Latency Reduction in Massively Multi-player Online Games
by Partial Migration of Game State

Paul B. Beskow, Pal Halvorseh?, Carsten Griwodz>
HFI, University of Oslo, Norway 2Simula Research Laboratory, Norway
Email: {paulbb, paalh, griff}@ifi.uio.no

Abstract

With the increasing popularity of massively multi-playatine games (MMOGS), developers are continually
forced to deal with the conflicting requirements of suppayta large number of concurrent users, while
simultaneously providing low latency. As a result, a commay of distributing load is by dividing the virtual
environment into logical regions. Geographically couplegers in such regions can be distinguished by
analyzing IP addresses, RTTs or similar. This paper proptise architecture for a decentralized middleware
capable of utilizing such information, with the intent ofcdsasing the overall latency for the majority of
users in that region. The latency reduction is accomplidhethigrating a game region to a server closer in
locality to the users, thereby lowering the response tinrerobte procedure calls. Due to the characteristics
of MMOGs, the middleware implements a distributed namea®rmade possible by activating the system
from a single node in the system.

1 Introduction

In recent years, massively multi-player online games (MM{pave become increasingly popu-
lar among consumers. According to the Entertainment So&wasociation [1], the number of

gamers who play online games has increased from 31 perc2@0ihto 44 percent in 2006. In cor-

respondence, the number of subscribers to MMOGs has steadibased since 1997, exceeding
13 million in 2006 [2]. These applications enable a user tsnfand maintain social bonds, using
the virtual environment as an interface. The persistenttimoous and interactive nature of this
genre of games has largely contributed to this successldntlly, the success due to interactivity
also raises the most challenging system requirementpwdatencyfor all users.

MMOGs allow thousands of users to concurrently interact pessistent virtual environment. A
significant characteristic of this type of application s lick of resilience towards network trans-
mission delays [3-5]. For the users to have a consistent ofahe world, the events of the game
need to be distributed as fast as possible. With a large nuofhesers, the quantity of events to
distribute are considerable. This causes the capacityea$éhvers to deteriorate rapidly, which in
turn lowers the quality of service. To support these viremlironments, with such considerable
numbers of interacting entities, there is a need for an efficarchitecture able to handle the load
generated. As a result, MMOGs commonly deploy an exclusis&nce of the virtual environment
on a single, centralized, distributed system, such as &ecjggid or mainframe. One such instance
of the game world is commonly referred to as a shard, a congketited from Ultima Online [6].

There are varying strategies for how these game worlds g@ieydsl. EVE Online [7], for instance,
only utilizes a single shard, to which all subscribers catnand this single cluster can handle
30,000 concurrent users. In contrast, games such as Wokldaadraft (WoW) [8] use multiple
shards, which can support approximately 3,000 concurrestsuper shard. As the load increases,
more shards are made available. Alternately, shards argechéfrthe amount of users becomes
significantly lower. A main difference is that the users of E®nline will have the ability to
interact with all users in the same environment, while in Waoh€ users will have to agree on a
server to connect to in order to play together.

Irrespective of the number of users supported per shard,dbinmon to divide the game world
into regions (also referred to as cells). This is to ensurewam distribution of the load and is
accomplished by reducing the number of entities that updaged to be issued to. Most commonly,
these regions are divided statically. Players then corioeitte server managing the region of the
game world where their character is situated. As the play@res between regions, the player’s
data is migrated to the server handling that region. Howesfar as the user is concerned, the
game world is a single entity.

The users interacting in MMOGs commonly are from widelyeti#nt areas of the world. In many
distributed systems, the effect of this is not necessardyaent, mainly because the architecture
of the application can adapt to this by distributing usersdovers accordingly. With MMOGs,
users cannot necessarily be separated to accommodatbebiyse of the interaction that occurs
with other users in the virtual environment. As a resultrsgannot be placed in the virtual world
according to their physical location. It becomes appareat the static region based architecture
on a centralized cluster, while efficient and relativelyyeasmaintain, does not cater to the varying
geographical locations of the users. It can be argued tméegasuch as WoW, to a certain degree
take this into account. They have shards located at multpkgions across the world, where users
generally connect to one close in proximity. The distribatof users, however, occurs as a result
of the availability of servers, not because of how the migdie is implemented. An ideal example
of this is EVE, with its single shard structure, where allrssgre connected to the same centralized
cluster. Users from all over the world interact in the sanggdal regions, with one region hosted by
a single server. The result is an architecture which cantjostitself to the difference in latency
among its users.

