A Component-based Architecture for Streaming
Media

Alexander Eichhorn, Winfried Kiihnhauser
Institute of Practical Informatics and Media Informatics
Technical University of Ilmenau
{alexander.eichhorn@rz, winfried. kuehnhauser@prakinf}.tu-ilmenau.de

Abstract. This paper describes the design and implementation of a
component based distributed multimedia application that was de-
veloped to investigate a new design principle for resource-efficient
layered system architectures. In order to provide flexible and adapt-
able application scenarios, different applications are composed from
three basic generic component types. Combining different compo-
nent types with different types of interaction and locating them on
different nodes of a distributed system then results in large dis-
tributed multimedia applications where each application has differ-
ent types of sophisticated resource requirements.

Beyond the scope of our test-bed we believe that this component-
based architecture is well suited for general large scale streaming
media applications such as video-conferencing and video on demand
services.

1 Introduction

Distributed multimedia applications dealing with continuous real-time streaming
media within networks of computer systems generally require a large amount of
different types of computing resources. Video streaming media generally require
a high network bandwidth. Unreliable networks and varying network loads re-
quire physical memory for buffering stream data. Copying between application
and I/0O buffers, compression algorithms and stream format conversion require
large amounts of CPU cycles. Additionally, many distributed multimedia appli-
cations have quality of service requirements such as timeliness, confidentiality,
or robustness with respect to transient communication failures. All these prop-
erties require additional CPU cycles or bandwidth for reserving resources or
encrypting data streams.

It is a well known fact today that general purpose operating systems as well
as general purpose communication paradigms for distributed systems do not
cope very well with such types of applications. A major core of the problem
has been found in the isolation imposed by layered system and protocol archi-

tectures [Ten89, CT90, CWWS92, SS93, XP99|. Within this context, we are
currently investigating a new concept based on knowledge transfer. Knowledge
transfer overcomes the strict layer separation in traditional layered architectures
by explicitly sharing knowledge like state informations, state changes (events)
and strategies for event handling and resource allocation between applications
and system layers.

Fundamental to the concept of knowledge transfer is the observation that
layered architectures not only enclose algorithms and data structures within the
layers but also hide knowledge that in many cases would be useful on other
levels in order to implement more sophisticated policies. As an example, the
knowledge that a mobile component of a distributed system currently uses a
wireless communication link might trigger a multimedia application to choose
a different stream format that is more robust to partial packet loss. On the
other hand, policies on the lower layers that deal with packet loss are often more
efficient if they know about certain stream properties.

The basic idea of knowledge transfer is that information local to a specific
layer (or, more general, subsystem) that will provide other subsystems with a
more educated decision base is shared among the subsystems in a well-defined
and controlled way. Knowledge itself is represented in a common and uniform
way among all subsystems.

For simulating and measuring the effects of knowledge transfer, we are cur-
rently developing a distributed multimedia platform. In order to be able to
investigate current and future technologies for compression, error control, data
transport, resource management and adaption in the context of continuous me-
dia we designed the basic architecture with scalability and flexibility in mind.
Furthermore the components, interfaces and interactions are general enough to
serve as basic building blocks in various application scenarios, like video confer-
encing, video-on-demand and video control.

Section 2 describes design principles and constraints for satisfying the differ-
ent requirements in quality, reliability, distribution, interaction and dynamics of
all of these application classes. Section 3 is an overview of the general system
architecture, and section 4 outlines the basic design issues for each of the archi-
tecture’s components. Section 5 addresses some lessons learned for distributed
multimedia platform design.

2 Design Principles for Multimedia-Systems

The principles we consider fundamental for building scalable and adaptable dis-
tributed architectures for streaming media are based on the natural constraints
of continuous media and large-scale heterogenous distributed systems. We did
not consider implementation related issues, such as heterogeneity and system
support of actual operating systems and communication protocols. These as-
pects are subject to shorter development cycles and we are looking for more
general concepts, drawing conclusions for future development.

The abstraction of a stream, a continuous flow of periodic data chunks with

an inherent isochronous nature, is well suited for the description of continuous
media. Time affects the validity of data: late delivery is valueless, and early
delivered data is also less valuable because it requires buffer resources in order
to maintain its isochronous nature. Processing, transmission and presentation of
continuous media, such as video and audio, will impose significant demands on
all resources (CPU, memory and communication bandwidth) for the foreseeable
future, because increasing capabilities are instantly consumed by the demands for
higher quality and quantity. Continuous media streams are partially tolerant to
loss of data because of the human perception characteristics. The same reasons
allow the scaling of media content in different dimensions (temporal, spatial,
colour space) without an perceivable decrease in presentation quality. However,
for domains with highest requirements in quality and reliability such as medical
applications or air traffic control, these assumptions do not hold.

