
IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 4, APRIL 2008 1

Redundant Bundling in TCP to Reduce Perceived Latency for
Time-Dependent Thin Streams

Kristian Evensen, Andreas Petlund, Carsten Griwodz, and Pål Halvorsen

Abstract— TCP and UDP are the dominant transport proto-
cols today, with TCP being preferred because of the lack of
fairness mechanisms in UDP. Some time-dependent applications
with small bandwidth requirements, however, occationally suffer
from unnecessarily high latency due to TCP retransmission
mechanisms that are optimized for high-throughput streams.
Examples of such thin-stream applications are Internet telephony
and multiplayer games. For such interactive applications, the
high delays can be devastating to the experience of the service. To
address the latency issues, we explored application-transparent,
sender-side modifications. We investigated whether it is possible
to bundle unacknowledged data to preempt the experience of
packet loss and improve the perceived latency in time-dependent
systems. We implemented and tested this idea in Linux. Our
results show that we can reduce the application latency by trading
it against bandwidth.

Index Terms— Retransmission latency, thin streams.

I. INTRODUCTION

TCP is designed to carry variable traffic from sources
that demand a lot of bandwidth (greedy sources), and

a lot of work has been done to increase throughput without
losing control of congestion. It is assumed that a sender will
always try to send data as quickly as the flow- and congestion
control mechanisms permit. A challenge then is to support the
many applications that consume very little bandwidth (thin
data streams). These thin-stream applications may also have
stringent latency requirements. Many time-dependent applica-
tions use TCP, due to the need for reliability and because of
firewall policy issues. Important examples of interactive, thin-
stream applications are multiplayer online games, audio con-
ferences, sensor networks, virtual reality systems, augmented
reality systems and stock exchange systems. As representative
examples that have millions of users world wide, we examine
online games and audio conferencing. In a packet trace from
Funcom’s massively multiplayer online role playing game
(MMORPG) Anarchy Online, the average packet payload size
was 93 bytes and the average interarrival time (IAT) 580 ms.
For the online first-person shooter (FPS) game Counter Strike,
the average payload size was 142 bytes, and the packet IAT
was about 50 ms. Standard-compliant voice-over-IP (VoIP)
telephony systems using the G.7xx audio compression formats
have an average payload size of 160 bytes and a packet IAT
of 20 ms [1]. In a sample packet trace of Skype, we found
average payloads of 110 bytes and packet IATs of 24 ms.

These applications are also highly interactive and thus
depend on the timely delivery of data. Different applications
have different latency requirements. For example, the required

Manuscript received November 20, 2007. The associate editor coordinating
the review of this letter and approving it for publication was J. Holliday.

The authors are affiliated with both Simula Research Laboratory, Norway
and the Department of Informatics, University of Oslo, Norway (e-mail:
{kristrev, apetlund, griff, paalh}@ifi.uio.no).

Digital Object Identifier 10.1109/LCOMM.2008.071957.

latency is approximately 100 ms for FPS games, 500 ms
for role playing games (RPGs) and 1000 ms for real-time
strategy (RTS) games [2]. Latency in audio conferences must
stay below 150-200 ms to achieve user satisfaction and below
400 ms to remain usable [3]. TCP variations that assume
greedy sources do not accommodate thin-stream needs. It is
unlikely that a separate transport protocol that addresses these
needs will succeed any time soon, and it is also undesirable
to make this distinction because applications may, at different
times, be both greedy and interactive. It is, therefore, important
to find solutions that react dynamically and use appropriate
mechanisms according to the stream characteristics [4].

To address the low latency requirements of thin streams and
the problems posed by the TCP retransmission mechanisms,
we aim for application-transparent, sender-side modifications
so that neither existing applications nor various multi-platform
(OS) clients will need modifications. In particular, we propose
a dynamically applicable bundling technique that includes
unacknowledged data in the next packet if there is room. It
is similar to several existing mechanisms. For example, TCP
merges small user writes using Nagle’s algorithm [5], and
the stream control transmission protocol (SCTP) [6] has a
multiplexing operation whereby more than one user message
may be carried in the same packet. Thus, the number of sent
packets is reduced.

