
Latency Reduction in Massively Multi-player Online Games
by Partial Migration of Game State

Paul B. Beskow1, Pål Halvorsen1,2, Carsten Griwodz1,2

1IFI, University of Oslo, Norway 2Simula Research Laboratory, Norway
Email: {paulbb, paalh, griff}@ifi.uio.no

Abstract
With the increasing popularity of massively multi-player online games (MMOGs), developers are continually
forced to deal with the conflicting requirements of supporting a large number of concurrent users, while
simultaneously providing low latency. As a result, a commonway of distributing load is by dividing the virtual
environment into logical regions. Geographically coupledusers in such regions can be distinguished by
analyzing IP addresses, RTTs or similar. This paper proposes the architecture for a decentralized middleware
capable of utilizing such information, with the intent of decreasing the overall latency for the majority of
users in that region. The latency reduction is accomplishedby migrating a game region to a server closer in
locality to the users, thereby lowering the response time ofremote procedure calls. Due to the characteristics
of MMOGs, the middleware implements a distributed name service, made possible by activating the system
from a single node in the system.

1 Introduction

In recent years, massively multi-player online games (MMOGs) have become increasingly popu-
lar among consumers. According to the Entertainment Software Association [1], the number of
gamers who play online games has increased from 31 percent in2002 to 44 percent in 2006. In cor-
respondence, the number of subscribers to MMOGs has steadily increased since 1997, exceeding
13 million in 2006 [2]. These applications enable a user to form and maintain social bonds, using
the virtual environment as an interface. The persistent, continuous and interactive nature of this
genre of games has largely contributed to this success. Incidentally, the success due to interactivity
also raises the most challenging system requirement, i.e,low latencyfor all users.

MMOGs allow thousands of users to concurrently interact in apersistent virtual environment. A
significant characteristic of this type of application is its lack of resilience towards network trans-
mission delays [3–5]. For the users to have a consistent viewof the world, the events of the game
need to be distributed as fast as possible. With a large number of users, the quantity of events to
distribute are considerable. This causes the capacity of the servers to deteriorate rapidly, which in
turn lowers the quality of service. To support these virtualenvironments, with such considerable
numbers of interacting entities, there is a need for an efficient architecture able to handle the load
generated. As a result, MMOGs commonly deploy an exclusive instance of the virtual environment
on a single, centralized, distributed system, such as a cluster, grid or mainframe. One such instance
of the game world is commonly referred to as a shard, a conceptinherited from Ultima Online [6].

There are varying strategies for how these game worlds are deployed. EVE Online [7], for instance,
only utilizes a single shard, to which all subscribers connect, and this single cluster can handle
30,000 concurrent users. In contrast, games such as World ofWarcraft (WoW) [8] use multiple
shards, which can support approximately 3,000 concurrent users per shard. As the load increases,
more shards are made available. Alternately, shards are merged if the amount of users becomes
significantly lower. A main difference is that the users of EVE Online will have the ability to
interact with all users in the same environment, while in WoW, the users will have to agree on a
server to connect to in order to play together.



Irrespective of the number of users supported per shard, it is common to divide the game world
into regions (also referred to as cells). This is to ensure aneven distribution of the load and is
accomplished by reducing the number of entities that updates need to be issued to. Most commonly,
these regions are divided statically. Players then connectto the server managing the region of the
game world where their character is situated. As the player moves between regions, the player’s
data is migrated to the server handling that region. However, as far as the user is concerned, the
game world is a single entity.

The users interacting in MMOGs commonly are from widely different areas of the world. In many
distributed systems, the effect of this is not necessarily prevalent, mainly because the architecture
of the application can adapt to this by distributing users toservers accordingly. With MMOGs,
users cannot necessarily be separated to accommodate this,because of the interaction that occurs
with other users in the virtual environment. As a result, users cannot be placed in the virtual world
according to their physical location. It becomes apparent that the static region based architecture
on a centralized cluster, while efficient and relatively easy to maintain, does not cater to the varying
geographical locations of the users. It can be argued that games, such as WoW, to a certain degree
take this into account. They have shards located at multiplelocations across the world, where users
generally connect to one close in proximity. The distribution of users, however, occurs as a result
of the availability of servers, not because of how the middleware is implemented. An ideal example
of this is EVE, with its single shard structure, where all users are connected to the same centralized
cluster. Users from all over the world interact in the same logical regions, with one region hosted by
a single server. The result is an architecture which cannot adjust itself to the difference in latency
among its users.

