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Abstract 

 
In this paper we present a method for dynamic fault 

tolerant routing for SCI networks implemented on 
Dolphin Interconnect Solutions hardware. By dynamic 
fault tolerance, we mean that the interconnection 
network reroutes affected packets around a fault, while 
the rest of the network is fully functional.  To the best 
of our knowledge this is the first reported case of 
dynamic fault tolerant routing available on 
commercial off the shelf interconnection network 
technology without duplicating hardware resources. 
The development is focused around a 2-D torus 
topology, and is compatible with the existing 
hardware, and software stack. We look into the 
existing mechanisms for routing in SCI. We describe 
how to make the nodes that detect the faulty component 
do routing decisions, and what changes are needed in 
the existing routing to enable support for local 
rerouting. The new routing algorithm is tested on 
clusters with real hardware. Our tests show that 
distributed databases like MySQL can run 
uninterruptedly while the network reacts to faults. The 
solution is now part of Dolphin Interconnect Solutions 
SCI driver, and hardware development to further 
decrease the reaction time is underway.  
 
 
1. Introduction 
 

Scalable Coherent Interface (SCI) [1] is a mature 
interconnect technology, originally standardized by 
IEEE in 1992 as IEEE Standard 1596. The intention 
with SCI was to design an interconnect technology 
between processors, memory and I/O devices. Today 
SCI is primarily used as an interconnect technology for 
clusters, distributed databases and in embedded 
solutions. In this paper we describe a mechanism that 
adds fault tolerance to SCI interconnects.  

Fault-tolerant routing methods can be divided into 
three groups: Reconfiguration-based, Source-based and 

Switch-based. The reconfiguration-based methods 
include static and dynamic reconfiguration. Static 
reconfiguration involves halting the network and 
reconfiguring the routing-function in order to avoid the 
failed component while the network is down. Dynamic 
reconfiguration means reconfiguring the 
interconnection network while it is up and running. 
Although several methods for dynamic reconfiguration 
have been described in literature, e.g. the Double 
Scheme [2], none of them have yet been implemented 
in a real system. 

 A source-based rerouting approach is based upon 
the principle that the sender detects the problem, and 
resends the packet using another path. In [3] 
intermediate nodes on the path to the destination is 
utilized to adaptively route packets to the destination. 
In switch-based fault tolerance, the source does not 
have to know of the fault in the network, because the 
switches hide the network fault by rerouting messages 
around the faulty components. In [4, 5] virtual 
channels and a number of Up* / Down* graphs is used 
to achieve the redundant properties. Both these 
solutions use Virtual Channels, and neither of them has 
been implemented on real systems.   

 By dynamic fault tolerance we mean the ability of 
the network to handle a fault dynamically, without 
stopping the network operation. Dynamic fault 
tolerance methods include dynamic reconfiguration, 
source-based rerouting methods, and switch based 
rerouting methods.   In this work we describe a 
dynamic method that is partly switch based, and partly 
source based.  The reason for this duality is that the 
SCI topologies studied are direct networks, where the 
nodes act as both sources and switches.   

There exist methods for fault tolerance for existing 
point-to-point technologies, such as Myrinet [6], and 
InfiniBand [7]. However, to the best of our knowledge, 
the existing work has taken a static reconfiguration 
approach, by stopping the network (and the 
applications), reconfiguring, and starting again. The 



traditional approach to dynamic fault tolerance in the 
industry has been to duplicate all interconnect 
resources. This approach is expensive, and the 
resources in the network might not be fully utilized. 
Therefore we want to use the inherent redundant 
resources in a single network to provide fault tolerance.  

SCI is a ring-based technology, and from one point 
of view, the closest approach to ours is found in the 
Element Interconnect Bus (EIB) in the Cell Broadband 
Engine. EIB contains two pairs of counter-rotating 
rings for communication between the PPE (PowerPC 
core), memory controller, I/O controller and the eight 
synergistic processor elements (SPE) [8].  This is 
exploited to give the Cell a degree of fault tolerance. In 
our framework, this would, however, correspond to 
having several redundant interconnection networks, 
thus the method would not be applicable when there is 
a requirement of a single fabric. 

