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Abstract—Latency reduction in distributed interactive appli-
cations has been studied intensively. Such applications may have
stringent latency requirements and dynamic user groups. We
focus on using application-layer multicast with a centralized
approach to the group management. The groups are organized

in overlay networks that are created using graph algorithms.

We investigate many spanning tree problems with particular
focus on reducing the diameter of a tree, i.e., the maximum
pairwise latency between users. In addition, we focus on reducing
the time it takes to execute membership changes. In that context,
we use core-selection heuristics to find well-placed group nodes,
and edge-pruning algorithms to reduce the number of edges in
an otherwise fully meshed overlay. Our edge-pruning algorithms
strongly connect well-placed group nodes to the remaining group
members, to create new and pruned group graphs, such that,
when a tree algorithm is applied to a pruned group graph, it is
manipulated into creating trees with a smaller diameter.

We implemented and analyzed experimentally spanning-tree
heuristics, core-selection heuristics and edge-pruning algorithms.
We found that faster heuristics that do not explicitly optimize
the diameter are able to compete with slower heuristics that do
optimize it.

I. INTRODUCTION

In recent years, many new types of distributed application

have appeared. This is mainly due to the large improvements

in computer technology, which has resulted in more resources

available over the Internet. The media types may range from

text to continuous media such as video streams. Distributed

interactive applications, such as virtual environments and

online games, currently have millions of users and generate

more money than the film industry.

Although distributed interactive applications may differ

greatly, they share many of the same requirements. Firstly,

groups of users (but not necessary all users) of the same

application must be able to interact. Their interactivity imposes

restrictions on network latency, especially in highly interactive

virtual environments. Further, because the users in virtual envi-

ronments interact, there is a need for a many-to-many commu-

nication function. Many-to-many communication, combined

with restrictions on network latency, results in requirements

on the latency between any pair of users (pairwise latency).

Many distributed interactive applications have highly dy-

namic user groups. For example, users in online games may

join and leave groups continuously as they move around in

a virtual environment. Whenever group membership is deter-

mined anew, the many-to-many communication paths need to

be updated. Here, the main challenge is to design algorithms

that create efficient (low latency) event distribution paths, that

take into account the physical location of the users that are

interacting.

Today, many distributed interactive applications are cen-

trally managed. Bearing this in mind, we focus on an archi-

tecture with centralized management. A completely centralized

architecture gives the application provider full control. How-

ever, if all the data travels through the server, the latency is

potentially high for users that are located far from the server.

When the latency increases as a result of the distance of the

user from the server, it might be better to allow the data to

travel between the users directly. This will reduce both the

overall latency and the pairwise latency experienced by the

users. Our goal is to identify efficient means by which data

can flow among the users while at the same time taking into

account the group dynamics. It is in this context that we are

studying group communication algorithms that organize the

users in distribution patterns that have varying properties.

We use application layer multicast to achieve group com-

munication, although many distributed interactive applications

support IPv4 multicast. Reasons for operating at the applica-

tion layer are that IPv4 multicast 1) is not supported by all

Internet service providers, 2) cannot be used efficiently with

TCP, 3) does not easily support frequent membership change,

4) cannot prevent snooping, and 5) has a rather limited address

space available. To avoid these problems, we build overlay

networks. Such overlay networks are built between the users’

computers and are (inherently) fully meshed. Techniques for

estimating link costs are often applied to overlay meshes, but

this is outside the scope of our paper.

We study a range of new and existing graph algorithms that

organize nodes in trees while conforming to some optimization

goal. A tree needs very small routing tables, which is important

in our scenario. We here concentrate particularly on algorithms

that minimize the pairwise latency in distribution trees. The

maximum pairwise latency of a tree is known as the diameter.

All the algorithms are implemented, and the performance

is analyzed using experiments. Our results show that fairly

simple tree heuristics still produce trees with a small diameter.
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II. OVERLAY NETWORK DIAMETER

The diameter of an overlay network is determined by its

layout. We are investigating graph algorithms that design net-

works in ways that reduce the diameter, in particular spanning

tree problems found in the literature. Before we introduce

the algorithms, we highlight the importance of limiting the

diameter (in overlay networks), and discuss the requirements

of some applications that have millions of users.

A. Application requirements

Multi-player online games allow thousands of users to

interact concurrently in a persistent virtual environment. Such

games often have stringent latency requirements. The char-

acteristics of game traffic have been analyzed several times

before, and in [3], the latency requirements were measured to

be approximately 100 ms for FPS games, 500 ms for RPGs

and 1000 ms for RTS games. In audio conferencing and voice

over IP (VoIP) with real-time delivery of voice data, users start

to become dissatisfied when the latency exceeds 150-200 ms.