Thus, it would be better to have a virtual world where the regions could be managed by nodes
geographically located closer to the majority of the users.In this context, a recent study [9] of the
MMOG Anarchy Online [10], analyzing the RTTs in traces from one of several hundred regions
composing the virtual environment, three distinct groupings of users were revealed. Based on the
location of the server, these were USA, Asia and Europe. It issafe to assume that one of these
groups will be dominant, depending on the time of day. Thus, the assumption is that by analyzing
the latency of users in a region from the virtual environment, one can determine where they are
approximately located geographically. Similarly, one could use the IP addresses of the users, if
available, to obtain this information. Though with a lot of research being done on integrating peer
to peer based systems into MMOGs [11], there is no guarantee that such information is readily
available. As far as we can determine, there has not been donea lot of research into the possibilities
connected to load-balancing the regions of an MMOG based on the geographical location of users
currently located within it. Most of the research is focusedon effective load-balancing within a
centralized cluster, by dynamically re-locating regions based on overall load. Therefore, this paper
proposes the architecture of a middleware which will allow for the development of MMOGs which
are aware of the physical locality of its users. The intent isto lower the response time of remote
procedure calls for the majority of users connected to a given region, which in turn should lower the
overall latency. This is accomplished by migrating the region to a server closer in physical locality.

Our middleware is based on a distributed model, where a single node acts as the point of initializa-
tion. That is to say, a single server in the system initializes all communication and object creation,
which is necessary in order for objects in our system to be located after migration. This is a result of
the way we implement our name service (see section 3). As it becomes necessary to migrate objects
from one server to another, objects which share common characteristics, such as belonging to an
application-defined region, are added to migration groups.These migration groups are formed on
the basis of migration policies, which will select objects,managed by that node, based on a set of
criteria. After the selection process, the objects in thesegroups are migrated to the server selected
by the application. One possibility is to migrate based on geographical locations and the respective



latencies. A goal of this project is to implement this middleware in order to see if placing objects in
such a manner will benefit the majority of users in terms of latency. The architecture is designed in
such a way that load balancing can be performed based on any number of requirements. If the load
on the server becomes too large, another migration policy can be activated. As such, migration can
occur implicit or explicit. In this scenario, an explicit migration is performed when a user moves
from one region to another. An implicit migration can be of two types, reactive or preemptive. A
reactive policy is issued in response to scenarios such as high load on the server, which left on
its own can cause the game to become unplayable. In contrast,a preemptive policy is used in an
attempt to improve performance, e.g., by moving users in a region to a server closer in locality.

2 Related Work

To handle the large number of concurrently interacting entities in a virtual environment, it is com-
mon practice to use a static, region based partitioning scheme. The virtual world is thus divided into
smaller, more manageable parts, where each region is hostedon a single server in the cluster. Some
implementations allow several regions to be hosted on a server, such as Anarchy Online [10], while
others are more conservative and allow only for one region per server, such as Second Life [12].
A widely accepted problem with the static partitioning scheme is that it does not take into ac-
count the dynamic nature of MMOGs. Even if the static partitioning is based on population density
trends, and arranged to accommodate this, it is still susceptible to imbalances due to unforeseen
events. Thus, a lot of research has been done on how to improvethe flexibility of these partition-
ing schemes, and consequently, algorithms for efficiently distributing entities and regions. This
research, however, does not address how the locality of the users, in relation to a server, will affect
latency.

Turck et al [13] have investigated the effects of dividing a game world into dynamic micro-cells.
A study with a similar background is performed by Duong et al [14]. Such micro-cells can be
reassigned to servers in a cluster if the load on the server they are currently residing on becomes too
large. Three different load-balancing algorithms were used, none of which factored in locality of
users, and the number of micro-cells supported per server varied. The test was done on a centralized
cluster. The conclusion was that a dynamic approach is preferable, because it will decrease the
chance for bottlenecks and lower the overall latency.

