Efficient Dependency Tracking
in Packetised Media Streams

Alexander Eichhorn
Distributed Systems and Operating Systems Group
Ilmenau Technical University, P.O. Box 100 565, 98684 Ilmenau, Germany
Email: alexander.eichhorn@tu-ilmenau.de

Abstract— Scheduling and error control mechanisms for robust
delivery of media streams over packet networks rely on distortion
metrics to optimally allocate resources and protect streams from
uncontrolled quality degradation. Current distortion metrics are
accurate, but the actual distortion values are expensive to obtain.
Therefore, distortion models often assume fixed dependency
patterns and neglect fragmentation issues. While this decreases
runtime complexity, it also limits the application of such models
to special stream classes and network environments.

In response, we present a practical, efficient and format-
independent framework to reason about dependencies in media
streams. Based on correlation analysis we show that the esti-
mations made by our framework match traditional distortion
metrics for a number of H.264 encoded streams. Performance
benchmarks indicate, that our framework is applicable at very
low computational overheads.

[. INTRODUCTION

Protocols for the robust delivery of media streams over best-
effort packet networks require a notion of data importance to
efficiently protect data units from transmission errors. Previous
work on content-aware protocols has shown that the quality
of reconstructed signals at the receiver can be significantly
improved when information about expected channel errors and
the expected distortion with respect to the loss of data units
is available at encoding or transmission time.

Based upon this information, protocols may perform se-
lective drop [1], [2], packet interleaving [3], unequal er-
ror protection and forward error correction [4]-[6], packet
scheduling and selective retransmissions [7]-[9] as well as
priority mappings to Quality-of-Service classes supported in
certain network environments [10], [11].

Common to these approaches is that they express distor-
tion in metrics defined in the signal domain, either directly
measured as the mean squared error (MSE) between a recon-
structed signal and a reference signal, or by approximating the
expected distortion based on models [9], [12]-[14].

Although distortion metrics are known to yield accurate
importance estimations, obtaining distortion values is expen-
sive. It requires multiple channel simulations and is limited
to pre-encoded content. Distortion models on the other hand
often assume special encoding and concealment schemes, fixed
dependency structures, and a one-to-one mapping between
encoded data units and transport units. This limits their utility
in multicasting and broadcasting scenarios, conflicts with ad-
vanced video coding features as well as packet fragmentation
in real systems.

1-4244-1274-9/07/$25.00 ©2007 IEEE

139

In this paper we present an efficient and universal depen-
dency tracking framework for packetised media streams that is
independent of encoding schemes and stream structures. Our
framework is based on static type descriptions and dynamic
dependency graphs that can be efficiently traversed at run-time.

Our framework can be used (1) in rate-distortion models
and transport mechanisms to reason about actual dependencies
and (2) in streaming protocols as a low-complexity alternative
to traditional distortion metrics for estimating the importance
of data units. This framework extends our previous work on
dependency modelling [15] by the support for fragmented
streams and different fragmentation semantics, such as data-
partitioning and multiple description coding.

Although dependency-based importance is less accurate
than distortion metrics, we show by correlation analysis that
the importance estimations made by our framework match
to MSE distortion and SSIM distortion [16] for a number
of H.264 encoded streams. We also provide performance
benchmarks to demonstrate that the reduced complexity of
a graph-based dependency model allows us to compute the
importance of 1800 parallel H.264 streams in realtime at one
percent load on recent processors.

Using graphs to represent dependency relations is common
practice. As applied in our framework, inter-frame dependen-
cies can be modelled as a directed acyclic graph (DAG) [17],
[18] or as partially ordered set [1], [19], whereas both notations
are convertible. Roder et. al. [18] uses graphs to extend the
work of [9] by efficient algorithms that generate more precise
policy vectors for the RaDiO framework, but because of their
close integration, the graphs are not universally applicable.

While most protocols implicitly use static IPB-dependency
schemes, few authors consider more complex and variable
dependency structures, such as [19] for dependency-aware
transmission-order scheduling. Some approaches deduce the
importance of data units directly from their types [11], [20].
While such static classification schemes are state-less and easy
to implement, they lack history features and cannot predict the
importance of lost data units. In contrast, our framework is
specifically designed to reason about these dynamic properties.
To the best of our knowledge it is the first that solely
considers types and dependency relations between data units
for importance estimation and structural analysis.

