
Implementation and Evaluation of Late Data Choice for TCP in Linux

Erlend Birkedal1, Carsten Griwodz1,2 and Pål Halvorsen1,2

1Department of Informatics, University of Oslo, Norway
2Simula Research Laboratory, Norway
{erlendbi, griff, paalh}@ifi.uio.no

Abstract

Real-time delivery of time-dependent data over the In-
ternet is challenging. UDP has often been used to transport
data in a timely manner, but its lack of congestion control is
often criticized. This criticism is a reason that the vast ma-
jority of applications today use TCP. The downside of this
is that TCP has problems with the timely delivery of data.
A transport protocol that adds congestion control to an oth-
erwise UDP-like behaviour is DCCP. For this protocol, late
data choice (LDC) [8] has been proposed to allow adap-
tive applications control over data packets up to the actual
transmission time. We find, however, that application de-
velopers appreciate other TCP features as well, such as its
reliability. We have therefore implemented and tested the
LDC ideas for TCP. It allows the application to modify or
drop packets that have been handed to TCP until they are
actually transmitted to the network. This is achieved with
a shared packet ring and indexes to hold the current sta-
tus. Our experiments show that we can send more useful
data with LDC than without in a streaming scenario. We
can therefore claim that we achieve a better utilization of
the throughput, giving us a higher goodput with LDC than
without.

1 Introduction

The amount of time-dependent data transmitted over the
Internet increases hugely. Many of the applications gener-
ating it, like video and audio conferences, on-demand me-
dia streaming, multimedia sensor networks and distributed
interactive online games, require considerable amounts of
data to arrive in a timely manner to provide a satisfactory
quality of service. When using the transmission control pro-
tocol (TCP) for such applications under network conditions
that allow a high bandwidth-delay ratio, this timeliness is
a challenge when packets get lost and TCP’s generic con-
gestion control mechanisms introduce retransmission de-
lays and reduce bandwidth. Applications may receive data

when it has become obsolete in the TCP send buffer. For ex-
ample, a frame of a layered video may have been displayed
already without waiting for the delayed refinement data.

For various reasons, TCP is the most frequently used
transport protocol today regardless of application type. It is
used both for time-independent and time-dependent appli-
cations. Many protocols such as the Microsoft media server
protocol and systems like Skype try initially to use UDP,
but due to widespread blocking of UDP in firewalls and at
ISPs, they have fallback mechanisms to TCP. For example,
in logs of the streaming service of the largest online news-
paper in Norway,Verdens Gang, we found that the initial
UDP attempt was successful in only 34.0% of the accesses.
The remaining deliveries used MMS over TCP (49.6%) and
HTTP over TCP (16.4%) [6]. Many multi-player online
games use TCP for the same reasons. Thus, even though we
may find appropriate and useful mechanisms for time de-
pendent media delivery in or on top of other transport proto-
cols like UDP, stream control transport protocol (SCTP) [9]
and datagram congestion control protocol (DCCP) [7], they
are largely ignored by network providers. For this reason
we focus on TCP-based solutions.

Using TCP for timely delivery of data poses challenges.
Network congestion can result in large packet delays due
to the mechanisms used by TCP to achieve reliability and
fairness. Packets are frequently held back in the buffer un-
til TCP sends the next segment in the queue. For time-
dependent applications, this is particularly bad, becausethe
send buffer contains data for a longer time span. Consider a
late video frame in a teleconference or a late position update
in a game as illustrations. At a given time, a particular video
frame or game position update is to be used for the data pre-
sentation at the client, but the sender has not even been able
to send the previous data elements. In the next available
transmission slot, TCP will then send the next data in the
queue, which may be worthless, delaying the new relevant
data even further, and possibly out-dating these data as well.

For applications requiring timely delivery of data, the de-
scribed scenarios waste resources in the network, as deliv-
ered data will be less relevant for the receiver. In the current

implementation, TCP does not have any means to deal with
the situation. To better utilize the resources and reduce the
delay of relevant data, it would therefore be an improvement
if an application had mechanisms available to prevent trans-
mission of outdated data, i.e., means to discover and discard
network traffic that is already too late. Thus, some control
over the transmission buffer is required, enabling modifi-
cation of buffers that the application has already handed to
TCP. Such functionality can be added in several ways. Pos-
sible approaches are support forpartial reliability or late
data choice(LDC). The partial reliability approach of the
stream control transmission protocol (SCTP), for example,
is defined as a transport service “that allows the user to spec-
ify, on a per message basis, the rules governing how persis-
tent the transport service should be in attempting to send the
message to the receiver” [10]. LDC is an alternative imple-
mentation for feeding data to TCP that provides a generic
control over the transmit buffer [8] without any changes to
the TCP protocol itself. It enables an application to con-
trol its transmit buffer and gives it the ability to modify or
remove data in the buffer.