Another approach to solving the problems with static partitioning is through maintaining consis-
tency by limiting updates based on an area of interest. IBM has developed a middleware for dis-
tributed games called Matrix [15] using this approach. It isbased on the observation that MMOGs
are nearly decomposable systems, and as such, it is usually sufficient to update players with only
those events that occur in their zone of visibility. Matrix thus provides pockets of locally-consistent
state. Results show that Matrix outperforms static partitioning schemes when the workload exhibits
unpredictable and dynamic skews. Matrix makes use of regionbased partitioning as an underlying
foundation, but this is for the purpose of easily distributing the virtual world across multiple servers.
Matrix is also intended for a centralized cluster of servers. Another middleware which implements
this area of interest type partitioning is the Colyseus system [16], but this system is designed for
first person shooter games and does not utilize the concept ofregions.

In summary, the work on static and dynamic partitioning consider server load in a centralized cluster
and not latency due to the geographical location of users. Most of the research tries to optimize the
partitioning of the virtual environment into regions whichcan dynamically accommodate hot-spots.
These regions can be user centric, in the area of interest approach, or area centric, in the micro-cell
approach. The goal is nonetheless always to minimize the amount of events being distributed, be
this through dynamically moving areas when a server becomesoverloaded, or by limiting the scope
of a user. Regardless, most of these partitioning schemes make the assumption that the system
consists of a centralized cluster of servers, grid or similar. Thus, little or no efforts have been made



to investigate the effects of a decentralized distributed system middleware, which would allow for
regions of the game to be migrated based on the physical locality of the users in addition to their
virtual locality. We have already seen that it is possible todetermine the relative location of the
users, based, for example, on an analysis of their RTT [9]. Wealso know that a common way of
dividing virtual environments is by partitioning them intosmaller cells or regions. There is also a
number of algorithms for balancing the load. In this paper, we will now look at the system we intend
to implement, which will permit for the accommodation of physical locality in addition to virtual
locality. This migration of objects based on the locality ofthe majority of users would orthogonally
further reduce the load and more importantly the latency. Inthe following section we will describe
our proposed architecture for locating objects.

3 Name Service

In our distributed system, we wish to perform migration for the purpose of off-loading servers, and
for minimizing the response time for reacting to events received from clients. When objects are dis-
tributed across multiple nodes in a system, access to objects which are not in local memory require
special handling. Primarily, it is necessary to locate the node on which a particular object is cur-
rently residing. A name service provides an application with this type of functionality. Depending
on the application being developed, there are different approaches to implement the name service.
For our application, we have a set of six characteristics which impact the approach we decide to
use:

1. The server must be able to handle thousands of concurrent users. For these users to have
an optimal experience, the latency needs to be as low as possible, a requirement which is
important for all interactive applications.

2. The users can be located anywhere in the physical world andvirtual world.

3. Depending on the time of day, there is a high probability that a majority of the users will be
represented by a specific time zone.

4. In order to handle the load generated by so many concurrentusers, it is necessary to divide
the world into regions which are spread out across a number ofservers.

5. Clients and servers use the same libraries, that means that code is shared and that only data
needs to be migrated. It also means that we can call any function of a remote object directly,
without having to discover which function interface to use.

6. A large number of objects will be created, with greatly varying life spans. Consider the short
life time of the bullets fired by a player’s weapon, in contrast to the long life time of the player
himself.

Znati and Molka [17] analyzed three approaches to implementing a name service; in form of cen-
tralized, distributed and hybrid versions. Prior to contacting the target object itself, the centralized
version contacts a name server to obtain the objects location in the network. As such, the centralized
naming scheme adds an extra level of indirection to the name resolution process. The distributed
paradigm removes this level of indirection by placing the name of the object with the object itself.
The hybrid approach is based on the design principle of keeping names together with the objects
they are bound to on the local level, but resorts to multicasting when resolving names at a regional
level. This study indicates that the choice of model for a name service will influence the perfor-
mance of the service and the throughput of the network. The results showed that the centralized
model could achieve acceptable performance only as long as the ratio of remote to local requests
was kept reasonable. The performance of the hybrid model highly depended on the efficiency of the



cache design. With all other network conditions set equal they found that, relative to the response
times of the centralized simulation, the response time of the distributed simulation were smaller.