The maximum latency should not exceed 400 ms [9].

On the basis of these observations, we conclude that

overlays should be constructed such that the diameter falls

within the requirements of a given application. The diameter

requirements may vary from strict to loose even within one

application. Our goal is to identify graph algorithms that

reduce or limit the diameter in distribution trees while being

able to cope with group membership dynamics. That is,

the complexity and consequently the execution time of the

algorithms should be low, such that the reconfiguration time

is swift. We study multiple graph algorithms and observe how

the application requirements correlate with the diameter of the

resulting tree and the reconfiguration time.

B. Spanning tree problem

Graph algorithms that build trees (tree algorithms) have

been heavily researched for many decades. They compute

an acyclic graph (tree) from a connected input graph, while

satisfying certain criteria for optimization.

PROBLEM 1: Spanning tree problem: Given a connected

undirected weighted graph G = (V, E, c), where V is the

set of vertices, E is the set of edges, and c : E → R is

the edge cost function. Find a connected undirected subgraph

(tree) T = (VT , ET ), without cycles, where VT = V .

Many tree algorithms are spanning tree algorithms and try

to build a tree that covers all the vertices. From this basic

spanning tree problem numerous others have been derived.

Here, we focus on spanning tree problems that (we believe)

may reduce the diameter of T . The diameter of T is defined as

the longest of the (shortest) paths in T among all the pairs of

nodes in V . In addition, we study algorithms that optimize for

the total cost, i.e., the sum of the edge weights in T . Next, we

present problem definitions of relevant spanning tree problems

that exist in the literature.

C. Spanning tree problems and diameter

The spanning tree problems that reduce the diameter are

often NP -complete. Algorithms that solve the exact problems

are obviously slow and, therefore, useless in our dynamic

scenario. Instead, we focus on polynomial time heuristics that

produce close to optimal solutions. We here mention heuristics

that all have a worst-case time complexity of O(n3).

PROBLEM 2: Minimum diameter spanning tree problem

(MDST): Given G, find a spanning tree T of G such that

the maximum weight shortest path p ∈ T ,
∑

e∈p W (e) is

minimized.

An MDST-algorithm builds a tree of minimum diameter,

and is solvable in polynomial time. Ho, Lee, Chang and

Wong [8] considered the case in which the graph G is a

complete Euclidian graph induced by a set of points in the

Euclidian plane. They call this special case the geometric

MDST problem. They prove that there is an optimal tree in

which either one or two vertices in V are connected to the

remaining vertices. The result extends to any complete graph

whose edge lengths satisfy the triangle inequality, which holds

for overlay networks that are built from shortest path links

from the network layer.

Hence, for a complete graph, finding a simple heuristic for

building a close-to-optimal MDST reduces to finding a single

node located close to the center of the graph that connects to

the remaining nodes through shortest paths (direct links). The

topology of the resulting tree T is that of a star. Consequently,

the work-load (stress) of the center node becomes significant

as the degree increases. The degree is the number of incident

edges a node has. Thus, a solution is not viable unless the

center node has a considerable amount of resources.

PROBLEM 3: Bounded diameter minimum-spanning tree

problem (BDMST): Given G, and a bound D > 0. Find a

minimum weight spanning tree T on G, where
∑

e∈ET
c(e) is

minimized and the diameter of which does not exeed D.

A BDMST-algorithm builds a tree of minimum total cost

within a diameter bound. BDMST is an NP -complete problem

and examples of heuristics are one-time tree construction

(OTTC) [1] and randomized greedy heuristic (RGH) [17]. An

advantage of BDMST over MDST is that it is possible to tune

the tree diameter while minimizing the total cost. However,

one problem with BDMST remains the potentially high node

degree of central nodes in the tree when the diameter bound

D is stringent.

PROBLEM 4: Minimum diameter degree-limited spanning

tree problem (MDDL): Given G, a degree bound d(v) ∈ N
for each vertex v ∈ V ; find a spanning tree T of G of minimum

diameter, subject to the constraint that dT (v) ≤ d(v).

An MDDL-algorithm builds a tree of minimum diameter

while obeying the degree limits. MDDL is NP -Hard, never-

theless, it is relevant because it avoids the problems with stress

that beset spanning tree problems that do not have limitations
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Fig. 1. Reconfiguration time (ms) of CT using input graph with different
sizes of the edge set.

on degree. One issue with the MDDL problem is that it is a

minimization of the maximum diameter within a degree limit,

which increases the complexity of a heuristic.