In this paper, we look at possible ways for delivering
time-dependent data faster when delays keep data in the
TCP send buffer. To avoid a huge number of cross-platform
updates, our aim has been to have a kernel patch which can
improve the situation using sender side modification only
and which is as closely integrated with the standard Linux
TCP implementation as possible without affecting applica-
tions that use the normal TCP API. In particular, we present
and evaluate an implementation1 of LDC for TCP in Linux
(version 2.6.15.4). Our experimental tests shows that the
implementation is able to provide the required functional-
ity while also providing an enhanced data path reducing the
number of user-kernel boundary crossings.

The remainder of this paper is organized as follows. In
the next section (section 2), we briefly describe the sending
operation in Linux TCP before looking at some related work
in section 3. Section 4 outlines the main LDC ideas from
DCCP, and in section 5, our LDC implementation for TCP
in Linux is presented. We evaluate our system in section 6,
and a discussion is given in section 7. Finally, section 8
concludes the paper.

2 TCP output

To send data over a TCP connection in Linux, the ap-
plication uses a system call likesend, write, etc. on a
socket with at least a pointer to the data and its size. This
call is then managed by the appropriate system call function
and sent to the TCP functions for sending data. Here, data is
copied from user space into socket buffers in the tail of the

1Available at http://www.simula.no/departments/networks/software

socket send buffer. TCP then sends packets from the send
buffer in first come first serve order until there is not more
data to send (or until it is stopped for various reasons such
as congestion or “corking”).

The problem for time-dependent data occurs when the
transmission has stopped due to lack of space in the TCP
send window. The reasons for this are a loss event that is
interpreted as a sign for congestion or a flow control event
that indicates a blocking receiver. These events force TCP
to slow down or stop entirely, respectively. The application
may continue to send data to the communication system in
spite of this throttling as long as there is space in the send
buffer. The data may thus expire in the send buffer if it
only has a certain time to live. With no means for the ap-
plication to notice this situation and react to it, TCP sends
the unacknowledged packets in the send buffer in first come
first serve order even if newer updated information is placed
further back in the queue.

3 Related Work

Even though TCP has some issues with time-dependent
data, it is common today to use TCP also for time-
dependent streaming and gaming applications. We want to
give applications control over the TCP send buffer to ensure
that only timely data is sent. In this section, we look at the
work most relevant for our work.

The PRTP-ECN extension to TCP [3] makes a tradeoff
between reliability and latency by modifying the TCP re-
transmission scheme. This scheme may acknowledge lost
packets at the receiving-side (avoiding a retransmission)
and uses ECN to remedy the influence of congestion con-
trol. Similarly, TCP Urel2 is an option at the sender-side
to TCP, which sends fresh data in every segment regardless
of whether the segment is a new packet or a scheduled re-
transmission. Furthermore, the SCTP [9] partial reliability
extension (PR-SCTP) [10] is able to provide some control
over data to be sent and retransmitted. With timed reliability
it allows to associate a time to live with a packet. The packet
is dropped if transmission is not successful by the deadline,
and the receiver advances the cumulative ACK point. Lai
and Kohler’s LDC API [8] for DCCP [7] allows the appli-
cation to delete or modify packets sent from the application
but not yet transmitted to the network using a shared buffer
between the application and the kernel. Finally, dynamic
send buffer size [2] adapts the TCP send buffer size in Linux
to twice the congestion window size. This allows applica-
tions to notice much earlier than the usual implementation
when TCP reduces send speed for some reason, and react
much faster to it by adapting to a lower bitrate.

2The paperTCP Urel: A TCP Option for Unreliable Data Streaming
by Lin Ma, Xiuchao and Wei Tsang Ooi which is still under submission.