A fundamental problem with the centralized version is that all object resolution and registration
is performed at a single point in the system. This means it easily can become a bottleneck in
the system, particularly considering how high the object creation frequency can become in such
systems. As such, it becomes apparent that a centralized version wont scale very well for systems
which experience heavy traffic, which is the case for MMOGs. Acentralized version also introduces
a single point of failure in the case of a crash. It also raisesan interesting question with regards to
decentralized systems, such as our middleware, about whereto place the name service relative to
the servers in the system. The hybrid version of a name service solves a few of these issues, but
introduces a few of its own. There is no longer a single point of failure, since the name service is
distributed. Thus, only the objects managed by the crashingnode will become unavailable. Though
it still leaves the issue of partial failures to be handled. Apossible weakness is in the way objects
are located, the lookup method relies on multicasting, and there is a high probability the response
time will be too high, particularly for a decentralized system. Since objects are bound locally, rapid
object creation and destruction no longer creates the same problems as with the centralized version.
Last there is the distributed approach, which raises an interesting issue; in that there is no clear
way to show were an object is located without first contactingits name service and how that name
service is located given only a high-level name. For our middleware, this is not an issue since we
have a single point of initialization. A single node in the system initiates all communication and
object creation, thus there is always a known path to an object. The distributed version also leaves
the issue with partial failures unresolved, but apart from this it serves the purpose of our middleware
well.

Given the characteristics described in the start of this section, and the choice of our name service
model, we will now outline the architecture of our middleware, using terms from Mobile IP [18,19].
Mobile IP addresses the desire to have continuous network connectivity to the Internet irrespective
of the physical location of a node. This coincides with our goals in that the objective is to make
mobility transparent to the application. The analogy is suitable, because where Mobile IP is used
to find a route to a mobile computer, moving from network to network, we need to find a route to
a mobile object, moving from computer to computer. A prerequisite to accomplish this, is being
able to uniquely name a computer or object in the context it isused. We find that the taxonomy
used to describe these processes overlap. In the following discussion, we will primarily focus on
the definitions of mobile node, home agent, foreign agent, care-of address and home address.

When a mobile node (object) has migrated to another node in the system, it registers its presence
with the foreign agent (name service) at its new location. The foreign agent issues a message to the
mobile node’s home agent (name service), in the form of a care-of address (local object identifier),
which the home agent can use to forward requests to the mobilenode. Each node in the system has
an active name service. This name service can take on the characteristics of a foreign agent and a
home agent. There is, however, a logical difference, depending on whether the object is propagating
to or from a node in the system. At this point, our implementation diverges from the approach of
Mobile IP, where a mobile node has one home agent throughout its lifetime. As mentioned, a single
server is used to initialize the system, objects composing the system are propagated to other servers
based on necessity, and links to the propagated objects are maintained in the name service of the
corresponding servers. If this were not the case it would be impossible to maintain links between
objects, because we would have no way of locating them. This is a result of our distributed name
service. For an object to function as a mobile node, it needs to be serializable. Serialization is
the act of storing the state of an object with the intention ofrestoring it again at a later point in
time. This functionality is commonly used to move objects between servers, and makes it possible
to migrate objects. As such, these serializable objects canbe added to migration groups. If and



Figure 1: Format of the Home Address and Care-of Address

Figure 2: Overview of nodes before migration

when an object is added to a migration group depends on the currently activated migration policy.
The migration policy can be preemptive as will be the case fora locality based load-balancing, or
reactive if the load on the server becomes to great.

The care-of address and home address, which are used to identify objects in the system, have a
format as seen in figure 1. The address uniquely identifies an object in the system throughout
the lifetime of the application, since this type of application is designed to run indefinitely. We
see that there are three main sections which compose the address. Each is required to identify an
object because of our distributed name service. The hostname identifies the node where the object
is located. The port provides an access point to the name service, which maintains local objects.
The local identifier is specific to an object in the name service. The object-id is an index to more
information about the object, such as the pseudo-random number and timestamp. The timestamp
is required to identify the object temporally, but since this does not guarantee it to be unique over
time, because of uncertainties related to computers and time keeping, we have a pseudo-random
number in addition.

