as the minimum number of sensors included in the sensing
group S. However, it does not mean thatn is optimal in
terms of minimizing the total energy consumed by groupS

for cooperative spectrum sensing. Equation (4) shows that
the longer the sensing intervalts, the higher the detection
accuracy, hence fewer sensors are needed and consequently
less energy will be spent. On the other hand, the higherts,
the more energy is consumed for spectrum sensing. This paper
addresses that important tradeoff in formulating the energy
minimization problem as follows.

Let δEss denote the sensing energy consumption per time
unit during the spectrum sensing interval.δEss is assumed to
be the same for every sensor in the network. Hence, during
ts, each sensori consumes a sensing energy∆Ess

i = tsδE
ss.

The minimization of the total sensing energy consumed by
groupS is then formulated as:

Minimize:
ts

n
∑

i=1

∆Ess
i , ntsδE

ss

⇔ Minimize:
ts

log(1 − Q̄d)

log(1 − P̂min
d )

tsδE
ss (12)

Equation (12) can be further refined by the observation
that the absolute function| log(1 − P̂min

d )| is monotonically
increasing w.r.tP̂min

d as:

Minimize:
ts

| log(1 − Q̄d)|.δEss.
ts

| log(1 − P̂min
d )|

⇔Maximize:
ts

1

| log(1 − Q̄d)|.δEss
.
P̂min

d

ts

⇔Maximize:
ts

Pon

| log(1 − Q̄d)|.δEss
.
Q

(

λ−2tsW (γmin+1)σ2
n

2
√

tsW (γmin+1)σ2
n

)

ts

Without loss of generality, it is assumed thatδEss, Ton,
and Toff are known and independent of the sensing interval
and thatQ̄d is given. Thus, the optimal sensing intervalt∗s
that minimizes the total sensing energy consumed by the
cooperative spectrum sensing groupS can be solved by the



following maximization problem:

t∗s = argmax
ts

Q

(

λ−2tsW (γmin+1)σ2
n

2
√

tsW (γmin+1)σ2
n

)

ts
(13)

subject to:

c1 : ts ≥ 0 (13a)

c2 : n ≤ log(1 − Q̄f )

log(1 − P̂max
f )

(13b)

where:

n =
log(1 − Q̄d)

log(1 − P̂min
d )

P̂min
d = Pon.Q

(

λ − 2tsW (γmin + 1)σ2
n

2
√

tsW (γmin + 1)σ2
n

)

P̂max
f = Poff .Q

(

λ − 2tsWσ2
n

2
√

tsWσ4
n

)

Obviously, solving (13) directly and analytically is ex-
tremely difficult due to the exponential characteristic of the
Q-function. Hence, Section V presents an approximation ap-
proach to efficiently solve this optimization problem.

C. Discussion on the Optimization’s Constraint

As discussed earlier in subsection IV-A, there is a tradeoff
in satisfying a high threshold̄Qd for the cooperative detection
probability and a low threshold̄Qf for the cooperative false
alarm probability at the same time. The meaning of this
tradeoff indicates in keeping the upper bound ofn (w.r.t a
given thresholdQ̄f ) satisfying the constraint (13)b of the
optimization problem (13). The detailed discussion on this
issue is presented as follows. Recall the constraint (13)b as:

n∗ =
log(1 − Q̄d)

log(1 − P̂ ∗min
d )

≤ log(1 − Q̄f )

log(1 − P̂ ∗max
f )

The following transformations are then derived to reason
about the specific requirement of the thresholdQ̄f :

log(1 − Q̄f ) ≤
log(1 − P̂ ∗max

f )

log(1 − P̂ ∗min
d )

. log(1 − Q̄d)

⇔ elog(1−Q̄f ) ≤ e

log(1−P̂ ∗max
f

)

log(1−P̂∗min
d

)
. log(1−Q̄d)

⇔ Q̄f ≥ Q̃∗
f = 1 − (1 − Q̄d)

log(1−P̂ ∗max
f

)

log(1−P̂∗min
d

) (14)

wheret∗s is the optimal sensing interval of (13) and:






















P̂ ∗min
d = Pon.Q

(

λ − 2t∗sW (γmin + 1)σ2
n

2
√

t∗sW (γmin + 1)σ2
n

)

P̂ ∗max
f = Poff .Q

(

λ − 2t∗sWσ2
n

2
√

t∗sWσ2
n

)

The inequality (14) indicates that with a given threshold
Q̄d for the cooperative detection probability, the requirement
thresholdQ̄f for the cooperative false alarm probability must
be lower-bounded bỹQ∗

f in order to hold the optimality of
the proposed optimization problem.