All these mechanisms address the challenge of deliver-
ing time-dependent data in more or less orthogonal or com-
plementary ways. PRTP-ECN, TCP Urel and PR-STCP
(movement of the cumulative ACK) may avoid retransmis-
sions of time-dependent data in case of congestion. PR-
STCP (timed reliability), LDC for DCCP and dynamic send
buffers enable applications to control what is sent in a con-
gested situation. Of the mechanisms, dynamic send buffers
are most similar to LDC, but their reaction speed is consid-
erably lower. What was supposed to be 2 round-trip times
worth of data are stored in its send buffers when a con-
gestion event occurs, and it takes subsequently 4 round-trip
times to deliver this data, and much of which may become
obsolete. Conditionally ignoring lost packets in PR-SCTP
and PRTP-ECN require client-side changes, and in the case
of PRTP-ECN, the authors rely on ECN, which is not nec-
essarily available. Moreover, TCP Urel (and PRTP-ECN)
avoids retransmitting old data independently of the data it-
self. The DCCP LDC mechanism and the PR-STCP (timed
reliability) are in many ways similar, and both can be used
in a larger class of applications. As LDC can be used to
provide the timed reliability of PR-SCTP, we describe LDC
for DCCP in more detail next and then take a look at how
to implement LDC support in TCP in the Linux network
architecture.

4 Late Data Choice in DCCP

The LDC API [8] for DCCP enhances applications’ abil-
ity to control, modify and possibly discard the data that has
already been sent to the communication system but not been
sent to the driver yet. It is implemented as a shared ring
between user and kernel space (similar to the ring buffer
shown in figure 2) with pointers indicating the current sta-
tus with respect to the packets that have been sent from the
application and that have been processed and transmitted to
the network. The former ones may still be controlled by the
application. Additionally, the LDC API enables the appli-
cation to use flags to mark packets for dropping, instructing
the kernel to move on to the next packet in the ring buffer.
Finally, the kernel can mark packets that have been sent suc-
cessfully. In this way, LDC lets DCCP retain control over
the sending speed and thus, more control over the timely
delivery of data to the application.

5 Late Data Choice Support in Linux TCP

This section briefly describes our LDC support for TCP
in Linux3 (for further details, please refer to [1]). The main
design is inspired by Lai and Kohler’s DCCP API for late

3We do not address security issues in this paper, but the ring pointers
should be protected to avoid illegal updates.

Figure 1. TCP LDC design

data choice (section 4), and the handling of packets that
have been sent once is inspired by earlier SCTP proposals.
Our primary goal is functionality to be able to go back in
the send buffer and delete (or modify) a packet that is still
queued in the kernel transmission buffer. We followed also
two additional design goals. One was that the implemen-
tation should work with an unmodified TCP receiver. The
other was to keep the existing TCP stack intact while pro-
viding additional LDC support.

As shown in figure 1, depicting the design overview, we
use send buffers that are shared between user and kernel
space. Furthermore, we have a TCP LDC module in the
kernel that links the packet ring and the traditional TCP/IP
stack. It enables sending data in the buffer directly using
the functions in the original stack. Finally, we have an LDC
user space library to provide calls to the LDC functional-
ity. In the current version, it includes functions to initial-
ize the socket as an LDC socket, to send packets using the
ring buffer and to drop one or more packets setting the per-
packet flags.

The heart of the implementation is the packet ring, which
“replaces” the original packet buffer. The main idea is that
the application “sends” packets without issuing a system
call. It puts data directly into one ring buffer of the packet
ring at a time. The kernel transmits data according to TCP’s
congestion control as long as the packet ring is not empty. If
the ring is empty, the LDC kernel module goes to sleep until
notified. Thus, when the application has put a packet in the
packet ring, it should notify the kernel if it is not already
sending packets.

5.1 Indexes and flags

Three index values (or pointers) per connection keep
track of status information and are used to manage the ring.
They are shown in figure 2 and are used as follows:

Figure 2. Packet ring and indexes

• The kernel index (kern i) points to the data element
that the kernel should process and send next.

• The user index (user i) points to the ring buffer that
the application should use next.

• The user modification index (umod i) points to the
oldest unsent ring buffer that can be modified safely.

This means that slots with indexi where

• kern i≤i<umod i contain data ready to be sent

• umod i≤i<user i are buffers that the application
freely can modify/delete

• user i≤i<kern i are free to use

As long as the application does not update data,umod i
equalsuser i. Theumod i is only decremented when
the application wants to modify or delete a ring buffer. The
kernel is then prevented from sending this and all following
packet buffers untilumod i is increased again.