In order to solidify the architecture presented here, consider the lifetime of a fictive object in our
distributed environment. In this scenario, we have two nodes in our system, the initializing node,
N0, and the secondary node, N1. At startup, all collaborating services are initiated, such as the
name service, migration service, host service and similar.After initialization, a player connects
to the application, and an object C0 representing his character is instantiated at N0. Since C0 is a
serializable object, an identifier is generated called C0.idhome which is logically equivalent to this
object’s home address. The format is as detailed in figure 1. N0 has in effect become the home
agent of C0. C0 now exhibits all the properties of a mobile node: it is possible to migrate it, and it
has a home agent. A short while after, a second player connects to the server, and the object C1 is
created. Figure 2 shows what the node would look like at this point in time. If these two players are
fighting each other, and C1 decides to shoot at C0, we can see that theshootAt()function call goes
via the name service, which determines that C0 is a local object and directs the shot accordingly.
As time goes by, more users connect to N0, and eventually a migration policy is activated. Based
on the requirements of the migration policy, C0 is added to a migration group. Based on an analysis
of available nodes in the system, a node is selected as the recipient of the objects. Depending on
the the requirements of the migration policy, we might want anode as physically close as possible
to the majority of users. Based on the requirements issued bythe migration policy, N1 is selected
by the host service as the destination node. At this point, C0 is migrated to N1 (see figure 3). The
name service at N1, which is logically equivalent to a foreign agent, accepts the mobile node C0
and generates an identifier, C0.idcare−of , which is logically equivalent to its care-of address. This
identifier is sent in return to the home agent and replaces thehome address C0.idhome. If the second
character C1 now fires a shot at C0, the shootAt()function call will go via the name service, but



Figure 3: Overview of nodes after migration

unlike last time, C0 is no longer a local object. Instead of accessing the object locally, the care-of
address is used to issue a remote procedure call to the objectat its new location.

Following this example a few things become apparent. Any serializable object is identified through
the name service by querying on its identifier, i.e., an indirection which is necessary for accessing
objects at remote nodes. It also becomes apparent that we arehighly vulnerable to partial failures.
This happens when a node in a distributed system becomes unavailable, effectively rendering the
objects managed by it inaccessible.

While the current architecture does not accommodate for partial failures, there are ways to minimize
the repercussions of these incidents. One possibility is toutilize a central registry, where all object
migration is recorded. In the case of a miss, when attemptingto access a remote object, the central
register can be queried instead. Once the node has recovered, normal object access resumes. A
flaw with this approach, is that the central register becomesa single point of failure in the case
of a crash. In addition, it must be capable of handling the traffic generated by all migrations,
including any misses. This is a poor sign, since migration most likely is activated as a result of
heavy load. A different approach has its roots in peer to peerbased filesystems, where copies of
an object will be distributed to several nodes in the system.PAST [20] and OceanStore [21] have,
for example, implemented such systems with success. PAST copies objects to random nodes, in
an attempt to distribute the objects evenly. OceanStore uses a more deterministic approach, and
places the objects close to nodes which access them. Lookup of objects in the system can then be
implemented in a fashion similar to that of Chord [22] or Tapestry [23]. These implementations
are based on the principle of incrementally forwarding messages from point to point, until they
reach their destination. Each node in the system keeps a small routing map, which is used to
determine which nodes to forward the message to. A problem with this type of lookup is that the
response time might be too high for interactive applications. Both the centralized and distributed
fail safe techniques offer their own set of advantages and disadvantages. As such, we intend to
investigate viable methods for recovering from partial failures in our middleware in future work. In
the following section we will look at the process used for automating the creation of serializable
objects.

4 Code Generation

Most computer games are developed using the object orientedprogramming language C++ [24].
Consequently, our middleware is also implemented using this language. Since C++ has no built-in
mechanisms for the serialization of objects, and manually writing code for this is a tedious and error-
prone process, we provide the application developer with a tool for automatically generating this
functionality. The result of the generation process is a skeleton, which can easily be integrated with
the middleware. We implement the serialization mechanismsusing inheritance, polymorphism,
run-time type identification (RTTI) and virtual functions.

In order for an object to be serializable, it must inherit theabstract class calledObject. This class
defines a set of pure virtual functions, which all derived classes need to provide an implementa-
tion for. These functions perform the serialization and deserialization of an object. When objects



are passed to the migration service and migrated, they are up-cast to look like an instance of an
Object. Since the serialization functions are implemented as virtual functions, the derived object’s
implementations of the functions are called. The type name of the object always precedes the object
itself on the stream. When deserializing the object at the receiving end, the correct deserialization
function is called for the object by looking up the type name of the class in a type register. The type
register consists of mappings between the type name and an instance of the corresponding class for
all serializable classes. The type name of a class is determined by a python script during generation
and is a combination of the filename and class name, this is done because RTTI type names are not
portable. Once the object is deserialized it can be downcastaccordingly, using RTTI, to an instance
of its type, so the functionality associated with such an object becomes available. The reason it
needs to be downcast is because the deserialization processreturns a reference to an instance of
Object.