Thus, it would be better to have a virtual world where the grgicould be managed by nodes
geographically located closer to the majority of the usarghis context, a recent study [9] of the
MMOG Anarchy Online [10], analyzing the RTTs in traces fromecof several hundred regions
composing the virtual environment, three distinct grogpinf users were revealed. Based on the
location of the server, these were USA, Asia and Europe. dafe to assume that one of these
groups will be dominant, depending on the time of day. Thusassumption is that by analyzing
the latency of users in a region from the virtual environmemte can determine where they are
approximately located geographically. Similarly, one ldouse the IP addresses of the users, if
available, to obtain this information. Though with a lot ebearch being done on integrating peer
to peer based systems into MMOGs [11], there is no guarahtgestich information is readily
available. As far as we can determine, there has not beenadohef research into the possibilities
connected to load-balancing the regions of an MMOG baset@geographical location of users
currently located within it. Most of the research is focusedeffective load-balancing within a
centralized cluster, by dynamically re-locating regioasdd on overall load. Therefore, this paper
proposes the architecture of a middleware which will allowthe development of MMOGSs which
are aware of the physical locality of its users. The interibitower the response time of remote
procedure calls for the majority of users connected to angiggion, which in turn should lower the
overall latency. This is accomplished by migrating the oegb a server closer in physical locality.

Our middleware is based on a distributed model, where aesimgie acts as the point of initializa-
tion. That is to say, a single server in the system initigliaé communication and object creation,
which is necessary in order for objects in our system to batémtafter migration. This is a result of
the way we implement our name service (see section 3). Asdrbes necessary to migrate objects
from one server to another, objects which share common ctegistics, such as belonging to an
application-defined region, are added to migration grodpgese migration groups are formed on
the basis of migration policies, which will select objecstsanaged by that node, based on a set of
criteria. After the selection process, the objects in tligseips are migrated to the server selected
by the application. One possibility is to migrate based arggaphical locations and the respective

latencies. A goal of this project is to implement this middhee in order to see if placing objects in
such a manner will benefit the majority of users in terms ariay. The architecture is designed in
such a way that load balancing can be performed based on antyemwf requirements. If the load

on the server becomes too large, another migration policybeaactivated. As such, migration can
occur implicit or explicit. In this scenario, an explicit gnation is performed when a user moves
from one region to another. An implicit migration can be obttypes, reactive or preemptive. A

reactive policy is issued in response to scenarios suchgislbad on the server, which left on

its own can cause the game to become unplayable. In cordgraséemptive policy is used in an

attempt to improve performance, e.g., by moving users ig@neto a server closer in locality.

2 Redated Work

To handle the large number of concurrently interactingtiestin a virtual environment, it is com-
mon practice to use a static, region based partitioningrsehd he virtual world is thus divided into
smaller, more manageable parts, where each region is hastedingle server in the cluster. Some
implementations allow several regions to be hosted on @&gesuch as Anarchy Online [10], while
others are more conservative and allow only for one regiorspever, such as Second Life [12].
A widely accepted problem with the static partitioning Stieeis that it does not take into ac-
count the dynamic nature of MMOGs. Even if the static pamitng is based on population density
trends, and arranged to accommodate this, it is still stiddego imbalances due to unforeseen
events. Thus, a lot of research has been done on how to imgivevigexibility of these partition-
ing schemes, and consequently, algorithms for efficienjriduting entities and regions. This
research, however, does not address how the locality of¢hesuin relation to a server, will affect
latency.