Additionally, there are two types of flags. The ring struc-
ture contains akernel flag. By setting it, the kernel in-
dicates that it is not sending packets and needs to be notified
to start sending by setting it. Auser flag exists once for
every packet buffer. The application sets it to indicate that
the ring buffer has been deleted. The kernel skips it and
processes the next buffer in the ring.

5.2 Replacing the existing socket buffer

Adding LDC support requires extra information in the
buffer structure and handling of data that differs from the
usual write operations. To do this without additional delays,
the TCP LDC packet ring mechanism is integrated with the
existing TCP socket buffer. With TCP LDC, unsent pack-
ets are in the packet ring and can be modified or deleted.
Only one packet, the next one to be sent, is in the original
TCP send buffer. Ring buffers in the TCP LDC packet ring
contain data and a minimal LDC header, while packets in
the original TCP send buffer are managed with a traditional
Linux skb buffer structure. Ring buffers that are moved to
the original buffer are not copied but wrapped asskbs.

5.3 User-Kernel Interface

Our LDC implementation uses a normal TCP socket, and
the application manages the kernel LDC functions using
setsockopt(),getsockopt() andioctl() with a
set of new options. The socket is first defined as an LDC
socket usingsetsockopt() with the newTCP LDC op-
tion. Thetcp ldc module (see section 5.4) is then loaded
on demand. After creating the LDC socket, the applica-
tion needs access to the allocated memory. This is done us-
ing getsockopt() with TCP LDC. This returns theuser
spaceaddress to the shared buffer (packet ring). Now, the
application has access to the packet ring and can start plac-
ing packets in it. Finally, to wake up a sleeping transmission
operation ifkern notify is set, we added anioctl()
request that clears the flag and resumes (or starts) the TCP
data transmission.

5.4 The TCP LDC kernel module

The tcp ldc module is the core of the implementa-
tion. It implements buffer initialization and handling, send-
ing packets and removing deleted packets on behalf of the
application.

The first step in initializing a socket for LDC is creating
a set of pointers. Ring buffers for the packet ring are then
allocated in page aligned memory pages and mapped into
both the kernel’s and the application’s virtual memory. Af-
ter allocating the packet ring, the module “sleeps” until itis
notified by an application. Since the packet ring is shared
between the application and the kernel, we do not use the
normal send (or equivalent) system-calls. Packets are sim-
ply copied into ring buffers in shared memory. Since no sys-
tem call is involved in this, the kernel’s send operation can
not be initiated in this way. Explicit notification is therefore
necessary and achieved by anioctl.

Sending data does not require acopyin operation like
a usual TCP send operation. Instead,tcp ldc uses the in-
dexes of the ring to find the next data to process and trans-
mit. The data is then sent using the standardskb buffer
structure. It copies data with a data pointer to the ring mem-
ory just in time for transmission (to avoid unnecessary data
movement). Theskb is placed on the queue, and the pend-
ing frames are pushed out as in normal TCP. All normal
TCP operations including retransmissions and congestion
control are performed by the originally implemented mech-
anisms. Furthermore, when TCP has sent one segment, it
looks for a new one. For an LDC socket, the traditional
socket queue is not used. The TCP transmit function calls
thetcp ldc module to get the next ring buffer element in-
stead. If the ring is empty, thekern flag is set and the
operation goes to sleep.

Figure 3. Layered video

Figure 4. No rate limit, no loss

6 Experiments

We believe that an LDC implementation is useful in sce-
narios that have very strict time constraints. As a proof
of concept, we performed tests to see how LDC could af-
fect the user perception in a video streaming scenario with
a minimal latency, as it is desired for video conferencing.
Late data in this scenario is consequently dropped at the
receiver. We set up an experiment for streaming hierarchi-
cally layered video (see figure 3). The server sends with a
rate of up to 1 Mbps per stream divided into 8 video quality
layers of 128 Kbps. The lowest layer has highest relevance,
the other layers each refine all layers below them. Receiv-
ing more layers improves the quality of the playout. The
application drops packets starting with the higher layers un-
til it can send the stream strictly at playout speed with the
first packet as the time reference. We used a test setup with a
server and a client connected by one machine runningnetem
to emulate a network connecting them.