Figure 4: Code generation process

Serialization in our system is necessary so
we can transmit objects across the network.
As a side effect of this, we need an architec-
ture and operating system independent en-
coding. The rpcgen [25] utility was devel-
oped for generating client and server stubs
for remote procedure calls, we use rpcgen
to automatically generate routines for serial-
ization using C-like data structures. Further-
more, rpcgen uses the eXternal Data Repre-
sentation (XDR) [26,27] format for the seri-
alization of parameters, which is a standard
for the description and encoding of data.
It is useful for transferring data across net-
works between different computer architec-
tures. XDR is based upon implicit typing.
The sender and receiver must agree on the
order and type of all data. Moreover, XDR
makes use of symmetric data conversion.
Both the client and server convert from and
to a standard representation. XDR routines
are direction independent, the same routines
are called to serialize and deserialize data.
XDR supports all C data types, such as int,
double, char, and arrays of these types. Fil-
ters are provided for the serializing and de-
serializing to and from their local represen-
tation. These basic filters can be combined
to allow for more complex data types, such as structures, to be serialized.

Figure 4 depicts the process used to generate the skeleton. It is implemented as a python script.
To parse the C++ header files, we make use of the GCC-XML [28] parser, which is a tool that
extends the open source GCC compiler, using its internal representation to produce XML output.
Based on information obtained by processing the XML-file, wederive rpcgen language structure
definitions. These definitions are in turn processed by the rpcgen tool which generates functions
for serialization. The output of the process is a skeleton wehave created, which combines the
components of the structure described earlier in this section. The skeleton generator expects a C++
class declaration as its input. In addition to normal C++ class syntax, GCC-XML allows for defining
additional attributes. We make use of this ability to extendthe C++ syntax with our own keywords.



When an object is migrated, one does not necessarily want allthe data to be serialized. We therefore
provide a special keyword (_serialize, see figure 4) to specify what data is to be serialized. Notice
how thecountervariable is not serialized, in contrast to thedamagevariable. Any number of these
keywords can be added to aid in the parsing process. Other suitable keywords will be introduced to
support remote method invocation, mark the classes that canbe migrated and so forth.

5 Conclusion

MMOGs are distributed applications that have a range of unique characteristics, e.g., the stringent
requirement to latency, which means that to cope with the server load the virtual environment needs
to be logically divided across a number of servers. Another factor is the diversity of locations among
the users connected to the application, and the fact that users located in the same virtual region, will
be connected to the same physical server, and as such cannot necessarily be separated.

The assumption is, that based on an analysis of the RTTs for users in a given virtual locality on a
server or by looking at IP addresses if available, we can identify if the majority of those users are
located at the same geographical location in the world. Our assumption is based on the fact that
people from certain time zones will be more active dependingon the time of day. Given this, we
believe that the overall latency of that area can be lowered by migrating the region to a location as
close as possible to the majority of the users. It is our understanding that little or no work has been
done on how latency can be improved based on this type of migration policy. It is not to say that
this is the only type of migration policy that needs to be present on the server. Migration can also
be triggered because the server is becoming overloaded.

In this paper, we have therefore presented a work in progressfor a middleware which accommodates
the physical locality of the users in addition to their virtual locality. This is accomplished through
our object model, which takes advantage of polymorphism andvirtual functions, to make C++ ob-
jects serializable, and thus transferable. In order to distribute and locate objects across multiple
servers, in an efficient manner, we use a distributed name service. Additionally, our middleware
provides the developer with a tool for automatically generating skeletons, in order to minimize the
number of coding errors and ease the development of the application. We intend to implement and
test the feasibility of this architecture for use with a realMMOG, and also to see if there are any
real benefits of migrating based on locality. In order to accomplish these goals, the middleware
will eventually need to be extended with functionality for handling concurrency control. Suscep-
tibility for partial failures and the possibilities for recovering from such incidents also needs to be
examined.