Sending redundant data has been proposed both for latency
reduction and error control. TCP and SCTP already bundle
unacknowledged packets in some retransmission situations.
For conferencing systems, the real-time transport protocol
(RTP) packets may carry redundant audio data [7]. This allows
a lost packet to be recovered earlier at the receiving side,
because the data is also included in the next. However, to
the best of our knowledge, no system performs such dynamic
bundling for thin streams by packing unacknowledged data
in a fully TCP-compatible manner before a loss is detected.
We implemented a bundling mechanism and tested it in the
Linux 2.6.19 kernel. The test results show that we can reduce
the application latency experienced due to retransmissions by
trading bandwidth for lower latency.

II. REDUNDANT BUNDLING

Supporting time-dependent thin streams over TCP is a chal-
lenge, because current loss recovery and congestion control
mechanisms are aimed at greedy streams that try to utilize the
full bandwidth as efficiently as possible. To achieve this with
TCP’s set of mechanisms, it is appropriate to use buffers that
are as large as possible and to delay packet retransmission for
as long as possible. Large buffers counters the throttling of
throughput by flow control, allowing huge application layer
delays. Delayed transmission strives to avoid retransmissions
of out of order packets, promoting these delays actively as a

1089-7798/08$25.00 c© 2008 IEEE

2 IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 4, APRIL 2008

desired feature. Both methods come with an associated cost
of increased delay, which means that interactive thin-stream
applications experience greater delays in the application.

In our redundant data bundling (RDB) technique for TCP,
we trade off space in a packet for reduced latency by reducing
the number of required retransmissions. For important proto-
cols such as gigabit Ethernet, this may be performed without
exceeding the minimum slot size in our target scenarios,
which means that RDB does not waste link bandwidth. It is
implemented as a sender-side modification that copies (bun-
dles) data from the previous unacknowledged packets in the
send/retransmission-queue into the next packet. For example,
assume that two packets of 100 bytes each should be sent.
The first is sent using TCP sequence number X and a payload
length of 100. Then, when the second packet is processed and
the first is not yet acknowledged, the two packets are bundled,
which results in a packet that has the same sequence number X
but a payload length of 200. This scheme creates packets that
could also appear with multiple lost acknowledgments (ACKs)
and is fully TCP-compatible. An unmodified receiver should
be able to handle streams with redundant data correctly.

The results of our experiments show that by sacrificing
bandwidth (increasing packet size) without increasing the
number of packets, time dependency can be supported better
because a lost packet can be recovered when the next packet
arrives. The approach has no effect at all on greedy sources
that fill packets to their maximum transmission unit (MTU)
size.

III. EXPERIMENTS

To test our bundling scheme, we modified the 2.6.19 (and,
later, 2.6.22) Linux kernel and transmitted thin data streams
over 1) an emulated network, using the netem emulator in
Linux to create loss and delay, and 2) over the Internet from
Oslo to the Universities in Amherst, UMASS, (USA) and
Hong Kong. Each test in the emulated network setting had
a fixed round-trip time (RTT) (between 50 and 250 ms) and
a fixed packet-loss rate (between 0 and 10 %). The packet
size was 120 bytes for all experiments and we used packet
IATs between 25 and 500 ms. These parameters match our
analysis of packet traces from the thin-stream applications that
were described briefly in section I. For the real Internet test
where the RTTs and loss rates varied, we used real game
traffic from World of Warcraft (WoW). For comparison, we
used TCP New Reno with selective acknowledgement (SACK)
because it performed the best out of the existing TCP variants
in the thin-stream scenario [4]. We also turned off Nagle’s
algorithm [5].