The tests presented here ran for 60 seconds. The band-
widths 1024 Kbps (full rate), 512 Kbps and 256 Kbps were
used. We used a 5% loss rate to provoke delays due to
retransmissions. For tests of TCP without LDC support
(denoted ”regular TCP”), we used the Linux default (New
Reno with DSACK) and the regularsend() system call.
For the LDC tests, we used our modified stack and the LDC
user space library to allow the application to send data and
drop data using the LDC kernel module.

The measured average values of 10 test runs, using the
three stated bandwidths, are shown in figures 5 and 6 for
regular TCP and LDC, respectively. In a scenario with un-

Available BW TCP TCP with LDC Difference

1024 Kbps 862.47 851.96 1.22%

512 Kbps 457.72 456.30 0.31%

256 Kbps 235.88 235.24 0.27%

Table 1. Receive rate in Kbps

limited bandwidth and no loss (figure 4), each of the 8 layers
should be complete for both TCP variants, i.e., almost 1 MB
of data (983040 B) for each layer or about 7.5 MB.

In the first test, we looked at regular TCP. When we in-
troduced rate limits of 1024 Kbps, 512 Kbps and 256 Kbps
(and 5% loss), shown in figures 5(a), 5(b) and 5(c), we re-
ceived a total of 6.32 MB, 3.35 MB and 1.73 MB of data
during the 60 seconds, respectively. As we see in the fig-
ures, the received data is evenly distributed (except in the
last 1-second, eight layer segment) on the eight layers. The
reason for this is that the sending application does not ac-
tively drop any packets. Since TCP is a reliable protocol
and we send one second of data from one layer at a time
starting at the most significant layer (base layer), the appli-
cation receives all the data from all the layers in the order in
which it was sent.

The LDC results with rate limits of 1024 Kbps, 512 Kbps
and 256 Kbps (and 5% loss) are shown in figure 6(a), 6(b)
and 6(c). We received a total of 6.24 MB, 3.34 MB and
1.72 MB of data in average, respectively. Although we got
a little less data in the same time period than with regular
TCP (see table 1), we observe that the received data is much
more relevant. The base layer, layer 1, is complete for all
test scenarios, meaning that we can present the media at
the receiver in the correct time-frame. The figures illustrate
clearly that we achieved the desired effect, namely that the
application was able to prioritize the most significant layers
and drop data from the less significant layers when it was
not transmitted in time. This effect is a result of dropping
packets still in the send buffer after the deadline has expired.

In figure 7, we have looked at the amount of data that ar-
rives in time for a streaming scenario with minimal buffers
at the receiver. This scenario is valid for highly time-critical
applications but also when streaming to very limited re-
ceivers such as mobile phones.

Figure 7(a) shows regular TCP where all data is deliv-
ered despite of over-aged packets. In the presence of packet
loss, it is unable to deliver data in time for playout. On
the other hand, LDC enables the application to distinguish
between useful and useless transmissions. This increases
the amount of data that can be delivered in time. Similar
conclusions can be drawn from figure 8(a) where the ar-
rival time of each packet is plotted according to the time
by which the payload should have been played out. LDC
delivers data according to the playout consumption, but has
dropped some (of the least relevant) packets as shown by
the gaps between the points (the other rate limitations are

(a) 1024 Kbps (b) 512 Kbps (c) 256 Kbps

Figure 5. Received data after 60 seconds using TCP

(a) 1024 Kbps (b) 512 Kbps (c) 256 Kbps

Figure 6. Received data after 60 seconds using LDC

(a) Without LDC (b) With LDC

Figure 7. Achieved goodputwith and without LDC

identical except that the amount of loss is decreased). In
contrast, the application using the regular TCP has prob-
lems providing a continuous playout from the occurence of
the first packet loss. Thus, LDC may also have some data
arriving too late as we cannot control the retransmissions
themselves, but in summary, the bandwidth is better utilized
for useful data.