In the remainder of this paper we first introduce the
main concepts of dependency modelling. Next, we present

MMSP 2007

a comparative analysis between traditional distortion metrics
and the importance estimations obtained from our model.
Finally, we present performance benchmarks of a prototype
implementation.

II. DEPENDENCY MODELLING

The intention of our dependency model is to provide a
universal and practical tool to infer the dependency-based
importance of data units in media streams (even that of lost
units) and to analyse streams for broken dependency that
occurs when referenced data units are lost or dropped. Broken
dependency directly translates into error propagation and poor
quality during signal reconstruction and thus resilient media
streaming protocols aim to constrain these effects.

We assume that a static type description is reliably ex-
changed prior to the stream. This description contains static
dependency information about all data unit types. It must
be specified once per encoding format using a dependency
description language, which is part of our framework (see [15]
for details). The description is sufficiently small (a few bytes)
to be included in media signalling protocols.

We also assume that each data unit is properly fragmented
by the application or transport protocol, but we do not restrict
the model to a particular packetisation scheme, such as frames,
slices, NAL units or RTP packets. We further assume that
either type information or dependency hints are attached to
data units using format-independent labels (see table I).

Purpose Attribute Description

Strictly pred. | seq unique sequence number

streams

Limitedly type data unit type

. epoch dependency epoch

predictable . .
enclayer encoding layer (optional)

streams .
reflayer referenced layer (optional)

short.term.reflist
long_termreflist
is_long_-term.ref
group-seq
group-size
imp_boost

seq. of short-term references
seq. of long-term references
marks long-term references
in-group position

data units in this group
additional importance boost

Unpredictable
streams

Group-based
streams

TABLE I
ATTRIBUTES IN DATA UNIT LABELS.

Because our model only considers dependencies it is un-
aware of any signal processing (error concealment) at the
receiver. We do not assume that senders and receivers have
perfect knowledge about the future of a stream. However, the
model may be able to predict future structure and dependencies
when the encoding format is properly defined.

Our dependency model does only require limited storage
to cache information about data units within the window of
interest for a particular protocol and it introduces no concep-
tional delay to stream processing. Hence, it is applicable to
streaming of pre-encoded content as well as live streaming
scenarios over typical packet networks where data units are
reordered and lost.

140

A. Data Model and Dependency Representation

For representing actual dependencies between data units we
use a directed acyclic graph, the object graph G, while the
static dependency structure of a particular stream format is
expressed in the type graph G, that may contain loops or
cycles. The object graph is generated dynamically when data
units become visible, while the type graph is constructed from
the static type description.

The object graph keeps record of the set of visible data units
and the short-term history of the stream. This is sufficient, be-
cause most of the dependency relations are short-term, that is,
the distance between directly and transitively depending data
units is limited by the encoding format. We use the concept of
epochs to express boundaries that limit transitive dependency
relations to continuous stream sections. A prominent example
for epochs is the group-of-pictures (GOP) concept. Epochs are
not required to have a fixed size or a pre-defined dependency
pattern throughout the stream. Instead we allow flexible epochs
to express the dynamic dependency modes of advanced video
coding schemes.

B. Visibility and Predictability

In real systems the visibility of data units is limited,
either because a stream is generated live or data units are
intentionally dropped, reordered or lost in transit. A sender
is only aware of data units that have been already generated
while a receiver can only have information about properly
received units. Type and dependencies of lost and future units
is invisible. Invisibility directly influences estimation accuracy
because dependency relations may be concealed. Hence, it is
desirable to predict importance or dependencies.

While generally impossible, prediction is feasible when
streams possess fixed-size epochs and regular dependency
patterns. We call such streams strictly predictable. Other
streams may have limited predictability, because their epoch
size varies, but their dependency is reconstructable from types.
However, most streams are regarded unpredictable, because
they contain variable references, variable numbers of frag-
ments per data unit, or dependency-independent type systems.

C. Object Graph Decoration

Decoration is the process of inserting a new, lost, reordered
or repaired data unit into the object graph. The kind of decora-
tion depends on the available or recoverable information: For
strictly and limitedly predictable streams sequence number,
type and epoch are sufficient. In combination with static type
information implicit decoration can insert all relations. This
works even for lost units when their type is predictable. For
unpredictable streams, however, more expensive dependency
lists and explicit decoration are required. With explicit depen-
dencies, lost data units can also accumulate references even if
their type is unpredictable. Decoration can immediately detect
a broken dependency due to type mismatch, the selection of
a lost data unit or any of its transitive successors as target.
Broken dependency is only resolved when any lost predecessor
is successfully updated.