Fig. 1 shows the percentage of retransmissions experienced
using the emulator when we vary the packet IAT using an
RTT of 100 ms and a packet loss rate of 1% each way. The
retransmission percentage for traditional TCP adheres to the
packet loss rate and the retransmission scheme. At packet IATs
below the minimum retransmission timeout (minRTO) value,
the number of retransmissions depends on the number of lost
packets. A lost ACK will not trigger a retransmission because
the next one implicitly ACKs the previous packet before the
timeout. However, when the packet IAT increases, packets are
also retransmitted because of lost ACKs. This explains the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

%
 re

tr
an

sm
is

si
on

s

interarrival time (ms)

Redundant data bundling, 1% loss and 100ms RTT

TCP New Reno with RDB
TCP New Reno

Fig. 1. Retransmissions versus packet IAT, loss = 1%, RTT = 100 ms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

%
 re

tr
an

sm
is

si
on

s

RTT (ms)

TCP New Reno with RDB
TCP New Reno

Fig. 2. Retransmissions versus RTT, loss = 1 %, IAT = (150±10) ms

jump from 0.5% to 1% for regular TCP in Fig. 1. On the
other hand, Fig. 1 also shows that our bundling enhancement
requires very few retransmissions, which again reduces the
perceived latency. When there are (relatively) many packets
that can be bundled, i.e., when IATs are low, no packets are
retransmitted because a copy of the data arrives in one of
the subsequent packets. However, the bundling gain lessens as
the IATs increase. The reason for this is the reduced amount
of data sent between the timeouts. Since less than one data
segment is unacknowledged, there is no opportunity to bundle.
Fig. 1 shows that the stream starts to retransmit at an IAT
of roughly 200 ms (which is higher than in most of the
applications we have analyzed). At this point, the performance
of TCP with RDB quickly converges to that of the unmodified
TCP because the minRTO is 200 ms. The results using other
RTTs and loss rates show the same pattern.

Fig. 2 shows the percentage of retransmissions when the
RTT increases. For these tests, we have varied the IAT
randomly between 140 and 160 ms to reflect the traffic that
we want to emulate. We can see that a very small number
of retransmissions occurs, and as the RTT increases towards
500 ms, the tests stabilize at no retransmissions. The change
from occasional retransmissions to none at all may be caused
by changes in the retransmission timeout (RTO). In summary,
the reduction in the number of retransmissions by timeout in
TCP with RDB increases with the number of packets that are
in transit and, thus, the ability to ACK data before a timeout
occurs.

EVENSEN et al.: REDUNDANT BUNDLING IN TCP TO REDUCE PERCEIVED LATENCY FOR TIME-DEPENDENT THIN STREAMS 3

 0.998

 0.9985

 0.999

 0.9995

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n
of

 d
el

iv
er

ed
 b

yt
es

latency (ms)

UiO - UMASS

TCP New Reno with RDB
TCP New Reno

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

UiO - Hong Kong

TCP New Reno with RDB
TCP New Reno

Fig. 3. Application latency differences running WoW 24 hours (19/11-2007).

Of course, the performance gain of the bundling technique
depends on the packet loss rate. This claim is confirmed
in our experiments. The number of timeout retransmissions
in TCP increases as the loss rate increases. In our tested
scenarios, TCP with RDB hardly experiences retransmissions.
However, for (unrealistically) high loss rates (such as 10%),
the number of packets sent using our technique increases
because the packets do not have room for more bundling.
Each retransmission will then be sent by the standard TCP
retransmission scheme as a separate packet. Here, standard
TCP bundles the unacknowledged data in one retransmission
and thereby reduces the number of packets sent. Nevertheless,
in our bundling scheme, the latency is still less than in TCP
New Reno.

Finally, the latency at the application level, which influences
the end-user satisfaction directly, is the most important mea-
sure. Fig. 3 shows the measured application latencies using
real WoW game traffic over the Internet when RDB and New
Reno are used back to back to have equal conditions. In
general, the data recovery latency is reduced when using TCP
with RDB compared to plain New Reno (both to Amherst and
Hong Kong), but we also see some few large latencies for both
mechanisms which are due to larger burst losses. However,
there are vital differences in the latency where we see that
RDB usually delivers lost data much faster, i.e., normally in
the next packet, compared to Reno’s retransmitted data.