In heterogenous distributed systems the performance and characteristics of
the involved hardware and networks may vary in orders of magnitude. One end
of the scale is populated by cutting edge server and desktop systems and reliable
high performance networking technologies with (partial) support for real-time
delivery. On the other end are embedded and mobile devices with very restricted
CPU and memory resources and the generally low bandwidth and high failure
rates of wireless networks. In such scenarios additional types of resources like en-
ergy preservation and presentation capabilities become important. Furthermore
we must also consider features of specialised hardware, embedding complex cod-
ing and encryption algorithms, which is likely to be integrated in future mobile
and stationary equipment.

Conserving resource utilisation: Distributed multimedia applications in
general require many and also many different computing resources for processing,
storing and transmitting media streams. Consequently, many techniques have
been developed that aim at an efficient resource usage. Network bandwidth is
reduced by various classes of coding and decoding algorithms (codecs) [HWA97,
WSLO00] with different impacts on data quality. In order to reduce the amount
of physical memory needed for buffering and the amount of cache and TLB
pollution, thread-based processing models and zero-copy IPC mechanisms are
used.

However, these techniques often come with side effects. Codec algorithms for
example that on the one hand reduce communication bandwidth on the other
hand require additional CPU resources. They also influence the buffer manage-
ment and communication failure strategies, because in several compressed video
stream formats the loss of different stream sections is of different importance.
Consequently, techniques reducing the requirements for one type of resource
might imply that additional resources of different types are needed, resulting in
a global and highly complex optimisation policy.

Guarantee-oriented resource management: In order to achieve timely de-
livery and processing, applications need guarantees that the necessary resources

will be allocated and scheduled at the required times. To accomplish this task, a
reservation based management for all resources is needed. QoS managers must
implement functionality for negotiating contracts about the desired resources
with applications, to perform admission control and scheduling and to notify
applications when guarantees can’t be kept. Applications must also comply to
the contract by not exceeding their share.

Adaption: In situations of failures and especially in error-prone wireless net-
works the concept of reservation is not always successful. Here guarantees must
be backed up by adaption policies to cushion the impacts of unexpected events.

Adaption policies may be part of many different system layers. On the user
interface layer of applications users may wish to balance the resource usage with
other activities in a coarse grained way and on a larger time scale. Applications
which typically know best how to automatically respond by reconfiguring com-
ponents and system services, are able to adapt more quickly and preciously. On
lower system levels adaption can be achieved by exploiting application specific
knowledge within system services, which tends to be the most efficient place for
making decisions.

One way to achieve fine grained resource management and adaption is to
use a staged application design, where stages are concurrent and are linked by
asynchronous event queues [WC01] that avoid synchronisation delays. Resource
shortages can be addressed by a combination of adaption strategies and sophisti-
cated stream format-aware scheduling algorithms which discard data units before
they are processed.

End-to-end view of the system: Optimal decisions for the whole system are
only possible when various aspects from all involved subsystems of a distributed
multimedia system are taken into account. As an example, recent compres-
sion techniques combine data compression at the sender with error concealment
[WSLO00]. As a consequence all local algorithms for resource management, adap-
tion, error and flow-control and compression have to cooperate by exchanging
information, events and feedback.

Separating the handling of media and control The fundamental differ-
ences between communication model and resource requirements of media streams
on the one hand and control flows on the other imply to separate both. The han-
dling of streaming media requires active processing while control mechanisms are
structured according to the more passive client/server paradigm. The blocking
of clients and servers as well as the request/reply pattern is inappropriate for
media handling, which must keep the strict timing constraints. The separation
also allows direct streaming of data between specialised processors (DSP’s for
coding or encryption) or kernel subsystems without passing user processes. This
in turn meets the first principle of conserving resource utilisation by avoiding
context switches and utilising hardware capabilities.