Turck et al [13] have investigated the effects of dividingaarg world into dynamic micro-cells.
A study with a similar background is performed by Duong etla][Such micro-cells can be
reassigned to servers in a cluster if the load on the serggraie currently residing on becomes too
large. Three different load-balancing algorithms weredus®ne of which factored in locality of
users, and the number of micro-cells supported per serviedval he test was done on a centralized
cluster. The conclusion was that a dynamic approach is qatgfs because it will decrease the
chance for bottlenecks and lower the overall latency.

Another approach to solving the problems with static gartihg is through maintaining consis-
tency by limiting updates based on an area of interest. IBMdeveloped a middleware for dis-
tributed games called Matrix [15] using this approach. lased on the observation that MMOGs
are nearly decomposable systems, and as such, it is usu#fliet to update players with only
those events that occur in their zone of visibility. Mattixu$ provides pockets of locally-consistent
state. Results show that Matrix outperforms static partitig schemes when the workload exhibits
unpredictable and dynamic skews. Matrix makes use of rdggsed partitioning as an underlying
foundation, but this is for the purpose of easily distribgtthe virtual world across multiple servers.
Matrix is also intended for a centralized cluster of servémsother middleware which implements
this area of interest type partitioning is the Colyseusesysf16], but this system is designed for
first person shooter games and does not utilize the concepgioins.

In summary, the work on static and dynamic partitioning adersserver load in a centralized cluster
and not latency due to the geographical location of userst iiicthe research tries to optimize the
partitioning of the virtual environment into regions whicéin dynamically accommodate hot-spots.
These regions can be user centric, in the area of interesbagp or area centric, in the micro-cell
approach. The goal is nonetheless always to minimize theiatvad events being distributed, be
this through dynamically moving areas when a server becavertoaded, or by limiting the scope
of a user. Regardless, most of these partitioning schemé&s tha assumption that the system
consists of a centralized cluster of servers, grid or similaus, little or no efforts have been made

to investigate the effects of a decentralized distributestesn middleware, which would allow for
regions of the game to be migrated based on the physicaltiocéithe users in addition to their
virtual locality. We have already seen that it is possibl@étermine the relative location of the
users, based, for example, on an analysis of their RTT [9].alste know that a common way of
dividing virtual environments is by partitioning them intmaller cells or regions. There is also a
number of algorithms for balancing the load. In this paperwill now look at the system we intend
to implement, which will permit for the accommaodation of gioal locality in addition to virtual
locality. This migration of objects based on the localitytod majority of users would orthogonally
further reduce the load and more importantly the latencyhénfollowing section we will describe
our proposed architecture for locating objects.

3 Name Service

In our distributed system, we wish to perform migration fog purpose of off-loading servers, and
for minimizing the response time for reacting to events ikazkfrom clients. When objects are dis-
tributed across multiple nodes in a system, access to ghjddth are not in local memory require
special handling. Primarily, it is necessary to locate tbdenon which a particular object is cur-
rently residing. A name service provides an applicatiorhwhiis type of functionality. Depending
on the application being developed, there are differentagghes to implement the name service.
For our application, we have a set of six characteristicscvitnpact the approach we decide to
use:

1. The server must be able to handle thousands of concursens.uFor these users to have
an optimal experience, the latency needs to be as low asbfmsairequirement which is
important for all interactive applications.

2. The users can be located anywhere in the physical worldigtoel world.

3. Depending on the time of day, there is a high probabiligt tnmajority of the users will be
represented by a specific time zone.

4. In order to handle the load generated by so many concunsams, it is necessary to divide
the world into regions which are spread out across a numbszreérs.

5. Clients and servers use the same libraries, that meanesadttia is shared and that only data
needs to be migrated. It also means that we can call any fumofia remote object directly,
without having to discover which function interface to use.

6. Alarge number of objects will be created, with greatlyyiag life spans. Consider the short
life time of the bullets fired by a player's weapon, in conttaghe long life time of the player
himself.

Znati and Molka [17] analyzed three approaches to impleimgra name service; in form of cen-

tralized, distributed and hybrid versions. Prior to cotitagthe target object itself, the centralized
version contacts a name server to obtain the objects locatibhe network. As such, the centralized
naming scheme adds an extra level of indirection to the nas@ution process. The distributed
paradigm removes this level of indirection by placing theneaof the object with the object itself.