Using TCP with RDB, we make a tradeoff between band-
width and latency. In the tests for which the results are
presented in Fig. 1 and 2, we used the maximum bundling
limit, such that we try to bundle as long as there is available
space in a packet (up to 1448 bytes for Ethernet). To determine
whether we could achieve the same gain by reducing the
bandwidth in terms of transmitted bytes, we have also reduced
the bundling limit to approximately half the gigabit Ethernet
slot size (240 bytes bundling maximum one data element).
For a scenario with uncorrelated losses, we did not see any
differences. The bundling limit can in many cases be lowered
while retaining a reduction in the perceived latency compared
to New Reno.

IV. DYNAMIC BEHAVIOR

The experimental results show that we can reduce ap-
plication latency for thin streams by introducing redundant
bundling in TCP. RDB is efficient when packet sizes are small
and IATs are less than the retransmission timeout value. In

these cases, the number of packets remains the same; the
overhead is in the number of transmitted bytes. Two issues
that need to be addressed are when the technique should be
applied and how the bundling limit should be chosen. In the
current prototype, the bundling scheme is dynamically applied
successfully (in terms of the results) when the data stream is
thin, i.e. when the data stream has a low rate, small packets,
and a low number of packets in transit. However, other factors
should also be considered. For example, in a low loss rate
scenario, a single loss can often be corrected by the next
packet (as shown in Fig. 3). As the loss rate increases, the
probability of a burst of losses increases. To compensate for
this, and to increase the probability that the data will arrive
before a retransmission occurs, it may be necessary to increase
the bundling limit.

RDB performs best when it can preempt the retransmission
timer with an ACK from a bundled packet. However, there
is an intermediate stage in which spurious retransmissions
due to timeouts may be experienced, but in which the latency
of the application layer can still be improved. This happens
when the IAT exceeds the minRTO value. When loss occurs,
a timeout will be triggered before the ACK for the bundled
packet is received. When the IAT exceeds minRTO + RTT,
there is no gain, and the mechanism should be turned off
completely. Thus, the RDB mechanism is turned on and off
and the bundling limit should be set dynamically on a per
connection basis according to the packet size, packet IAT,
measured RTT, and estimated loss rate.

V. CONCLUSIONS AND FURTHER WORK

Many current applications are highly interactive and depend
on timely delivery of data. For applications characterized by
thin streams, TCP can not guarantee delivery times, and newer
variations worsen the problem because they rely on a greedy
source. This being so, we implemented a redundant data
bundling scheme to reduce the retransmission latency for such
scenarios. Our experimental results, both in a lab setting and in
real Internet tests, show that we can trade off some bandwidth
to greatly lower the perceived latency at the application level
in these scenarios.

REFERENCES

[1] M. Hassan and D. F. Alekseevich, “Variable packet size of IP packets
for VoIP transmission,” in Proc. IASTED International Conference con-
ference on Internet and Multimedia Systems and Applications (IMSA).
ACTA Press, 2006, pp. 136–141.

[2] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, Nov. 2005.

[3] International Telecommunication Union (ITU-T), “One-way Transmis-
sion Time, ITU-T Recommendation G.114,” 2003.

[4] C. Griwodz and P. Halvorsen, “The fun of using TCP for an MMORPG,”
in Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV).ACM Press, May 2006.

[5] J. Nagle, “Congestion control in IP/TCP internetworks,” RFC 896, Jan.
1984. [Online]. Available: http://www.ietf.org/rfc/rfc896.txt

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson,
“Stream Control Transmission Protocol,” RFC 2960 (Proposed
Standard), Oct. 2000, updated by RFC 3309. [Online]. Available:
http://www.ietf.org/rfc/rfc2960.txt

[7] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. Bolot,
A. Vega-Garcia, and S. Fosse-Parisis, “RTP payload for redundant audio
data,” RFC 2198 (proposed standard), Sept. 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2198.txt