The MDDL-heuristic compact-tree (CT) [18] (described

in section III-D), is a greedy algorithm based on Prim’s

minimum-spanning tree algorithm [7]. Figure 1 compares the

execution time of CT for a complete graph to some graphs

with reduced (pruned) edge sets, running our implementation

on an Intel Core 2 Duo machine. We observe that the execution

time of CT is independent of the edge-set size, but dependant

on the node-set size.

PROBLEM 5: Bounded diameter degree-limited minimum-

spanning tree problem (BDDLMST): Given G, a diameter

bound D > 0, and a degree bound d(v) ∈ N for each vertex

v ∈ V ; Find a minimum weight spanning tree T on G, where∑
e∈ET

c(e) is minimized, subject to the constraint that the

diameter does not exceed D, and dT (v) ≤ d(v).

The NP -hard BDDLMST problem is identical to BDMST,

but with degree limits for each vertex. A BDDLMST-heuristic

is able to produce trees with a diameter that is in accordance

with the diameter bound it received. This property is vital

in cases of lighter application requirements, because the time

complexity of the BDDLMST-heuristic decreases with looser

diameter bounds. We have implemented degree limited ver-

sions of OTTC and RGH (described in section III-D) that are

both heuristics of BDDLMST.

PROBLEM 6: Limited diameter residual balanced tree prob-

lem (LDRB): Given an undirected weighted graph G =
(V, E, c), a degree bound d(v) ∈ N for each vertex v ∈ V ,

and a diameter bound D ∈ R; Find a spanning tree T of G
with diameter ≤ D that maximizes resT (v) = d(v) − dT (v),
subject to the constraint that dT (v) ≤ d(v).

An LDRB-algorithm builds the ”most balanced” tree, that

satisfies an upper bound on the diameter. The most balanced

tree is any tree that maximizes the smallest residual degree.

However, a balanced tree does not have an optimal diam-

eter, instead, all nodes suffer. One heuristic of the LDRB-

problem is balanced compact-tree (BCT) [18] (described in

section III-D).

D. Related spanning tree problems

There exist related spanning tree problems that do not

explicitly consider the diameter, but are cheaper in terms of

the reconfiguration time. For example, a shortest-path tree is

a source specific tree in which all nodes have shortest paths

to the source. It was solved by Dijkstra and has a worst-case

time complexity of O(n2). A shortest-path tree is actually a

simple MDST heuristic if the source vertex is selected on the

basis of its location in relation to the other nodes. Remember

that in a complete graph, the topology of a close-to-optimal

MDST is a star, where the issue was the degree (stress) on

the center vertex. Hence, a degree limit is needed when using

a shortest-path tree. We here introduce two degree limited

spanning problems, with example heuristics which are O(n2).

PROBLEM 7: Degree-limited shortest-path tree problem (d-

SPT): Given G, a degree bound d(v) ∈ N for each vertex

v ∈ V ; find a spanning tree T , starting from a root node s ∈
V , where, for each v ∈ V the path p = (v, . . . , s) minimizes∑

pi∈p c(pi). subject to the constraint that dT (v) ≤ d(v).

A d-SPT algorithm builds a shortest-path tree in which each

vertex is subject to a degree limit. We believe that a d-SPT

heuristic combined with a carefully selected center (source)

node may be able to compete with MDDL heuristics. For

example, we found that the MDDL-heuristic CT has a high

reconfiguration time, due to a worst-case time complexity of

O(n3). We have implemented a d-SPT heuristic called dl-

SPT [15] (described in section III-D).

PROBLEM 8: Degree-limited minimum-spanning tree prob-

lem (d-MST): Given G, a degree bound d(v) ∈ N for each

vertex v ∈ V ; find a spanning tree T , where the
∑

e∈ET
c(e)

is minimized, subject to the constraint that dT (v) ≤ d(v).

In addition to studying the d-SPT problem, we investigate

the d-MST problem. A d-MST algorithm builds a minimum-

spanning tree T in which each vertex is subject to a degree

limit. d-MST heuristics found in the literature often employ

Prim’s MST algorithm. We have implemented a d-MST heuris-

tic that we call dl-MST [15] (described in section III-D).

In the following sections, we introduce algorithms for

centralized group management in distributed interactive ap-

plications.