The hybrid approach is based on the design principle of kegepames together with the objects
they are bound to on the local level, but resorts to multiogsivhen resolving names at a regional
level. This study indicates that the choice of model for a @a®rvice will influence the perfor-

mance of the service and the throughput of the network. Teglteeshowed that the centralized
model could achieve acceptable performance only as longeasatio of remote to local requests
was kept reasonable. The performance of the hybrid modehhtepended on the efficiency of the

cache design. With all other network conditions set equay found that, relative to the response
times of the centralized simulation, the response time®fliktributed simulation were smaller.

A fundamental problem with the centralized version is tHabbject resolution and registration
is performed at a single point in the system. This means ityeean become a bottleneck in
the system, particularly considering how high the objeettion frequency can become in such
systems. As such, it becomes apparent that a centralizetbravont scale very well for systems
which experience heavy traffic, which is the case for MMOGseAtralized version also introduces
a single point of failure in the case of a crash. It also ra@gsesiteresting question with regards to
decentralized systems, such as our middleware, about vidig@lace the name service relative to
the servers in the system. The hybrid version of a name sesatves a few of these issues, but
introduces a few of its own. There is no longer a single poirfaiture, since the name service is
distributed. Thus, only the objects managed by the crasiolg will become unavailable. Though
it still leaves the issue of partial failures to be handledpdssible weakness is in the way objects
are located, the lookup method relies on multicasting, aedetis a high probability the response
time will be too high, particularly for a decentralized /st Since objects are bound locally, rapid
object creation and destruction no longer creates the sasbéems as with the centralized version.
Last there is the distributed approach, which raises amestieg issue; in that there is no clear
way to show were an object is located without first contactisgiame service and how that name
service is located given only a high-level name. For our teigdre, this is not an issue since we
have a single point of initialization. A single node in thestgm initiates all communication and
object creation, thus there is always a known path to an tbjde distributed version also leaves
the issue with partial failures unresolved, but apart frbis it serves the purpose of our middleware
well.

Given the characteristics described in the start of thif@gcand the choice of our name service
model, we will now outline the architecture of our middleeansing terms from Mobile IP [18,19].
Mobile IP addresses the desire to have continuous netwaonkemivity to the Internet irrespective
of the physical location of a node. This coincides with oualgdn that the objective is to make
mobility transparent to the application. The analogy itahle, because where Mobile IP is used
to find a route to a mobile computer, moving from network tonmek, we need to find a route to
a mobile object, moving from computer to computer. A prersitgl to accomplish this, is being
able to uniquely name a computer or object in the context uisisd. We find that the taxonomy
used to describe these processes overlap. In the followsayission, we will primarily focus on
the definitions of mobile node, home agent, foreign agemé-ofaddress and home address.

When a mobile node (object) has migrated to another nodeeilsybtem, it registers its presence
with the foreign agent (name service) at its new locatiore fiineign agent issues a message to the
mobile node’s home agent (name service), in the form of achaeldress (local object identifier),
which the home agent can use to forward requests to the mutaile. Each node in the system has
an active name service. This name service can take on thaatbastics of a foreign agent and a
home agent. There is, however, a logical difference, ddpgrah whether the object is propagating
to or from a node in the system. At this point, our implemeatativerges from the approach of
Mobile IP, where a mobile node has one home agent througtslifetime. As mentioned, a single
server is used to initialize the system, objects composiagystem are propagated to other servers
based on necessity, and links to the propagated objectsargained in the name service of the
corresponding servers. If this were not the case it wouldripossible to maintain links between
objects, because we would have no way of locating them. Bhasrésult of our distributed name
service. For an object to function as a mobile node, it needsetserializable. Serialization is
the act of storing the state of an object with the intentiomesttoring it again at a later point in
time. This functionality is commonly used to move objectsaBEn servers, and makes it possible
to migrate objects. As such, these serializable objectdbeamdded to migration groups. If and