V. A NALYTICAL SOLUTIONS FOR THEENERGY

M INIMIZATION PROBLEM

This section presents an approximation approach to accu-
rately solve the optimization (13) in polynomial time. Recall
the formulation of the GaussianQ-function as [16]:

Q(z) ,
1√
2π

∫ ∞

z

e−
x2

2 dx (15)

where:z =
λ − 2tsW (γmin + 1)σ2

n

2
√

tsW (γmin + 1)σ2
n

The exponential characteristic ofQ(z) implies that solving
(13) analytically is extremely difficult. Hence, approximation
approaches can be proposed to make (13) solvable. For exam-
ple, [15] considers these approximations:

Q(z) ≈











1

2
e−z2/2 if z ≥ 0 (16)

1 − 1

2
e−z2/2 if z < 0 (17)

and shows that whenz is positive,t∗s can be found as:

t∗s =
1

W

[
√

λ2

4(γmin + 1)2σ4
n

+ 1 − 1

]

However, this approximation produces around20% error com-
pared to the exact result of the original optimization, which is
mainly due to the high inaccuracy of the approximation (16)
for Q(z > 0). In the following, more accurate and polynomial
time analytical solutions are derived.

A. Linearization when 0.5 ≥ z ≥ −0.5

It is observed from theQ-function that its curvature is close
to linear whenz varies from−0.5 to 0.5. The following
linearization is proposed for that variation ofz to accurately
and analytically solve the optimization (13). Recall the partial
derivative (Slope) of the Q-function as:

Slope ,
∂(Q(z))

∂z
= − 1√

2π
e−

z2

2

The curvature of the linearization can be approximated as
Slope(z = 0) = − 1√

2π
, hence the linearization is derived:

Q(0.5 ≥ z ≥ −0.5) ≈ 1

2
− z√

2π
(18)

Substituting (18) into (13) and following the transformations
in Appendix A, t∗s can be found analytically as:

t∗s =
1

W

[

−π

√

1 +
3λ

π(γmin + 1)σ2
n

+ π +
3λ

2(γmin + 1)σ2
n

]

(19)



B. Approximation when z > 0.5

This approximation is derived similar to (16) as:

Q(z > 0.5) ≈ 1

2
e−

(z+0.5)2

2 (20)

Then, following the derivations in Appendix B in solving the
optimization (13),t∗s = 1

W u∗ can be found as the root of the
following polynomial of degree four:

p4.u
4 + p3.u

3 + p2.u
2 + p1.u + p0 = 0 (21)

where:

u = tsW , andA = 2(γmin + 1)σ2
n

p4 = 4A4

p3 = 15A4

p2 = 2A2(8A2 − 4λ2 − λA)

p1 = 17λ2A2

p0 = 4λ4

C. Approximation when z < −0.5

Whenz < −0.5, (17) cannot be used in solving (13). Thus,
this subsection focuses on finding an approximation that has
the similar Slope as that of the originalQ-function. Since
Q(z < 0) is monotonically increasing whenz is decreasing
below zero, then the following approximation is proposed
whenz < −0.5:

Q(z < 0) ≈ z.Slope = − z√
2π

e−
z2

2 (22)

Hence, following the derivations in Appendix C, the approxi-
mated optimal sensing interval can be found as the root of the
following cubic function:

u3 + a.u2 + b.u + c = 0 (23)

where:

u = tsW

a =
2(γmin + 1)σ2

n − λ

2(γmin + 1)σ2
n

b = −λ2 + 6λ(γmin + 1)σ2
n

(2(γmin + 1)σ2
n)2

c =

(

λ

2(γmin + 1)σ2
n

)3

VI. N UMERICAL RESULTS

This section presents numerical calculation to validate the
approximated optimal results solved by the proposed approach
compared with theexact optimal results of the optimization.
The minimum energy consumption is also validated comparing
with the random energy consumed by the random group
formed by a random number of sensors. In all comparisions,
the exact optimal results are numerically estimated from (13)
in Matlab. Mean absolute error (MAE) is used to validate of
the accuracy of the approximated optimal results.

In all the calculations, the following setting are used:
δEss = 0.05 J; the ON-OFF period of the primary user is

modeled asTon = 1 s, Toff = 2 s [9]. The monitored
spectrum bandwidth isW = 10 kHz. The energy detection
threshold and the ground noise are chosen asλ = 4.5 dB and
σn = −10 dB, respectively. The detection accuracy thresholds
Q̄d = 0.9, and Q̄f = 0.1 are followed the IEEE P802.22
standard. The performance of the proposed optimization and
approximation approach is validated through a wide range of
the minimum SNR from−30 dB to 50 dB.