Components Class Hierarchy Streaming Media Components Composition

" " Med
Media Source Media Filter ereealsn Media Filter Media Sink
= o R L : —]

Media_Object

Stream_Producer Stream_Consumer
v v RN

Media_Source Media_Filter Media_Sink

i CORBA
File_Source DV2MPEG_Filter File_Sink ‘
DV_Camera_Source MPEG2YUV_Filter XVideo_Sink Control, Feedback and Monitoring Data
<— inherits
<-- is a (uses the functionality) Multimedia Application

Fig 1. Streaming-Media Components: Class Hierarchy and simple Application Sce-
nario

3 Overall System Architecture

Apart from the design principles outlined in section 2 our architecture is based
on the concepts of object orientation. The basic classes are typical elements
of a streaming-media architecture: sources, filters and sinks (figure 1). Me-
dia streams always flow from sources to sinks. Typical media sources (stream
producers) are files, multimedia databases, video cameras, video grabber and
tv-tuner cards. Media sinks (stream consumers) are also files and multimedia
databases, but in addition, display windows (XVideo), decoder cards or video-
cut cards. Filters, which are consumers and producers at the same time, change
contents and characteristics of the incoming media streams and produce out-
going media streams of different types. We can divide filters into three sub-
classes. Format converters (media codecs) modify the data format of a stream.
Time converters (synchroniser, smoothing filters for jitter reduction and caches)
change the temporal behaviour of media streams by delaying data in a controlled
fashion. Scaling converters are directly modifying the contents of a stream by
dropping parts of the information. Scaling can take place in different dimensions
(temporal, spatial, colour space, frequency or amplitude scaling). Some scaling
methods are codec dependent, others are codec independent. Meaningful scal-
ing requires knowledge about structure and contents of a media stream and has
to take the behaviour of media decoders into account. In order to compose
more complex application scenarios (multicast streaming, fault tolerant commu-
nication, load balancing), the components additionally contain mechanisms for
forking and joining media streams.

Besides the pure media-specific components there are components and classes
that allow for a reproduceable simulation of environments and the investigation
of individual system components and algorithms. Useful simulation tools are
load-generators for stress testing basic system resources (CPU, memory, bus
bandwidth), operating system services (IPC, resources schedulers, network ser-
vices) and network resources (link bandwidth, router queues). Other components
for testing the robustness of codecs as well as the fault-tolerance of communi-

cation architectures are jamming filters and noise generators. These allow a re-
produceable simulation of network characteristics like variations in bandwidth,
delay, jitter, loss, bit error rate, burst errors, short-term disconnections and link
failures. So we are able to investigate the behaviour of our components as well
as system services and future networking technologies (W-LAN, GSM, UMTS,
Satellite networks), even if they are not yet physically available.

The uniform structure of the control interfaces and in particular the general
and open definition of the data interface, which is capable of attaching different
communication modules, allows arbitrarily complex compositions of our compo-
nents (figure 1). Protocols and IPC mechanisms for communicating the media
streams are exchangeable. The basic functionality of each component, inher-
ited from the class Media_ Object, contains flexible modules and interfaces for
configuration, adaptation, feedback, monitoring and an envelope for the core
processing algorithms, like media codecs, file and database handling and camera
control. The ability to communicate media streams between components stems
from the classes Stream_ Producer and Stream_ Consumer. These allow the flex-
ible binding of streaming-capable communication modules as input resp. output
for components. Communication modules always exist as pairs of senders and
receivers, which use IPC mechanisms and network protocols provided by the un-
derlying system. An uniform buffer management between all local components
avoids expensive copy operations where possible.

The interface of each component has four logical interface types for con-
figuration, feedback, monitoring and streaming data. The configuration inter-
face is responsible for controlling the basic architecture (classes Media_ Object,
Stream_ Producer and Stream_ Consumer) and the special functionality of sources,
filters and sinks. Interactions involve connection management (create, destroy,
connect, disconnect), internal configuration (setting special parameters) and
stream handling (play, pause, stop, fast forward, rewind). The feedback in-
terface forwards all not internally treatable events to other components or to
the application. The monitoring interface provides access to raw or statistically
processed monitoring informations and test outputs. Components can be con-
figured to continuously push monitoring data outwards or to provide collected
informations on request. In order to make test scenarios centrally controllable
and configurable, we use CORBA as middleware technology. This allows free-
dom with the selection of the concurrency model (process- or thread-based) and
provides us with the advantages of distribution transparency. It is well known
that the RPC mechanisms of CORBA are ill-suited for the transfer of continu-
ous media streams [MSS99]. To overcome these drawbacks, our data interface
is implemented by communication modules, which support continuous media
streaming.