LOCAL IDENTIFIER

HOSTNAME PORT
OBJECT ID ‘ TIMESTAMP ‘ PSEUDORANDOM NUMBER

Figure 1: Format of the Home Address and Care-of Address

Node NO link: Node N1

CO.ID_home |—shootAt() Migration Service Migration Service

Co
C1.ID_home

shootAt() c1

Name Service Name Service
(home/foreign (home/foreign
agent) agent)

Figure 2: Overview of nodes before migration

when an object is added to a migration group depends on thentlyr activated migration policy.
The migration policy can be preemptive as will be the casaflarcality based load-balancing, or
reactive if the load on the server becomes to great.

The care-of address and home address, which are used tdyiddjects in the system, have a
format as seen in figure 1. The address uniquely identifiesbgtiin the system throughout
the lifetime of the application, since this type of applioatis designed to run indefinitely. We
see that there are three main sections which compose thesaddtach is required to identify an
object because of our distributed name service. The hostidentifies the node where the object
is located. The port provides an access point to the namé&sgewhich maintains local objects.
The local identifier is specific to an object in the name servithe object-id is an index to more
information about the object, such as the pseudo-randonbeuand timestamp. The timestamp
is required to identify the object temporally, but sincesttioes not guarantee it to be unique over
time, because of uncertainties related to computers arel keping, we have a pseudo-random
number in addition.

In order to solidify the architecture presented here, awrsihe lifetime of a fictive object in our
distributed environment. In this scenario, we have two sddeour system, the initializing node,
Np, and the secondary node; NAt startup, all collaborating services are initiated, lsas the
name service, migration service, host service and simidter initialization, a player connects
to the application, and an object @epresenting his character is instantiated gt Since G is a
serializable object, an identifier is generated callgddy,,... which is logically equivalent to this
object’'s home address. The format is as detailed in figure gLha$ in effect become the home
agent of G. Cy now exhibits all the properties of a mobile node: it is polestb migrate it, and it
has a home agent. A short while after, a second player canteetie server, and the object G
created. Figure 2 shows what the node would look like at thistpn time. If these two players are
fighting each other, and,Qlecides to shoot atCwe can see that thghootAt()function call goes
via the name service, which determines thati€a local object and directs the shot accordingly.
As time goes by, more users connect tg Bnd eventually a migration policy is activated. Based
on the requirements of the migration policy, i§ added to a migration group. Based on an analysis
of available nodes in the system, a node is selected as tipgergcof the objects. Depending on
the the requirements of the migration policy, we might wanbde as physically close as possible
to the majority of users. Based on the requirements issuatebgnigration policy, N is selected
by the host service as the destination node. At this poigis@igrated to N (see figure 3). The
name service at N which is logically equivalent to a foreign agent, accepis mobile node ¢
and generates an identifiery @....—.¢, Which is logically equivalent to its care-of address. This
identifier is sent in return to the home agent and replaceldiee address Jdy.... If the second
character @ now fires a shot at & the shootAt()function call will go via the name service, but

Node NO link Node N1

Co.ID_care-of

ShootAt()——»{ Migration Service |—shootAt()—»{ Migration Service

shootAt()—#| Co.ID_care-of

shoofA!()—‘

C1.ID_home r

ShoOtAL(). ¢ Co

Name Service Name Service
(home/foreign (home/foreign
agent) agent)

Figure 3: Overview of nodes after migration

unlike last time, @ is no longer a local object. Instead of accessing the objeetlly, the care-of
address is used to issue a remote procedure call to the abbjgshew location.

Following this example a few things become apparent. Anakizaible object is identified through
the name service by querying on its identifier, i.e., an gxtion which is necessary for accessing
objects at remote nodes. It also becomes apparent that vinkghaihg vulnerable to partial failures.
This happens when a node in a distributed system becomesilatdw, effectively rendering the
objects managed by it inaccessible.