D. Dependency Analysis and Importance Estimation

Based on the object graph structure, our model can per-
form queries, structure validation and importance estimation.
Queries are useful in protocols to analyse if data units are
transitively reachable from other units, or which units are
affected by the loss of one or more units. Validation checks if
all required dependency relations for a given data unit u are
satisfied and if no unit in the backward transitive closure of u
in Go exhibits a broken dependency.

Importance estimation recursively determines the number
and importance values of all depending units. In contrast to
validation, estimation visits the forward transitive closure of
a data unit. The recursion ensures that importance values
increase monotonically over any visible dependency chain.

E. Groups of Data Units

So far, we intuitively used dependencies to describe that
the existence of one data unit is essential for processing a
related unit. This is sufficient when data units contain com-
plete frames, but fragmentation, data partitioning and multiple
description coding require different semantics. Therefore we
introduce the concept of groups and define group semantics
to specify a particular relationship inside a group.

a) Equal containment groups: model data units that
are fragments of a larger application-level unit. Transport
protocols may use them to express dependencies after frag-
mentation. Our model considers a group member valid if the
group is complete and assigns equal importance values to all
members.

b) Unequal containment groups: model data units in
layered, data partitioned, FEC-encoded or otherwise unequally
important streams. Our model assigns each group member a
different importance value, relative to the importance of the
group. A data unit is valid if all group members with a relative
importance larger than a type-specific threshold are available.

¢) Refinement groups: express relations in multiple de-
scription coded streams, where at least a single (but arbitrary)
member is required for decoding of a basic quality signal. Our
model raises importance values above the group importance
when only a few group members are available. Refinement
group members are instantly valid if they are not lost.

Group semantics are a property of the data unit type, but
groups may span data units of multiple types. As a practical
example, consider data partitioned H.264 streams, where each
slice is segmented into NAL units of type 2, 3, and 4, and
all NAL units containing data from a single frame become
members of a single unequal containment group.

III. EVALUATION

In order to evaluate the accuracy and performance of our
dependency model we implemented a prototype system in C++
and performed statistical analysis and benchmarks.

For a maximum variability in stream features we selected
standard sequences with different frame sizes and different
motion characteristics. We also used a longer non-standard

141

Name Frame- Bitrate x264 JM12 NAL units (per frame)
size (kbit/s) units total mean std max
Akiyo 176x144 300 327 632 2.092 1.486 9
Coastguard ~ 352x288 300 327 595 1970 1.634 8
Foreman 352x288 300 327 588 1.947 1.765 11
CBSNews 720x576 600 5651 19301 3.722 6.279 129

TABLE 1T
PROPERTIES OF VIDEO STREAMS: X264 USES ONE NALU PER FRAME,
AND JM12 MATCHES NALU SIZE TO NETWORK PACKETS. TOTAL:
OVERALL NUMBER OF NALUS; MEAN/STD/MAX: PER-FRAME STATISTICS

sequence, obtained from the BBC Motion Gallery'. All se-
quences were encoded at different settings using the H.264
reference encoder (JM12)?> and the open-source x264 en-
coder’ (see table II for properties of the encoded streams).
We selected four dependency patterns: (1) a fixed I-P-B
structure (IPB), (2) a fixed 3-layer pyramid structure (Pyra-
mid), (3) x264 adaptive reference picture selection with B-
Frames enabled (Adaptive), and (4) IM12 error-resilient slice
packtisation mode with intra-refresh and adaptive reference
picture selection (Resilient). While the x264 encoder can only
generate one slice per frame, we configured the JIM12 encoder
for pattern 4 to create NAL units with maximal size of 1450
bytes. All sequences have a GOP size of 24, contain one IDR-
frame per GOP to hard-limit error propagation. Pattern 4 is
encoded with forced intra-refresh of one line of macroblocks
per frame.