Implementing additional components is very easy: The basic functionality
and thus all advantages of the architecture, like simple composition, adaptabil-
ity, monitoring mechanisms, communication modules etc., are inherited from the
base class Media_ Object. Only the specific algorithms must be integrated into
the core of the component. For a new type of filter only the integration of the

concrete codec algorithms into the general filter class is required. In addition it
is possible to integrate specialised algorithms and data structures for monitor-
ing, resources management and adaptation. Since communication mechanisms
and system support are transparent to the internal architecture, all existing
components will profit from improvements without modifications. The great
importance we attached to clear and general interfaces pays off in the reuseabil-
ity of all components in different application scenarios, like video conferences,
video-on-demand, distance learning and video control.

4 Basic Design Issues for System Components

The internal architecture of the components (class Media_ Object) is governed by
a clear separation of time-critical media stream handling and internship control.
From an abstract point of view each component consists of a control instance, the
Watcher, a concurrent and always active stream handling instance, the Worker,
and an input queue containing sections of an incoming medium stream. Workers
produce, process and consume media streams and transfer them to the input
queues of other application components using streaming-oriented communication
modules (see figure 2).

Stream data arriving asynchronously at the data interface are buffered in the
input queues. They are processed whenever appropriate resources are available
and then sent synchronously to the next application component. Concatenating
application components thus results in a staged processing chain. Whenever the
input queue of a component becomes empty, the corresponding worker blocks,
releasing CPU resources for components with higher loads.

In situations with scarce resources, stream data will accumulate within the
stream buffers, and strategies for dropping buffer contents will be needed. As the
importance of buffer contents depend both on time as well as on content (e.g.
frame types), simple drop-tail FIFO ordering strategies are replaced by time-
aware and content-aware algorithms that depend on a specific stream format.
These algorithms are activated by events such as high-water marks in buffers or
the exceeding of buffer processing deadlines. The staged design allows for a fine-
grained reaction to situations with low resources both within each component
as well as it allows to respect the importance of different stages within the
processing chain.

In order to avoid physical copies at the data interfaces, a single unified
stream buffer management is used for all application components. Buffers are
passed by reference, and reference counters allow for the sharing of read-only
buffers. Explicit synchronisation is not required, because only producers request
writable buffers and only consumers read and release buffers. Other important
properties of the buffer management are scatter/gather operations for collect-
ing several buffers and buffer metadata that provide application-specific infor-
mation about buffer contents and are used to implement time-tracks, content-
dependent scheduling and caching algorithms. In connection with real time pro-
tocols (RTP), which already use headers for time information, we thus achieve

Communication Modules

(Receiver Snap-In’s)

Control Interface

[1

Feedback Interface

[1

Monitoring Interface

[1

Control_Watcher

am ()

Feedback_Watcher

am ()

Monitor_Watcher

Communication Modules
(Sender Snap-In’s)

Output

Snap-In ﬁ §
Manager | L=

@,

Worker

M Input
o g § Snap-In
=1 4 Manager

1

Incoming =

Media Streams "A g § W% W% ﬁ S ‘

Communication Module - Control Interface

>

Outgoing
Media Streams

[Z] communication Module - Data Interface

Buffer Management (subject to be integrated into future Streaming-IPC mechanism)

Fig 2. Internal Structure of Components

a contiguous time-track from the stream source to the sink.

In order to hide details of buffer and queue administration, scheduling, ad-
dress space boundaries and communication mechanisms from the Workers, streaming-
capable communication modules (senders and receivers) exist, which serve in-
puts and outputs of the data interface. Current modules implement local IPC
mechanisms (such as Unix pipes, shared memory and thread communication) as
well as tying up to network protocols such as UDP and RTP. In order to closer
investigate new transport mechanisms and architectures for IPC and protocol
processing, communication modules can also be implemented as separate compo-
nents. An additional administrative instance, the snap-in manager, contributes
here substantially to the flexibility and expandability of the overall architec-
ture. Snap-in managers control several different sender and receiver modules.
The two basic types, input snap-in managers and output snap-in managers are
implemented by the classes Stream_ Producer (manager for transmission mod-
ules) and Stream_ Consumer (manager for receipt modules). Producers basically
duplicate data streams by means of several sender modules, while consumers col-
lect several incoming data streams into a single one. Snap-in managers simplify
several otherwise complex scenarios such as efficiently supporting heterogenous
senders and receivers or local duplication of streams. e.g. for archiving or
multiplexing to receivers via networks of different physical properties. Parallel
receivers allow for dynamic load balancing as well as for fault tolerance strate-
gies without reconfiguring the overall application architecture. Especially, in
systems with mobile components, roaming between different physical networks
can be achieved without any interruption of the stream flow.