III. CENTRALIZED GROUP MANAGEMENT

As noted above, our focus is on centralized graph algo-

rithms, where a central entity stores information about all the

users in a distributed application. The central entity employs

a process by which it identifies a fully meshed global graph

that contains properties of the nodes and links in the overlay

network. The users are divided into groups and the central

entity stores a fully meshed group graph for each group. A

group graph is a subgraph of the global graph. The central

entity creates and manages one distribution tree for each group.

A distribution tree is built such that the data flows directly

between the users in a group (see figure 2).

A. Membership management process

We identify three vital processes for centralized membership

management, and, in particular, group updates, that is, when
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Fig. 2. Centralized group management with control and data paths.

a central entity receives a join or leave request.

The identification process identifies communication proper-

ties among users and determines how users are grouped. The

manipulation process has optional techniques to reduce the

time required for membership to change. Here, the techniques

include core selection heuristics and prune algorithms (sec-

tions III-B and III-C). In the construction process, the latest

group graph information is used as input to a tree algorithm.

The tree algorithm creates/updates the group distribution tree

(section III-D).

We here present algorithms related to manipulation and con-

struction. Extensive research that addresses identification may

be found in [4]. Identification is independent of manipulation

and construction, and its discussion therefore lies outside the

scope of this paper.

B. Core selection heuristics

Core-based multicast protocols offer efficient group man-

agement capabilities. Efficient (fast) group management is

especially important when the groups are dynamic. Core-

based multicast protocols select one or more cores as group

management and forwarding nodes.

Several core selection heuristics have been proposed, a

comprehensive study of which is given by and Karaman

and Hassanein [10]. An overall goal is to select cores on

the basis of certain node properties, such as, bandwidth and

computational power. The number of cores that are selected

depends on the group size and the degree limitations in the

available core nodes.

In our scenario, core nodes are found among the nodes in

a group. By applying core selection heuristics that identify

well-placed nodes in a group, we aim to design algorithms

that exploit their degree capacity to the fullest and reduce

the diameter of the group tree. For example, degree-limited

heuristics often exhaust the degree limits on centrally located

nodes in the input graph.

The best location for a core is often related to the location of

other group members. The core selection heuristics presented

here search for a set of vertices beginning with the graph

median. The graph median is the vertex (node) for which the

sum of lengths of shortest paths to all other vertices is the

smallest. The heuristics are [10]:

Topological center: Find s nodes that are closest to the

topological center of the global graph.

Group center: Find s nodes that are closest to the group center

of the group graph.

C. Prune algorithms

The complexity of an algorithm has a great influence on the

execution time, which is important for our target applications.

However, it is difficult to reduce the complexity of an algo-

rithm without greatly decreasing the quality of the outcome.

But, the execution time does also depend heavily on the input

graph. A fully meshed overlay network makes the size of

the edge set particularly large. We investigate edge-pruning

algorithms that reduce the size of the edge set from a fully

meshed input graph. We have shown previously that using a

fully meshed member graph as input to a tree algorithm may

double the reconfiguration time compared to a graph with a

pruned edge set [19].
The goal of our edge-pruning algorithms is to create a new

pruned graph with a smaller edge set, where a set of core nodes

(users) are connected strongly to the remaining nodes. The

core nodes are identified using a core selection heuristic. In

this paper we present two promising edge-pruning algorithms:

add Core Links (aCL) (see algorithm 1) takes as input a fully

meshed group graph G and a set O ⊂ V that contains group

nodes (users) that was identified by a core selection heuristic.

Each node in V − O includes its k best edges to the new

pruned graph. Then, each node in O includes edges to all

nodes in V into the new pruned graph. Step 1 is k Best Links

(kBL) as defined in [21]. Step 2 was added to connect the core

nodes strongly to the remaining nodes, as well as to ensure the

connectedness of the new pruned graph. aCL produces a graph

with |E| = k∗|V −O|+|O|∗|V |. After applying aCL, the new

pruned graph forms, conceptually, a two-layer graph, where

the core nodes are fully meshed and the remaining nodes have

a degree-limited by k + |O|.

Algorithm 1 add Core Links

In: A fully meshed graph G = (V, E, c), a set O ⊂ V of core nodes
(selected by a core selection heuristic), and an integer k ≥ 0.

Out: A graph GP = (VP , EP , c), where VP = V , EP ⊂ E.
1: For each node m ∈ V − O, include k edges to EP ⊂ E, where EP

contains the minimum weight edges connecting m to V − O. {kBL}
2: For each core node o ∈ O, include an edge to every node v ∈ V .

add Core Links Optimized (aCLO) (see algorithm 2) creates

a new pruned graph with an even smaller edge set. It reduces

the number of edges from the core nodes O to the remaining

nodes V − O. Figure 3 illustrates a new pruned graph after

using aCLO.