A. Correlation Analysis

To figure out how close our estimated dependency-based im-
portance matches traditional distortion metrics we performed
a statistical analysis over different streams and dependency
structures. To obtain the expected distortion values with re-
spect to the loss of a NALU we systematically removed each
NALU from a stream and calculated MSE and SSIM metrics
[16] between the decoded version of the resulting sequences
and their original, error-free versions.

For sound statistical analysis we removed extreme outliers
that resulted from decoder crashes and applied the Box-Cox
transformation [21] to normalise the data. We then calculated
the Spearman rank order correlation coefficient and the Pear-
son correlation coefficient. The results in table III show good
correlation in both distortion metrics when the distortion is
generated by a lost frame (all x264 streams). This indicates
that dependencies have a major impact on error propagation,
even for adaptive and weighted reference frame selection.

If, however, distortion is isolated to smaller sections of a
frame and error propagation is stopped faster due to intra up-
dates (as for JM12 streams), the dependency-based importance
matches poorly with real distortion. We suspect our model
to over-estimate importance in such cases because it only
considers dependencies between groups of data units. All data
units in a group are treated equal although although a unit’s

1ht:t:p : //www.bbcmotiongallery.com/Customer/Showreels.aspx
2http ://iphome.hhi.de/suehring/tml/
3ht:tp ://www.videolan.org/developers/x264.html

contribution to signal quality decreases with increased frame
and group size. A useful extension to improve its performance
would be to attach weights to vertices in the dependency
graph that represent the amount of error propagation and
error correction caused by skipped/predicted/intra macroblocks
contained in a data unit.

MSE SSIM
Pattern Stream SROCC cC OR SROCC CcC OR
Akiyo 0.821 0.735 0.092 -0.570 -0.566 0.092
X264 Coastguard 0.891 0.846 0.092 -0.719 -0.650 0.092
IPB Foreman 0.844 0.783 0.092 -0.422 -0.400 0.092
CBS News 0.651 0.603 0.083 -0.364 -0.390 0.083
Akiyo 0.741 0.726 0.092 -0.728 -0.834 0.092
x264 Coastguard 0.750 0.735 0.092 -0.706 -0.734 0.092
Pyramid Foreman 0.730 0.722 0.092 -0.584 -0.569 0.092
CBS News 0.575 0.581 0.108 -0.434 -0.463 0.108
Akiyo 0.540 0.572 0.089 -0.049 -0.113 0.089
x264 Coastguard 0.891 0.848 0.089 -0.056 -0.056 0.089
Adaptive Foreman 0.718 0.705 0.089 -0.143 -0.152 0.089
CBS News 0.668 0.606 0.083 -0.390 -0.401 0.083
Akiyo 0.305 0.345 0.004 -0.225 -0.356 0.004
IM12 Coastguard 0.335 0.337 0.001 0.005 0.027 0.001
Resilient Foreman 0.296 0.282 0.001 0.096 0.103 0.001
CBS News 0.300 0.308 0.001 -0.091 -0.028 0.001
TABLE III

PERFORMANCE COMPARISON OF IMPORTANCE ESTIMATION MODELS.
CC: CORRELATION COEFFICIENT; SROCC: SPEARMAN RANK ORDER
CORRELATION COEFFICIENT; OR: OUTLIER RATIO

B. Performance Benchmarks

Figure IV shows the runtime costs of graph decoration and
importance estimation algorithms. The measurements were
performed on a 64bit Intel Core2Duo processor with 2.16
GHz and 4MB 2"?-level cache. Each sample represents the
statistical mean of a single call measured over all data units
in the particular streams.

As expected, the runtime costs for both functions are low.
They slighty increase when group sizes grow larger. The
figures indicate that our model scales well with group sizes
and that it is able to track and analyse up to 1800 ‘CBS
News’ streams at one percent CPU usage. Due to structure
validation checks, performed when inserting new data units,
the decoration function is more expensive than importance
estimation. Because estimations may be required multiple
times in real protocols, we optimised for this case.

IV. CONCLUSION

We proposed a universal framework for dependency track-
ing and importance estimation in multimedia streams that
utilises low-complexity dependency graphs as an alternative
to complex distortion metrics. Our framework can serve as
enhancement to existing distortion models or as a tool to
directly obtain sufficiently accurate importance values. We
expect this framework to be valuable in situations where
distortion is unavailable or too expensive such as in realtime
scenarios, for resource-constrained devices, and in transport
protocol mechanisms that operate at the packet-level.