The overall architecture is controlled and monitored by different types of
watchers that are part of each application component and execute concurrently.

A configuration watcher controls the worker, the communication end points,
the feedback watcher and watcher of the sensoric system. While the configu-
ration watcher is activated by calls to the RPC-interface of a component, all
other watcher types listen to events delivered by an event notification system.
The feedback watcher responds to asynchronous events by either enforcing a
local application-specific adaption policy or forwarding the events to outside re-
ceivers. The watcher of the sensoric system collects data from sensors within
an application component (such as buffer resource utilisation, work loads, fault
rates) and responds to corresponding queries.

Since the Unix API lacks a general event notification scheme, additional
threads wait for events from independent sources (e.g. select() for RSVP ac-
knowledgements and the receive paths of receiver snap-in’s), which currently
requires additional watcher resp. receiver threads to mediate events.

Some aspects of the architecture have not yet been discussed. Among them is
a stream-oriented kernel-based IPC mechanism, which combines a global, zero-
copy buffering mechanism for streams with an efficient mechanism for control
flows. A second aspect is the sensoric system that provides insight into the modus
operandi of our multimedia architecture which, as mentioned in the introduction,
is the major driving force behind this work. Last but not least, the interfaces for
resource reservation mechanisms and for QoS-oriented resource managers of the
underlying system platform (CPU, I/O-Buffers, network bandwidth) are subject
to future work.

5 Lessons Learned for Distributed Multimedia Platform
Design

While the major focus of this paper is the design and implementation of a
component-based distributed multimedia application, the driving force behind
this work is the need for a flexible and adaptable application scenario for research
on resource efficient layered distributed systems architectures. Consequently,
while building this application scenario we kept a strong lookout for major ar-
eas where the architectural design as well as the performance of the underlying
distributed system platform services has a major impact on the application’s
resource requirements, QoS guarantees, and overall performance. This section
summarises five of the most important areas that have been identified.

IPC for streaming media. The common RPC or RMI services provided
by operating systems or distributed middleware systems are badly suited for
stream like communication paradigms. First, RPC/RMI communication follows
an interactive request/reply communication pattern that does not harmonise
with data streams. Second, the implementation of distribution-transparent RPC
mechanisms require the marshalling of parameters that usually involves copy
operations.

Considering the amount of data involved, avoiding copy operations is ex-
tremely important. Copy operations on stream buffers require physical memory

resources that reduce the amount of resources available for use by the rest of the
system, thus causing higher virtual memory pages misses, increasing disk and
bus traffic and polluting the memory cache, effects well known as a source for
major performance degradations.

Consequently, distributed multimedia applications require a highly specialised,
minimum copy communication paradigm capable of communicating high data
volumes in a single direction. On the one hand, in order to minimise copy
operations, approaches integrating IO buffer management at data sources and
sinks (network, camera and display controllers), communication system buffer
management, and application level buffer management have been developed re-
cently [PAM94, BS96, PDZ00]. On the other hand, applications must be able
to tailor the buffer management to application-specific needs, e.g. by pushing
individual allocation, deallocation or garbage collection strategies into the buffer
management subsystem. As an example, when memory resources for buffering an
incoming data stream are desperately low, application-specific buffer attributes
that characterise the importance of current buffer contents will help to make
the right decision which buffers might be thrown away. Buffering systems using
attributed buffer contents are yet subject to ongoing research.

Concurrency. Within any multimedia application component there are sev-
eral independent activities such as stream data processing, handling of CORBA
RPCs, or the response to asynchronous events. Many of these activities are
causally independent and may run concurrently. As all activities within an
application component share the same address space, parallel activities are im-
plemented by threads instead of regular user processes, thus avoiding TLB and
memory cache invalidations caused by regular process switches. However, be-
cause threads may wait for independent events, real kernel-supported threads
are required. Because these events are asynchronous, independent and may also
be time critical, fast event notification services are needed.