7 Comparison and Discussion

TCP is frequently used for time-dependent data streams
because other transport protocols are often ignored and
blocked. We are therefore looking at streaming over TCP
although appropriate and useful mechanisms in or on top of
other transport protocols exist. For example, using UDP, we

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

a
m
o
u
n
t

o
f

r
e
c
e
i
v
e
d

d
a
t
a

(
%
)

time (seconds)

Playout consumption
LDC, 256 Mbps

TCP, 1024 Kbps
TCP, 512 Kbps
TCP, 256 Kbps

(a) Without initial buffering

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

a
m
o
u
n
t

o
f

r
e
c
e
i
v
e
d

d
a
t
a

(
%
)

time (seconds)

Playout consumption
TCP, 512 Kbps, 10s buffer
TCP, 1024 Kbps, 10s buffer
TCP, 512 Kbps, 20s buffer
TCP, 1024 Kbps, 20s buffer

(b) With initial buffering

Figure 8. Data arrival according to data consumption

would lose the same packets and not experience retransmis-
sion problems, giving us approximately the same gaps in the
data playout that we experience using LDC. The reliability
can also be achieved by adding user-space mechanisms on
top of UDP or DCCP [7], or standards-track extensions to
SCTP [9]. Nevertheless, the main problem is the required
use of TCP, and we have therefore addressed how we can
enhance the TCP API to better support time-dependent data
streams.

We have compared the results from our LDC implemen-
tation with a standard Linux setup using New Reno with
DSACK. We realize that several ”high-speed” TCP vari-
ations available in Linux achieve higher throughput than
New Reno with DSACK. However, the older New-Reno-
based variants perform best regarding retransmission han-
dling and latencies [4]. Furthermore, our LDC implemen-
tation does not influence fairness and congestion control
(which is the main difference between the various other
TCP versions) and can therefore be used with all the other
TCP variants in Linux.

The test results show that an application can deliver a lot
more relevant data with LDC than with regular TCP in a
time-dependent scenario. In our example, LDC improved
the perceived quality at the receiver by enabling a real-time
playout of the video in the case of limited bandwidth and
loss – with a quality according to the available rate. The
data delivered by regular TCP is not very useful in this very
strict real-time scenario. Data arrives too late accordingto
the playout rate (figure 8(a)). If we were to implement a
layered streaming architecture with regular TCP, we would
have to check available resources before sending a layer,
requiring larger buffers and introducing latencies, or using
dynamically sized TCP send buffers [2].

Initial startup buffering, as used by many players today,
would improve the situation. This is shown in figure 8(b)
where the same scenario is plotted with a 10 seconds and

a 20 seconds startup buffering. However, challenges here
are the requirement for memory (especially at thin clients)
and determining the size of the buffer, which should be de-
pendent on the playout-, loss- and transmission rate (all of
which can oscillate). Therefore, the test results clearly state
that streaming of layer-encoded media greatly benefits from
LDC support, both with and without buffering.

Another observation is that the throughput of TCP with
LDC is slightly lower than without LDC. If we look only
at the throughput, we get the values shown in table 1. We
have not investigated why this is the case, but there can be
several reasons. In the first place, data in the LDC packet
ring is wrapped inskbs just in time before it is sent, and this
may introduce an extra delay. In contrast, with regular TCP,
we already have the data ready asskbs in the send buffer.
Another reason may be our means of dropping packets. In
our test applications, we have an LDC packet size equal to
data for one layer in one second (128 kbit). So, when we
are dropping packets, we may not fully utilize the available
bandwidth. This may be tuned with different LDC packet
buffer sizes. The important thing to remember is that even
if we have slightly lower throughput with LDC than with
the regular TCP implementation, all the data received with
LDC support is usable, while that received with the regular
implementation is not. A good throughput is useless if the
data transmitted is too old.

Another property of the LDC implementation is that
the memory area between the application and the kernel is
shared. This enables a zero-copy data path where theskbs
use the LDC send buffer’s data pointer instead of just-in-
time copying from user-space. The benefits of zero-copy
approaches have been reported a numerous times before, re-
cently in our study of enhancements to Linux 2.6 kernel [5].
We have not experimented with a CPU bound system and
therefore not investigated this further for this paper.

It may be argued that the LDC API introduces complica-

tions because it lacks logic for dropping packets. LDC gives
the means for dropping to the application but the application
must itself implement a (good) drop algorithm to achieve
useful results. However, the knowledge of the relevance of
the data lies with the application (or programmer) and not
the kernel. The adaptive send buffer size approach [2] may
thus be simpler but the LDC API allows reacting even more
quickly to congestion.