While the current architecture does not accommodate feiap&ailures, there are ways to minimize
the repercussions of these incidents. One possibility igiiae a central registry, where all object
migration is recorded. In the case of a miss, when attempbiragcess a remote object, the central
register can be queried instead. Once the node has recovengdal object access resumes. A
flaw with this approach, is that the central register becoemesgle point of failure in the case
of a crash. In addition, it must be capable of handling th#i¢crgenerated by all migrations,
including any misses. This is a poor sign, since migratiorstntigely is activated as a result of
heavy load. A different approach has its roots in peer to pased filesystems, where copies of
an object will be distributed to several nodes in the systeA&ST [20] and OceanStore [21] have,
for example, implemented such systems with success. PABi€sobjects to random nodes, in
an attempt to distribute the objects evenly. OceanStore agaore deterministic approach, and
places the objects close to nodes which access them. Lodlalgexts in the system can then be
implemented in a fashion similar to that of Chord [22] or Tstpe [23]. These implementations
are based on the principle of incrementally forwarding rages from point to point, until they
reach their destination. Each node in the system keeps d sputihg map, which is used to
determine which nodes to forward the message to. A probletm this type of lookup is that the
response time might be too high for interactive applicatioBoth the centralized and distributed
fail safe techniques offer their own set of advantages amdddantages. As such, we intend to
investigate viable methods for recovering from partiduiias in our middleware in future work. In
the following section we will look at the process used foromudting the creation of serializable
objects.

4 Code Generation

Most computer games are developed using the object origmtegtamming language C++ [24].
Consequently, our middleware is also implemented usirglénguage. Since C++ has no built-in
mechanisms for the serialization of objects, and manuaiiyng code for this is a tedious and error-
prone process, we provide the application developer withohfor automatically generating this
functionality. The result of the generation process is d&t&B, which can easily be integrated with
the middleware. We implement the serialization mechaniasisg inheritance, polymorphism,
run-time type identification (RTTI) and virtual functions.

In order for an object to be serializable, it must inherit #estract class calle@bject This class
defines a set of pure virtual functions, which all derivedssés need to provide an implementa-
tion for. These functions perform the serialization andetiedization of an object. When objects

are passed to the migration service and migrated, they acasipio look like an instance of an
Object Since the serialization functions are implemented asafifunctions, the derived object’s
implementations of the functions are called. The type nahtleecobject always precedes the object
itself on the stream. When deserializing the object at theivéng end, the correct deserialization
function is called for the object by looking up the type narhithe class in a type register. The type
register consists of mappings between the type name andtamae of the corresponding class for
all serializable classes. The type name of a class is detethiiy a python script during generation
and is a combination of the filename and class name, this is because RTTI type names are not
portable. Once the object is deserialized it can be dowrcastrdingly, using RTT]I, to an instance
of its type, so the functionality associated with such arecbpecomes available. The reason it
needs to be downcast is because the deserialization prastesss a reference to an instance of
Object

Serialization in our system is necessary so, =

we can transmit objects across the network, el
As a side effect of this, we need an architect|

ture and operating system independent

coding. The rpcgen [25] utility was devel
oped for generating client and server stu
for remote procedure calls, we use rpcgen
to automatically generate routines for serial-
ization using C-like data structures. Further-/ 20 0 i i e v o0
more, rpcgen uses the eXternal Data Rep e/é“’b*”//
sentation (XDR) [26, 27] format for the seri N

alization of parameters, which is a standard| (_
for the description and encoding of data.i| " . = "
It is useful for transferring data across net-;

works between different computer architec-
tures. XDR is based upon implicit typing
The sender and receiver must agree on th
order and type of all data. Moreover, XD
makes use of symmetric data conversio
Both the client and server convert from and
to a standard representation. XDR routines

are direction independent, the same routineg” ie: wece,” ™7

are called to serialize and deserialize datay e i s xor s ton s, s o
XDR supports all C data types, such as int]| 5525007 o,

double, char, and arrays of these types. Fil-|,," """

ters are provided for the serializing and de-
serializing to and from their local represen-
tation. These basic filters can be combined
to allow for more complex data types, such as structurese sehalized.