Algorithm 2 add Core Links Optimized

In: A fully meshed graph G = (V, E, c), a set O ⊂ V of core nodes
(selected by a core selection heuristic), and an integer k ≥ 0.

Out: A graph GP = (VP , EP , c), where VP = V , EP ⊂ E.
1: For each node m ∈ V − O, include k edges to EP ⊂ E, where EP

contains the minimum weight edges connecting m to V − O. {kBL}
2: Create |O| disjoint sets l ⊂ L of nodes from V − O, where |l| =

|V − O|/|O|. Each node o ∈ O connects to all nodes in a set l ∈ L.

D. Tree algorithms

We tested the following 12 tree algorithms that are also

listed in table I. All the tree algorithms start building the tree
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Algorithm Meaning Optimization Constraints Complexity Problem Reference

MST Prim’s minimum-spanning tree total cost - O(n2) 1) MST [7]

SPT Dijkstra’s shortest-path tree core/destination cost - O(n2) 1) SPT [7]

md-OTTC Minimum diameter one-time tree construction diameter - O(n3) 2) MDST -

OTTC One-time tree construction total cost diameter O(n3) 3) BDMST [1]

RGH Randomized greedy heuristic total cost diameter O(n2) 3) BDMST [17]

CT Compact-tree diameter degree O(n3) 4) MDDL [18]

mddl-OTTC Minimum diameter degree-limited one-time tree construction diameter degree O(n3) 4) MDDL -

dl-OTTC Degree-limited one-time tree construction total cost diameter and degree O(n3) 5) BDDLMST -

dl-RGH Degree-limited randomized greedy heuristic total cost diameter and degree O(n2) 5) BDDLMST -

BCT Bounded compact-tree diameter diameter and degree O(n3) 6) LDRB [18]

dl-SPT Degree-limited Dijkstra’s shortest-path tree core/destination cost degree O(n2) 7) d-SPT [15]

dl-MST Degree-limited Prim’s minimum-spanning tree total cost degree O(n2) 8) d-MST [15]

TABLE I
TREE ALGORITHMS.

user nodes

selected core nodes

links included if k = 0

links included if k = 1

Fig. 3. Pruned graph using add Core Links Optimized.

from a source node. If not otherwise noted, we use the group

center heuristic to select a source node.

Minimum-spanning tree (MST) [7] is Prim’s minimum-

spanning tree algorithm. Prim’s MST has been empirically

shown to be the fastest MST algorithm for large dense-

graphs [14].

Shortest-path tree (SPT) [7] is Dijkstra’s shortest-path tree

algorithm, which is almost exactly the same as Prim’s MST.

SPT optimizes to find the shortest-path between a source and

any target.

Minimum diameter one-time tree construction (md-OTTC) is

a heuristic of the MDST problem. It is an alteration of OTTC.

md-OTTC adds the vertex that minimizes the diameter.

One-time tree construction (OTTC) [1] is a heuristic of the

BDMST problem. OTTC is a modification of Prim’s MST

algorithm to accommodate the diameter bound.

Randomized greedy heuristic (RGH) [17] is a heuristic of the

BDMST problem for complete graphs, and is based on Prim’s

MST algorithm.

Compact-tree (CT) [18] is a heuristic of the MDDL problem,

and is based on Prim’s MST algorithm.

Minimum diameter degree-limited one-time tree construction

(mddl-OTTC) is a heuristic of the MDDL problem. It is an

alteration of OTTC. mddl-OTTC adds a vertex that minimizes

the diameter while obeying the degree limits.

Degree-limited one-time tree construction (dl-OTTC) is a

heuristic of the BDDLMST problem. It builds the tree the

same way as OTTC, while obeying the degree limits.

Degree-limited randomized greedy heuristic (dl-RGH) is a

heuristic of the BDDLMST problem. It builds the tree the

same way as RGH, while obeying the degree limits.

Description Parameter

Placement grid 1000x1000 units

Number of nodes in the network 1000
Degree limits 3,5 and 10
Diameter bound 0.25
Core node set size group size/degree limit ∗2

TABLE II
EXPERIMENT CONFIGURATION.

Bounded compact-tree (BCT) [18] is a generalization of the

CT algorithm. It uses a balancing factor M , and the authors

found that M = 4 fits best.

Degree-limited shortest-path tree (dl-SPT) [15] is a heuristic

of the d-SPT problem. dl-SPT is the same as dl-MST, except

that it is optimized for shortest-paths.