Event Notification Services. Within any component of our multimedia
application different types of mutually asynchronous events must be handled.
Buffer managers report changes of stream buffer states and critical high-water
situations, configuration managers report the advent or passing of multiplexing
components, and feedback from other application components arrives via the
CORBA RPC interface and is signalled to the stream processing threads.
Events thus have different sources, are of different types, and may or may not
be time-critical. Event notification services such as the BSD select system call
do not cope very well with these requirements. On the one hand, the original
BSD implementation does not scale very well with the number of event sources
and is ill-suited for time-critical event delivery [BM98]. A more recent imple-
mentation scales better but still consumes a high amount of CPU time because
of properties inherent to the semantics of select [BMD99]. On the other hand,
while many event types in our multimedia application originate within buffer
and configuration managers, select is defined only for events that are related to

Unix file descriptors.

While scalability and performance of event notification services is currently
addressed in approaches such as mentioned above, these approaches still are
restricted to file descriptor - related events. Multiple source event notification
systems that may handle more general event types and event sources are subject
to ongoing work.

Global Resource Management. In general, three classes of resource re-
quirements are characteristic for multimedia streaming applications. Firstly, in
order to cope with stream types such as MPEG (approx. 1Mbit/s), DV input
via Firewire (30Mbit/s) or HDTV (1Gbit/s) a high data transfer bandwidth is
required, both from the network and from the file system. Secondly, interactive,
robust and high-quality audio/video applications require low latency and high
responsiveness to asynchronous events. Thirdly, QoS parameters such as frame
rate, maximum delay and maximum jitter of video streams must be guaranteed
in order to met general quality requirements.

The major bottlenecks that determine throughput, latency, responsiveness
and QoS properties have been identified to be the amount of data copied in
physical main memory (polluting the memory cache), the amount of context
switching (invalidating TLB and memory caches), and the latency of the inter-
rupt system [NS95, Sch96, ABD*98]. Considering these bottlenecks, the above
mentioned requirements of multimedia streaming applications are strongly re-
lated. As an example, a coding algorithm that reduces the amount of data of
a stream and thus reduces the need for network bandwidth on the other hand
requires additional CPU time and may also — because the coded stream may
be less robust with respect to packet losses — require a higher responsiveness to
failure conditions.

As a consequence, traditional resource allocation strategies that focus on one
type of resource (CPU schedulers, I/O buffer managers) do not perform very
well for multimedia streaming applications. In order to cope with groups of
resources that must be allocated in a global and interrelationship-aware way,
several research activities currently focus on global resource allocation schemes
and exploit new abstractions for resource principals such as process groups
[LMB*96, BGzS98, VGRI8] or resource containers [BMD99].

Knowledge Sharing The actual resource requirements of multimedia appli-
cations are hard to predict. The most important factor of influence is the bitrate
produced by codecs, which, using variable-bitrate video codecs rises dramatically
when scenes change or have rapidly moving objects. Additionally, failure of the
transmission media and the resulting costs for adaption are just as hard to es-
timate as user interactions in highly interactive applications like teleteaching.
As the availability of communication resources in wireless networks cannot be
guaranteed, dynamic adaptation strategies are gaining importance.
Considering media streaming a closed-loop control system, affected by system
performance and variations in bandwidth, delay, loss and reliability of commu-

nication links we need feedback mechanisms to be able to adapt. Feedback
messages are also affected by communication delays and loss rates of the same
transmission path or others (satellite networks), making the control system slug-
gish. Especially for interactive applications and applications with large band-
width/delay products, where much data is on the fly, it is impossible for media
sources to react to distant problems in time. Multicast scenarios, where only
some receivers are affected by bandwidth degradation or higher loss rates, can’t
use adaption at media sources at all, because unaffected receivers will suffer
from the adaption effects too [BT98]. One solution is to preventively use error
resilient compression techniques like forward error correction and layered video
coding [RhD99, WSLO00]. Such approaches use a fixed adaption strategy and
leave the decisions about how and when to adapt to the format-unaware system
layer. Problems arise when changing the media codec or some basic settings in
response to variations in the environment, which would require to update all
adaption strategies along the communication path too. A better way is to place
parts of the adaption strategies directly at locations close to the source of the
potential problem. This allows faster and more specific responses. Thus intelli-
gent adaption can only be achieved by communicating knowledge about events,
states of subsystems and adaption strategies. The many unsolved problems in
this field have made the definition and exploitation of a general knowledge shar-
ing paradigm an active research area.