}

Parse C++

GCCXML gcexml -fxml=bullet.xml bullet.h

Output from GCCXML
<?xml version="1.0"2>
<GCC XML>
<Class "_3" name="Bullet” context="_1" mangled="6Bullet" [...] />
<Field " 15" serialize="" name="damage" type=" 27" [...] />

Generate XDR

f RPCGEN rpcgen -Cc -o xdr bullet.cpp Bullet.x

Ouput from RPCGEN
bool t xdr Bullet (XDR *xdrs, Bullet *obip)
{

if (!xdr_int (xdrs, &objp->damage))
return FALSE;
return TRUE;

¥

}

Figure 4. Code generation process

Figure 4 depicts the process used to generate the skeldtaimplemented as a python script.
To parse the C++ header files, we make use of the GCC-XML [2BJgpawhich is a tool that
extends the open source GCC compiler, using its internaéseptation to produce XML output.
Based on information obtained by processing the XML-file,degve rpcgen language structure
definitions. These definitions are in turn processed by thgeap tool which generates functions
for serialization. The output of the process is a skeletonhaee created, which combines the
components of the structure described earlier in this@eclihe skeleton generator expects a C++
class declaration as its input. In addition to normal C+sskyntax, GCC-XML allows for defining
additional attributes. We make use of this ability to extémelC++ syntax with our own keywords.

When an object is migrated, one does not necessarily wathieadlata to be serialized. We therefore
provide a special keyword éerialize see figure 4) to specify what data is to be serialized. Notice
how thecountervariable is not serialized, in contrast to ti@magevariable. Any number of these
keywords can be added to aid in the parsing process. Othabkikeywords will be introduced to
support remote method invocation, mark the classes thabeamgrated and so forth.

5 Conclusion

MMOGs are distributed applications that have a range ofusitharacteristics, e.g., the stringent
requirement to latency, which means that to cope with theesdéoad the virtual environment needs
to be logically divided across a number of servers. Anotaetor is the diversity of locations among
the users connected to the application, and the fact thet lesmated in the same virtual region, will
be connected to the same physical server, and as such cauessarily be separated.

The assumption is, that based on an analysis of the RTTs &vs s a given virtual locality on a
server or by looking at IP addresses if available, we carntiigeihthe majority of those users are
located at the same geographical location in the world. Gsuraption is based on the fact that
people from certain time zones will be more active dependimghe time of day. Given this, we
believe that the overall latency of that area can be loweyedhigrating the region to a location as
close as possible to the majority of the users. It is our wideding that little or no work has been
done on how latency can be improved based on this type of tigrpolicy. It is not to say that
this is the only type of migration policy that needs to be préon the server. Migration can also
be triggered because the server is becoming overloaded.

In this paper, we have therefore presented a work in progpessmiddleware which accommodates
the physical locality of the users in addition to their vatiocality. This is accomplished through
our object model, which takes advantage of polymorphismvantglal functions, to make C++ ob-
jects serializable, and thus transferable. In order taidige and locate objects across multiple
servers, in an efficient manner, we use a distributed nanwiceerAdditionally, our middleware
provides the developer with a tool for automatically getingaskeletons, in order to minimize the
number of coding errors and ease the development of thecatiph. We intend to implement and
test the feasibility of this architecture for use with a reBBOG, and also to see if there are any
real benefits of migrating based on locality. In order to agglish these goals, the middleware
will eventually need to be extended with functionality farling concurrency control. Suscep-
tibility for partial failures and the possibilities for reeering from such incidents also needs to be
examined.

Finally, we must add functionality for selecting which otifeto migrate, e.g., migrating all mem-
bers maintained in a group for group communication. Thisigoing work [29], and the intention
is to eventually combine these components, and analyzefudis.

References
[1] The Entertainment Software Association. ESAs 2006 migsefacts about the computer and video
game industryhttp://www.theesa.comjan 2007.
[2] B. S. Woodcock. An analysis of mmog subscription growtttp://www.mmogchart.corjan 2007.

[3] M. Claypool. The effect of latency on user performanceRieal-Time Strategy gamesComputer
Networks 49(1):52-70, 2005.