Degree-limited minimum-spanning tree (dl-MST) [15] is a

heuristic of the d-MST problem. It is a modification of Prim’s

MST algorithm.

IV. EXPERIMENTS

The observations made in sections II and III form the

foundation of our experiments using graph algorithms to

reduce the diameter.

A. Simulator

We implemented all algorithms presented in section III in

a simulator for application layer multicast. It mimics group

communication in a distributed interactive application using

a preselected central entity to handle the membership man-

agement. The central entity is always selected using the core

selection heuristic topological center.

In our experiments, we assume that some identification

process in the central entity identifies a fully meshed graph

where all edges have an associated weight. For this, we used

the BRITE [13] topology generator to generate Internet-like

router networks. We simulated an overlay network, so the

network graph was translated into an undirected fully-meshed

shortest-path graph. Furthermore, the central entity divides the

users into groups such that each group has a fully meshed

group graph. We here present results from simulations using

networks with 1000 nodes.

The optional manipulation techniques (core-selection

heuristics and edge-pruning algorithms) use the fully meshed
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group graph as input and create a new pruned group graph.

All the nodes join and leave groups throughout the simulation,

causing group membership to be dynamic. When a join or

leave request is received by the central entity, the construction

process chooses a tree algorithm, which is given the latest

available group graph as input, and constructs a new group

tree. The tree algorithms that are considered in this paper re-

build the entire tree for every join and leave request. The group

popularity was distributed according to a Zipf distribution. We

assumed that the central entity has the latest member view, and

that it has full knowledge of the network. Further experiment

parameters are listed in table II.

B. Metrics and constraints

We considered two metrics to address the application re-

quirements: diameter and reconfiguration time. The diameter

expresses the worst-case latency between any pair of group

members. The reconfiguration time of an algorithm is the time

that is required to execute a group membership change. In

addition, a degree-unlimited algorithm is not desirable if the

constructed tree has a very high maximum degree. Many of

the tree algorithms in our investigation use a constraint on the

degree-limit.

In general, adding constraints to an algorithm increases the

algorithm complexity if an optimal solution is targeted. Many

heuristics cannot guarantee that a constrained tree is found.

That is also the case with the constrained tree heuristics in

this paper. The success rate of the algorithms depends on the

constraint and the input graph. For example, it is more difficult

to find a degree limited tree in a sparse graph than in a dense

one. We here relax the degree limits whenever a tree heuristic

cannot continue the tree construction.

We calculate the size of the core node set (O) using the

degree limit d in the current experiment: |O| = |V |/d ∗ 2.

The function approximates the number of core nodes that is

needed to ensure that the degree-limited tree algorithms are

still able to build a tree.

C. Fully meshed results

We here present results from using a fully meshed input

graph to every tree algorithm. The diameter achieved, with

degree limit 10, is plotted in figure 4. As expected, MST

constructs trees with high diameter, because it optimizes for

the total cost. dl-MST performs similarly to MST but is not

plotted. Hence, we can safely disregard MST and dl-MST.

SPT performs best, and constructs trees with a diameter close

to 0.3 regardless of group size. The source of SPT is chosen

by the group center heuristic, hence, the combination results

in an MDST-heuristic (problem 2). We do not plot all the

algorithms because many of them construct trees with very

similar diameter. In fact, all remaining algorithms construct

trees with a diameter between 0.3 and 0.4 seconds.

In figure 5, the diameters with degree limits 3, 5 and 10

are plotted. When the degree limit is 3, the degree-limited

algorithms struggle to find trees with a diameter below 0.6

seconds. A degree limit of 5 reduces the diameter to 0.5, while
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Fig. 4. Diameter of fully meshed graph (degree limit=10).
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a degree limit of 10 further lowers it to 0.4. We deduce that

the degree limit can not be stringent if a low diameter is the

desired goal. Thus, henceforth, we use a degree limit of 10 in

all our plots.

The reconfiguration time of selected algorithms is plotted

in figure 6. CT and BCT clearly perform worst (only CT

is plotted). In fact, during frequent group tree updates they

are almost useless for larger group sizes. The remaining

algorithms are considerably faster, with RGH/dl-RGH being

the fastest. An SPT algorithm on a fully meshed application

layer graph reduces the complexity to O(1), because the input

mesh contains all the shortest paths from the source to any

destination.
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Figure 7 plots the maximum degree in the group trees.

SPT, md-OTTC, OTTC and RGH all have maximum degrees

that would not be tolerated by average users of distributed

interactive applications.