Finally, we must add functionality for selecting which objects to migrate, e.g., migrating all mem-
bers maintained in a group for group communication. This is ongoing work [29], and the intention
is to eventually combine these components, and analyze the results.

References

[1] The Entertainment Software Association. ESAs 2006 essential facts about the computer and video
game industry.http://www.theesa.com/, jan 2007.

[2] B. S. Woodcock. An analysis of mmog subscription growth.http://www.mmogchart.com, jan 2007.

[3] M. Claypool. The effect of latency on user performance inReal-Time Strategy games.Computer
Networks, 49(1):52–70, 2005.

[4] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament 2003.Proceedings NetGames’ 04, Portland, Oregon,
USA, pages 144–151, aug 2004.



[5] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting players’ performance and perception
in multiplayer games.Proceedings of NetGames’ 05, Hawthorne, NY, USA, pages 1–7, oct 2005.

[6] Electronic Arts. Ultima Online.http://www.uo. com/, January, 2007.

[7] CCP. EVE Online.http://www.eve-online.com/, January, 2007.

[8] Blizzard. World of Warcraft.http://www.worldofwarcraft. com/, January, 2007.

[9] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an MMORPG.Proceedings of NOSS-
DAV’ 06, Newport, RI, USA, pages 1–7, may 2006.

[10] Funcom. Anarchy Online.http://www.anarchy-online.com/, January, 2007.

[11] Abdennour El Rhalibi and Madjid Merabti. Agents-basedmodeling for a peer-to-peer mmog architec-
ture. Comput. Entertain., 3(2):3–3, 2005.

[12] Linden Lab. Second Life.http://secondlife.com/, January, 2007.

[13] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, F. De Turck, B. Dhoedt, and P. Demeester.
Dynamic microcell assignment for massively multiplayer online gaming. Proceedings of NetGames’
05, Hawthorne, NY, USA, pages 1–7, October 2005.

[14] T.N.B. Duong and S. Zhou. A dynamic load sharing algorithm for massively multiplayer online games.
ICON’ 03, Sydney, Australia, pages 131–136, October 2003.

[15] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra. Matrix: Adaptive middleware for
distributed multiplayer games. In Gustavo Alonso, editor,Middleware, volume 3790 ofLecture Notes
in Computer Science, pages 390–400. Springer, 2005.

[16] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A Distributed Architecture for Online Multiplayer
Games.Proceedings of NSDI’ 06, San Jose, USA, pages 155–168, May 2006.

[17] T. B. Znati and J. Molka. A simulation based analysis of naming schemes for distributed systems. In
Proceedings of the 25th Annual Simulation Symposium, pages 42–53, Los Alamitos, CA, USA, April
1992.

[18] C. E. Perkins. Mobile IP.Communications Magazine, IEEE, 35(5):84–99, 1997.

[19] C. Perkins. RFC 2002: IP mobility support, October 1996.

[20] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-
to-peer storage utility.Proceedings of SOSP’01, Lake Louise, Alberta, Canada, pages 188–201, oct
2001.

[21] Dennis Geels. Data Replication in OceanStore. Technical Report UCB//CSD-02-1217, Computer
Science Division, U. C. Berkeley, nov 2002.

[22] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications.Proceedings of SIGCOMM’ 01, San Diego, CA, USA, pages
149–160, aug 2001.

[23] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area loca-
tion and routing. Technical Report UCB/CSD-01-1141, Computer Science Division, U. C. Berkeley,
apr 2001.

[24] Bjarne Stroustrup.The C++ Programming Language: Third Edition. Addison-Wesley Publishing Co.,
Reading, Mass., 1997.

[25] Sun Microsystems.rpcgen Programming Guide. Sun Microsystems Inc., Mountain View, CA, 1987.

[26] Raj Srinivasan. XDR: External data representation standard. RFC 1832, August 1995.

[27] Sun Microsystems, Inc. XDR: External data representation standard. RFC 1014, June 1987.

[28] B. King. GCC-XML the xml output extension to gcc.Undated. Online: http://www. gccxml.
org/HTML/Index. html.

[29] K. Vik, C. Griwodz, and P. Halvorsen. Applicability of group communication for increased scalability
in mmogs.Proceedings of NetGames’06, Singapore, oct 2006.