[4] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agnd M. Claypool. The effects of loss and
latency on user performance in unreal tournament 2B@&eedings NetGames’ 04, Portland, Oregon,
USA pages 144-151, aug 2004.

[5] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors atting players’ performance and perception
in multiplayer gamesProceedings of NetGames’ 05, Hawthorne, NY, USfes 1-7, oct 2005.

[6] Electronic Arts. Ultima Onlinehttp://www.uo. com/, Januay2007.
[7] CCP. EVE Online http://www.eve-online.com/, Januag007.
[8] Blizzard. World of Warcrafthttp://www.worldofwarcraft. com/, Januarg2007.

[9] Carsten Griwodz and Pal Halvorsen. The fun of using TQRafoMMORPG. Proceedings of NOSS-
DAV’ 06, Newport, RI, USApages 1-7, may 2006.

[10] Funcom. Anarchy Onlinehttp://www.anarchy-online.com/, Januag007.

[11] Abdennour El Rhalibi and Madjid Merabti. Agents-baseddeling for a peer-to-peer mmog architec-
ture. Comput. Entertain.3(2):3-3, 2005.

[12] Linden Lab. Second Lifehttp://secondlife.com/, Januarg007.

[13] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, E. Turck, B. Dhoedt, and P. Demeester.
Dynamic microcell assignment for massively multiplayelim& gaming. Proceedings of NetGames’
05, Hawthorne, NY, USAages 1-7, October 2005.

[14] T.N.B. Duongand S. Zhou. A dynamic load sharing aldoritfor massively multiplayer online games.
ICON’ 03, Sydney, Australjgppages 131-136, October 2003.

[15] Rajesh Krishna Balan, Maria Ebling, Paul Castro, ancha&an Misra. Matrix: Adaptive middleware for
distributed multiplayer games. In Gustavo Alonso, editdiddleware volume 3790 ot ecture Notes
in Computer Scienc@ages 390—400. Springer, 2005.

[16] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A DistdbArchitecture for Online Multiplayer
Games.Proceedings of NSDI' 06, San Jose, UpAges 155-168, May 2006.

[17] T. B. Znati and J. Molka. A simulation based analysis aiming schemes for distributed systems. In
Proceedings of the 25th Annual Simulation Sympospages 42-53, Los Alamitos, CA, USA, April
1992.

[18] C. E. Perkins. Mobile IPCommunications Magazine, IEEB5(5):84-99, 1997.
[19] C. Perkins. RFC 2002: IP mobility support, October 1996

[20] A. Rowstron and P. Druschel. Storage management aridrgain PAST, a large-scale, persistent peer-
to-peer storage utility.Proceedings of SOSP’01, Lake Louise, Alberta, Canadges 188-201, oct
2001.

[21] Dennis Geels. Data Replication in OceanStore. Teethrieport UCB//CSD-02-1217, Computer
Science Division, U. C. Berkeley, nov 2002.

[22] 1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and Hldaishnan. Chord: A scalable peer-to-peer
lookup service for internet applicationBroceedings of SIGCOMM’ 01, San Diego, CA, UPAges
149-160, aug 2001.

[23] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: Amasfructure for fault-tolerant wide-area loca-
tion and routing. Technical Report UCB/CSD-01-1141, Cotap&cience Division, U. C. Berkeley,
apr 2001.

[24] Bjarne StroustrupThe C++ Programming Language: Third EditioAddison-Wesley Publishing Co.,
Reading, Mass., 1997.

[25] Sun Microsystemsipcgen Programming GuideSun Microsystems Inc., Mountain View, CA, 1987.
[26] Raj Srinivasan. XDR: External data representationdsad. RFC 1832, August 1995.
[27] Sun Microsystems, Inc. XDR: External data represémagtandard. RFC 1014, June 1987.

[28] B. King. GCC-XML the xml output extension to gcc.Undated. Online: http://www. gcexml.
org/HTML/Index. html

[29] K. Vik, C. Griwodz, and P. Halvorsen. Applicability ofgup communication for increased scalability
in mmogs.Proceedings of NetGames’06, Singaparet 2006.