To summarize, MST and dl-MST produce trees with too

high diameter. CT and BCT are too slow to handle frequent

tree updates. SPT, md-OTTC, OTTC and RGH all have a

maximum degree above acceptable. Hence, these are all poor

alternatives in the tree construction. The better alternatives are

dl-SPT, mddl-OTTC, dl-OTTC and dl-RGH. Table III gives

an overview of some pros and cons of the algorithms. In the

following, we consider only the diameter, reconfiguration time

and maximum degree.

Algorithm Diameter Time Degree Rank

MST – + + –
SPT + + – –
md-OTTC + + – –
OTTC + + – –
RGH + + – –
CT + – + –
mddl-OTTC + + + +
dl-OTTC + + + +
dl-RGH + + + +
BCT + – + –
dl-SPT + + + +
dl-MST – + + –

TABLE III
TREE ALGORITHM CHARACTERISTICS USING FULL MESH.

D. Reduced Graphs

Here, we present results from combining a core selection

heuristic and edge-pruning with tree algorithms. We use aCL

and aCLO (k=2,1,0) to reduce the input graph size, and the

group center heuristic to find the core nodes, i.e., well located

group nodes. All the remaining plots are of 100 nodes with a

degree limit of 10.

Figure 8 plots the diameter when using a fully meshed input

graph and aCL. Overall, the algorithms produce the lowest

diameter when using a fully meshed input graph. However,

when aCL is used, the diameter suffers on average only 15%

even when k = 0, and the edge set is reduced with 80%,

compared to the fully meshed graph.
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Fig. 8. Diameter for full mesh and aCL.
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Fig. 9. Diameter for full mesh, aCL and aCLO.

Figure 9 plots the diameter for aCLO as well. We observe

that the diameter suffers on average just below 20% when

aCLO is used, instead of the full mesh. aCLO with k = 0
reduces the edge set by 95 %, and the construction results are

still competitive.

The reconfiguration times of the construction algorithms

applied to the full mesh and aCL/aCLO graphs are plotted

in figure 10. The tendency is very clear. When the edge set

is pruned the reconfiguration time is substantially reduced.

However, CT (and BCT) continue to be very slow regardless

of edge-pruning, because its execution time is dependant on

the node set size.

We expect the maximum degree to decrease for the algo-

rithms without degree limits when applying aCL and aCLO,

see figure 11. We observe that the maximum degree is reduced

to about 20 when aCLO is used. Hence, degree unlimited

algorithms are an option for very low bandwidth streams,

but, only if aCLO and the group center heuristic are used

to manipulate the input graph. However, the degree-unlimited

algorithms all have (almost) equally fast algorithm versions

with degree limits. Table IV gives an overview.

E. Discussion

A tree algorithm for our construction process should pro-

duce trees with low diameter, keep the reconfiguration time

fast and be able to obey degree limits. We have seen that CT
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Fig. 11. Maximum degree for full mesh, aCL and aCLO.

is the best algorithm when only the diameter and maximum

degree are considered. However, the reconfiguration time

when using CT is very high, even with a pruned edge set.

Remember, low reconfiguration time is particularly desirable

during frequent tree updates, which is often the case for our

target applications.

The algorithms that have all the properties that our target

applications want are listed in table V. dl-RGH is the fastest

algorithm, and still manages to produce low diameter trees

within the degree limits. mddl-OTTC and dl-OTTC are similar

to each other, but mddl-OTTC is slightly slower and does not

have the flexibility of a bounded diameter algorithm. dl-SPT

was a surprisingly good alternative, and is a good algorithm

for a source-based tree.

Our ranking is subjective and not related to specific applica-

tion needs. All the algorithms fit different needs, because they

vary in performance between diameter and reconfiguration

time, see figure 12. dl-RGH is a fast O(n2)-heuristic. When

extending the tree, it chooses the next vertex at random and

connects it via the lowest weight edge that maintains the

diameter constraint. The diameter constraint is only maintained

towards the source, and is actually the radius. The algorithm

works surprisingly well to produce trees with a small diam-

eter. dl-OTTC extends the tree through the minimum weight

edge that obeys the diameter bound. It is slower because it

has a more time consuming maintenance of the diameter,

Algorithm Diameter Time Degree Rank

SPT + + + +
md-OTTC + + + +
OTTC + + + +
RGH + + + +

dl-SPT + + + +
mddl-OTTC + + + +
dl-OTTC + + + +
dl-RGH + + + +

TABLE IV
TREE ALGORITHM CHARACTERISTICS USING aCLO.