References

[ABD*98] S. Araki, A. Bilas, C Dubnicki, J. Edler, K. Konishi, and J. Philbin.
User-Space Communication: A Quantitative Study. In Proceedings
of the 10th International Conference on High Performance Comput-
ing and Communications, November 1998.

[BGzS98] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The Eclips
Operating System: Providing Quality of Service via Reservation
Domains. In Proceedings of the 1998 USENIX Annual Technical
Conference, June 1998.

[BM9S] Gaurav Banga and Jeffrey C. Mogul. Scalable Kernel Performance
for Internet Servers Under realistic Loads. In Proceedings of the 1998
USENIX Annual Technical Conference, pages 1-12, June 1998.

[BMD99] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A Scalable
and Explicit Event Delivery Mechanism for Unix. In Proceedings of
the 1999 USENIX Annual Technical Conference, 1999.

[BS96] J. C. Brustoloni and P. Steenkiste. Effects of Buffering Semantics
on I/0 Performance. In Proceedings of the 2nd USENIX Symposium
on Operating System Design and Implementation, October 1996.

[BT98]

[CT90]

[CWWS92]

[HWA97]

[LMB+96]

[MSS99)

[NS95]

[PAMO4]

[PDZ00]

[RhD99]

[Sch96]

[SS93]

J-C. Bolot and T. Turletti. Experience with control mechanisms
for packet video in the internet. Computer Communication Review,
1998.

David D. Clark and David L. Tennenhouse. Architectural Consider-
ation for a New Generation of Protocols. In Proceedings of the 1990
Symposium on Communication Architectures and Protocols, pages
200—208, Philadelphia, September 1990.

Jon Crowcroft, Ian Wakeman, Zheng Wang, and Dejan Sirovica. Is
Layering Harmful ? IEEE Network, 6(1):20-24, January 1992.

Jane Hunter, Varuni Witana, and Mark Antoniades. A review
of video streaming over the internet. Technical Report TR97-10,
Distributed Systems Technology Centre, University of Queensland,
Australia, 1997.

I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbanks, and E. Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia Applications.
IEEFE Journal on Selected Areas in Communication, 14(7):1280-
1297, September 1996.

S. Mungee, N. Surendran, and D. Schmidt. The design and perfor-
mance of a corba audio/video streaming service. In Thirty-second
Annual Hawaii International Conference on System Sciences, 1999.

K. Nahrstedt and R. Steinmetz. Resource Management in Net-
worked Multimedia Systems. Computer, 28(5):52-63, May 1995.

J. Pasquale, E. Anderson, and P. K. Muller. Container Shipping;:
Operating System Support for I/O-Intensive Applications. Com-
puter, 27(3):84-93, 1994.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. I0-Lite: A
Unified I/O Buffering and Caching System. ACM Transactions on
Computer Systems, 18(1):37-66, 2000.

R. Rejaie, M. handley, and D.estrin. RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet.
IEEE Infocom’99, 1999.

H. Schulzrinne. Operating System Issues for Continuous Media.
Multimedia Systems, 4(5):269-280, October 1996.

D. Schmidt and T. Suda. Transport system architectures for high-
performance communications subsystems. IEEE Journal on Selected
Areas in Communication, 11(4), May 1993.

[Ten89)

[VGRIS]

[WCo1]

[WSLOO|

[XP99]

David L. Tennenhouse. Layered Multiplexing Considered Harm-
ful. In Proceedings of the 1st International Workshop on High-Speed
Networks, Zurich, Switzerland, 1989.

B. Vergehese, A. Gupta, and M. Rosenblum. Performance Isolation:
Sharing and Isolation in Shared Memory Multiprocessors. In Pro-
ceedings of the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, October
1998.

Matt Welsh and David Culler. Virtualization considered harmful:
Os design directions for well-conditioned services. In 8th Workshop
on Hot Topics in Operating Systems, pages 122-127, 2001.

Benjamin W. Wah, Xiao Su, and Dong Lin. A survey of error-
concealment schemes for real-time audio and video transmissions
over the internet. In IEEE International Symposium on Multimedia
Software Engineering, Dec 2000.

George Xylomenos and George C. Polyzos. Internet Protocol Per-
formance over Networks with Wireless Links. IEEE Network, 13(4),
July 1999.