142

Runtime in ms

Fig. 1.

o

IS

3

N

o

Mean Decoration and Estimation Runtime
T T

x10°

I Decoration
[__Estimation B

[lm lm IH

Akiyo Coastguard Foreman CBS News

Performance Benchmarks for Decoration and Importance Estimation.

REFERENCES

[1] C.Krasic and J. Walpole, “Quality-adaptive Media Streaming by Priority

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]
[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

Drop,” in Proc. of NOSSDAV 03, 2003.

W. Tu and J. C. E.Steinbach, “Rate-distortion optimized frame dropping
and scheduling for multi-user conversational and streaming video,” J. of
Zhejiang University, vol. 7, no. 5, 2006.

J.-Y. Choi and J. Shin, “A novel content-aware interleaving for wireless
video transmission,” Computer Communications, vol. 29, no. 13-14, pp.
2634-2645, 2006.

J. Kim, R. Mersereau, and Y. Altunbasak, “Distributed video streaming
using multiple description coding and unequal error protection,” [EEE
Trans. on Image Processing, vol. 14, no. 7, 2005.

M. van der Schaar and H. Radha, “Unequal Packet Loss Resilience for
Fine-Granular-Scalability Video,” IEEE Trans. on Multimedia, vol. 3,
no. 4, pp. 381-393, 2001.

H. Cai, B. Zeng, G. Shen, , and S. Li, “Error-Resilient Unequal
Protection of Fine Granularity Scalable Video Bitstreams,” in Proc. of
ICC 2004, June 20-24 2004.

M. G. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ for Layered
Streaming Media,” Journal on VLSI Signal Processing Systems, vol. 27,
no. 1-2, pp. 81-97, 2001.

C.-M. Chen, C.-W. Lin, and Y.-C. Chen, “Packet scheduling for video
streaming over wireless with content-aware packet retry limit,” in
Workshop on Multimedia Signal Processing, 2006.

P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized
media,” IEEE Trans. on Multimedia, vol. 8, no. 2, 2006.

J. Shin, J. Kim, and C.-C. J. Kuo, “Quality of service mapping
mechanism for packet video in differentiated services network,” IEEE
Trans. on Multimedia, vol. 3, no. 2, pp. 219-231, June 2001.

V. Lecuire, F. Lepage, and K. Kammoun, “Enhancing quality of mpeg
video through partially reliable transport service in interactive applica-
tion,” in Proc. of MMNS 01, 2001.

Y. Eisenberg, F. Zhai, T. P. Berry, and A. Katsaggelos, “VAPOR:
Variance-Aware per-pixel Optimal Resource Allocation,” IEEE Trans-
actions on Image Processing, vol. 15, no. 2, pp. 289-299, 2006.

Y. Liang, J. Apostolopoulos, and B. Girod, “Analysis of packet loss
for compressed video: Does burst-length matter,” in Proc. of IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2003.

J. Chakareski, J. Apostolopoulos, S. Wee, W. Tan, and B. Girod, “Rate-
distortion hint tracks for adaptive video streaming,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 15, no. 10, 2005.

A. Eichhorn, “Modelling Dependency in Media Streams,” in Proc. of
ACM Intl. Conf. on Multimedia, 2006, pp. 941 — 950.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” /EEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.
G. Cheung and W.-T. Tan, “Directed Acyclic Graph based Source Mod-
eling for Data Unit Selection of Streaming Media over QoS Networks,”
in Int. Conf. Multimedia & Expo, 2002.

M. Réder, J. Cardinal, and R. Hamzaoui, “Branch and bound algorithms
for rate-distortion optimized media streaming.” [EEE Trans. on Multi-
media, vol. 8, no. 1, pp. 170-178, 2006.

S. Varadarajan, H. Q. Ngo, and J. Srivastava, “Error Spreading: A
Perception-Driven Approach to Handling Error in Continuous Media
Streaming,” IEEE/ACM Trans. on Networking, vol. 10, no. 1, 2002.

U. Choudhry and J. Kim, “Performance evaluation of h.264 mapping
strategies over ieee 802.11e wlan for robust video streaming,” in Pacific-
Rim Conf. on Multimedia, 2005.

G. E. P. Box and D. R. Cox, “An analysis of transformations,” Journal
of the Royal Statistical Society, pp. 211-243, discussion 244-252, May
1964.