Algorithm Diameter Time Degree Rank

dl-RGH ++ ++++ + ++++
dl-OTTC +++ ++ + +++
mddl-OTTC ++++ + + ++
dl-SPT + +++ + +

TABLE V
FINAL TREE ALGORITHM RANKING.
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Fig. 12. Diameter and reconfiguration time for complete, aCL and aCLO.

but it produces trees with smaller diameter than dl-RGH.

mddl-OTTC always minimizes the maximum diameter, and

is slightly slower because of that. However, mddl-OTTC is

much faster than CT, and constructs trees with almost the

same small diameter. dl-SPT avoids diameter bounds, that

may not be available, and minimum diameter goals, that may

not be desirable in many applications. It rather optimizes for

source destination cost, which is often desired by streaming

applications.

V. RELATED WORK

Considerable attention has been given to latency reduction

in distributed interactive applications. Research areas such as

graph theory (network layout), protocol optimizations (on all

layers), group management (distributed and centralized), and

multicast protocols are all necessary for the further enhance-

ment of distributed interactive applications. In this paper, our

focus has been on using application layer multicast with a

centralized approach to group management. The groups are

organized in overlay networks that are created using graph

algorithms.

Currently, two general approaches are used to accomplish

overlay multicast. One is peer-2-peer (P2P) networks that are

designed for file and information sharing in highly dynamic

networks, for example, BitTorrent and Gnutella. Most P2P
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applications build overlay networks that ignore the underly-

ing physical topology, which affects the service because the

latency can become very high. The second approach focuses

on improving overlay multicast protocols and offers more

robust group communication. There exist overlay multicast

protocols that are topology-aware and are designed to achieve

lower latencies and better bandwidth usage [11]. Many overlay

multicast protocols have been proposed, but there remains

room for improvement, especially regarding the construction

of overlay networks.

The Yoid project [6] provides an architecture for both

space- and time-based multicast, and NICE [2] arranges group

members into a hierarchy of layers and proposes arrangement

and data-forwarding schemes. In Narada [5], end systems

organize themselves into an overlay structure using a fully dis-

tributed protocol. ALMI [16] is centrally managed application-

level group communication middleware, tailored toward the

support of relatively small multicast groups with many-to-

many semantics.

These proposed protocols are starting points, but they

use overlay network construction algorithms that are either

shortest-path or minimum-spanning trees. Hence, it is not suf-

ficient to address the latency demands in distributed interactive

applications. An exception is AMcast [18], which uses a set of

distributed multicast service nodes (MSN). The authors focus

on optimizing the access bandwidth of the MSN’s interfaces

and end-to-end delay, and propose several new tree algorithms,

for example, the compact-tree and bounded compact-tree al-

gorithm. We tested both of these algorithms, but found them

to be too slow for our applications. Furthermore, the MSN

placement problem is strongly linked to selecting core nodes

using a core selection heuristic.

Furthermore, few, if any, protocols are able to maintain

subsets of a larger set of nodes. An approach that looks at

the maintenance of subgroups within a larger set of overlay

nodes is PartyPeer [12]. This system creates subgroups by

forming overlay multicast groups as subtrees of a tree that

covers the entire set. However, the approach taken results in

poorer performance, because subgroups are always created as

subtrees of a single tree for the entire application.

In summary, there is a considerable body of work on

overlay multicast protocols and efficient tree construction and

maintenance. However, current approaches do not address

frequent group membership changes and resource limitations

of a node (degree) while at the same time minimizing the

diameter for latency-bound communication.

VI. CONCLUSIONS AND FUTURE WORK

We have investigated group communication in relation to

distributed interactive applications. Our investigation involved

experiments with many spanning tree problems, where we had

a particular focus on reducing the diameter of a tree. We found

that the fairly simple degree-limited heuristics dl-RGH, dl-

OTTC, mddl-OTTC and dl-SPT all produce trees with small

diameter. Moreover, the heuristics are fast, which is important

in highly dynamic distributed applications.

In addition, we investigated algorithms for reducing the time

it takes to execute membership changes. We found that the

group center heuristic, and the edge-pruning algorithms aCL

and aCLO are powerful means that may reduce the time a

tree algorithm needs to construct a tree, while it still produces

competitive results.

Currently, we are investigating tree algorithms that are able

to include stronger nodes (like proxies) to a tree, that is,

Steiner-tree heuristics. In addition, we study dynamic tree

algorithms that insert and remove single nodes to reduce the

reconfiguration time further [20]. Finally, we intend to test

distributed alternatives to the centralized algorithms.
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