Firstly, the minimum energy consumption is validated com-
paring with the energy consumed by a random group formed
by randomly selecting the number of sensors from the range
[1, 60]. This range is similar to that of the approximated op-
timal number of sensor solved by the proposed approximated
solutions. Even that the sensing interval yielded by the random
case (the thick-dashed curves in Fig. 3) is sometimes smaller
than the optimal value, the optimization always produces the
minimum energy consumption as shown in Fig. 2. The total
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Fig. 2. Comparing the total energy consumption.

energy consumed by the optimal group of sensors is around
333.97% less than the total energy consumed by the random
group. Huge energy saving under very high SNR condition is
yielded since the proposed optimization produces much shorter
optimal sensing interval.

Fig. 2 also validates the accuracy of the approximated
solutions compared with the exact results as shown in the
dash-dot-asterisk curve and the solid curve, respectively. The
MAE between these curves is around8.82%, which is caused
mainly under very low SNR conditions. The results also
show that when the minimum SNR increases, less energy is
consumed, which confirms the observation discussed earlieron
the influence of the SNR condition to the cooperative spectrum
sensing problem. In particular, the high energy consumption
under very low SNR condition implies the weakness of the
energy detector scheme at low SNR.

The validation of the accuracy of the proposed solutions
is also presented in Fig. 3 where the approximated optimal
sensing interval (the dash-dot-asterisk curve) is very close
to the exact optimal results (the solid curve). It shows here
again that the higher the minimum SNR, the shorter time the
sensing group performs spectrum sensing while still satisfying
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Fig. 3. Comparing the sensing interval.

the required detection accuracy. In addition, in the range−30
dB to 50 dB for the minimum SNR, the MAE produced by
the proposed solutions (23), (19), and (21) are around8.21%,
4.0%, and2.13%, respectively. The highest error caused under
the lowest SNR condition.

Fig. 4 presents the approximated optimal number of sensors
(the dashed bar) and the exact optimal result (the solid bar).
It shows that the difference between the approximated and the
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Fig. 4. The optimal number of sensor.

exact results is very small. It is also observed that the better
the SNR condition the higher optimal number of sensors.
The reason is that the proposed energy minimization produces
much shorter optimal sensing interval under the good SNR
condition. However, it needs to guarantee the given detection
accuracy, hence the sufficient number of sensors will need to
be included during the optimization as shown in Fig. 4.

Finally, figures 5 and 6 show the validations of the minimum
cooperative detection probability and the maximum false alarm
probability yielded by the optimization. The result in Fig.5
indicates that the proposed solutions produce accurate detec-
tion by keeping the minimum cooperative detection probability
above a given threshold. Fig. 6, on the other hand, restates
the tradeoff in keeping very low cooperative false alarm
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d
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probability when the SNR condition is very bad. It suggests
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that the fusion center should either only invite the high SNR
sensors for cooperative spectrum sensing or accept higher
tolerance for the cooperative false alarm probability under very
low SNR situations.

VII. C ONCLUSION

This paper has studied the minimization of the total en-
ergy consumed by a group of power-constraint sensors for
cooperative spectrum sensing in sensor-aided cognitive radio
networks. Firstly, the lower bound and upper bound for the
number of sensors are found under the detection accuracy
thresholds. Then, with the derived bounds, the optimization
problem to minimize the total sensing energy consumption is
formulated. Next, the approximated analytical solutions are
found to solve the optimization accurately and efficiently in
polynomial time. Finally, numerical calculations show that
the minimized energy is significantly lower than the energy
consumed by a group of randomly selected sensors. The
approximated optimal number of sensors is shown to be very
close to the exact number. Under good SNR conditions, the



mean absolute error of the approximated optimal sensing
interval is less than4% compared to the exact value. In the
worst SNR conditions, this error is around8%. It has also
observed that the energy detector scheme does not perform
well at very low SNR conditions, which cause higher energy
consumption for cooperative spectrum sensing.

This paper has also observed and discussed that energy-
efficient selection of the appropriate sensors to be included
in the cooperative spectrum sensing group is an important
problem. The question of how to efficiently coordinate and
select the sensors that experience the highest SNR and that are
well separated from each other in order to avoid correlation
shadowing in cooperative spectrum sensing is addressed as the
future direction of this paper.

APPENDIX A
PROOF OFTHE OPTIMAL RESULT (19)

Proof: The first derivative of (13) can be derived as:
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Using the approximation (18) yields the following:
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DenoteA , 2(γmin + 1)σ2
n, then (A.3) is further derived

by substituting (A.2) as:
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Finally, the optimal sensing interval is found as:
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APPENDIX B
PROOF OFTHE OPTIMAL RESULT (21)

Proof: Substituting (20) into (A.1) yields:
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By denotingA , 2(γmin+1)σ2
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(B.1), t∗s can be found as follows:
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APPENDIX C
PROOF OFTHE OPTIMAL RESULT (23)

Proof: Whenz < −0.5, (22) is used, then:
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Substituting (A.2) into (C.1) leads to the following result:
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Thus,t∗s is solved as a root of (C.2) as follows:
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