Our test includes only a layered video streaming sce-
nario. However, the LDC functionality is useful for a larger
class of applications. Applications that send data with a
severely limited lifetime over TCP, like multiplayer games
updates and multimedia sensor data may benefit from LDC
support in TCP. Existing TCP-based applications can eas-
ily adopt LDC support while continuing to use their already
implemented TCP architecture with minimal modification.
After defining the application’s socket as an LDC socket,
there are only two modifications needed, that is the actual
sending of packets and adding logic for dropping packets
when they are outdated. As described below, one may want
to implement functionality that lets the kernel drop pack-
ets automatically, making logic for dropping packets in the
application unnecessary in the simplest cases.

To fully support delivery of time-dependent data over
TCP, we would like to extend the drop functionality. Adding
the timed reliability of PR-SCTP [10] would allow drop-
ping by the kernel. Furthermore, as shown in figure 7(b),
we still have some data arriving late due to retransmissions,
i.e., the packets are processed and no longer controllable by
LDC. Thus, it may also be desirable to include dropping of
retransmissions, as these may be outdated due to the extra
delay. However, in case of the PR-SCTP solution and the
PRTP-ECN extension to TCP [3], this also implies a modifi-
cation to the receiving side of a connection due to sequence
numbers. A possible solution would then be to orthogonally
use the solution of TCP Urel to send fresh data in every seg-
ment regardless of whether the segment is a new packet or
a scheduled retransmission.

8 Conclusions

Many existing applications require real-time delivery of
time-dependent data. TCP is used for this in spite of several
problems. In this paper, we have therefore investigated an
LDC extension to the sender-side handling of TCP in Linux.
This allows applications to modify or drop queued but still
unsent packets without any changes to the TCP protocol it-
self.

Our experiments with a layered video playout showed
that we can improve the user experience in a scenario with
time critical data in congested networks. Applications are
able to send more useful data using LDC. Thus, theper-
ceived qualityfor the receiver at a very low latency will be

better since we manage to transfer the whole base layer and
thereby get a continuous playback of the video in the de-
scribed test scenario. We can for the same reason claim that
we have a better utilization of the throughput, giving us a
higheruseful throughput(or goodput) with LDC than with-
out. Based on this, we conclude that LDC support in TCP
actually reduces the latency and increases the throughput
for time critical data in congested networks.

We are currently performing more tests to further show
the benefits of our LDC implementation. Further work on
our system includes extending the drop functionality by
adding both dropping after a deadline and some kind of se-
lective retransmission.

References

[1] E. Birkedal. Late data choice with the linux TCP/IP stack.
Master’s thesis, Department of Informatics, University of
Oslo, Oslo, Norway, May 2006.

[2] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting
low latency TCP-based media streams. InProceedings
of the IEEE International Workshop on Quality of Service
(IWQoS), pages 193–203, May 2002.

[3] K.-J. Grinnemo and A. Brunstrom. Enhancing tcp for ap-
plications with soft real-time constraints. InProceedings of
SPIE Multimedia Systems and Applications, pages 18–31,
Nov. 2001.

[4] C. Griwodz and P. Halvorsen. The fun of using TCP for an
MMORPG. InProceedings of the International Workshop
on Network and Operating System Support for Digital Audio
and Video (NOSSDAV). ACM Press, May 2006.

[5] P. Halvorsen, T. A. Dalseng, and C. Griwodz. Assessment of
data path implementations for download and streaming. In
Proceedings of the International Conference on Distributed
Multimedia Systems (DMS), pages 228–233, Sept. 2005.

[6] F. T. Johnsen, T. Hafsøe, C. Griwodz, and P. Halvorsen.
Workload characterization for news-on-demand stream-
ing services. InProceedings of the IEEE International
Performance Computing and Communications Conference
(IPCCC), Apr. 2007.

[7] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
Control Protocol (DCCP). RFC 4340 (Proposed Standard),
Mar. 2006.

[8] J. Lai and E. Kohler. Efficiency and late data choice in a
user-kernel interface for congestion-controlled datagrams.
In Proceedings of SPIE/ACM Conference on Multimedia
Computing and Networking (MMCN), pages 136–142, Jan.
2005.

[9] L. Ong and J. Yoakum. An Introduction to the Stream Con-
trol Transmission Protocol (SCTP). RFC 3286 (Informa-
tional), May 2002.

[10] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Con-
rad. Stream Control Transmission Protocol (SCTP) Partial
Reliability Extension. RFC 3758 (Proposed Standard), May
2004.