Our effort can be seen as an exercise in providing 
dynamic fault tolerance to an exiting and mature 
technology that has not been designed for such 
advanced features.  This means that some of the 
techniques we use had to be implemented in the 
drivers, rather than in specialized hardware. Still we 
were able to achieve the main objective of the fault 
tolerant routing method developed, namely that the 
local switch based re-routing in the network should 
take less than 1 second. The target value is set to 1 
second because this enable us to support uninterrupted 
operation of distributed database solutions like MySQL 
Cluster [9].  Hardware support for our techniques is 
currently under development, and this will 
substantially reduce the reaction time of the method. 

The paper is structured as follows.  In section 2 we 
give a brief overview of SCI and the technology at 
hand. In section 3 we present the alternative methods 
for fault tolerant routing in SCI, and give a brief 
overview of our approach.  In section 4 we discuss the 
necessary changes to the routing tables and in section 5 
we present the needed changes in the SCI driver. 
Measurement results and performance evaluation is 
given in section 6 before we conclude in section 7.  
 
2. Scalable Coherent Interface 
 

The SCI standard is designed with unidirectional 
point-to-point links, and with a design-goal to 
implement a fully hardware based distributed shared 
memory. The basic topology in the SCI standard is a 
unidirectional ring. A ring topology does, however, 
have limited scalability.  For that reason, there exist 
line cards with more than one SCI interface, allowing a 

node to be part of more than one SCI ring. This feature 
can be used to build more complex ring based 
topologies such as is illustrated in Figure 1.  

 

 
Figure 1. Example of topologies in SCI 

 
The line cards that we have used for this 

development contain two SCI interfaces, and this 
allowed us to build a two dimensional torus. The cards 
contain two Dolphin Interconnect Solutions Link 
Controller 3 (LC3) [10] and a  PCI to SCI Bridge 
(PSB66) [11]. The architecture of the card is illustrated 
in Figure 2. The link controllers and the PSB66 are 
connected with a bus called B-link. The B-link is a 
back-end interface between a PSB and up to eight link 
controllers. The primary topologies used in Dolphin’s 
SCI implementation today are: a single ring, or several 
rings in a 2-D or 3-D torus topology, meaning that 
there are either two or three link controllers on each 
card. In the experiments we report in this paper, we 
have used cards with two LC3 chips, and the system 
was interconnected into a 2D torus (Figure 1). 

 

 
Figure 2. Architecture on Dolphin 2-D SCI 

Card 
 
The current routing algorithm in the 2-D topology is 

based upon dimension-order routing. A packet will be 
sent to the recipient nodes coordinate in one dimension 
before the dimension is changed. To ease the 
explanation, we will throughout the paper assume that 
the horizontal (X-direction) ring is first by default as 
illustrated by the dashed arrow in Figure 4 (the dotted 
arrow in figure 4 will be explained below).  
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The fault-model assumed by our approach is 
inherited from properties of the SCI hardware.  If a link 
in a ring fails, then the entire ring will fail.  The reason 
for this is that the SCI ring protocol consists of packets 
and echoes, and no packet transmission over the link is 
complete until the echo has been received by the 
sender of the packet.  Since the ring is unidirectional, 
all packet transmissions will be affected – either 
directly or indirectly because of broken transmission of 
the echo. If a node dies in a 2-D cluster, both rings 
connected to the node will be broken for the same 
reason. 

 
 As illustrated in Figure 3, a link controller has two 

sets of routing tables: One table is called the Link 
Routing Table. This table decides if a packet should be 
taken off the SCI ring and sent up to the B-link. The 
other table called the B-link Routing Table is used to 
decide which link controller the packet will be sent out 
on. All packets are routed based on the destination 
address.  

 
 

 
Figure 3. Routing-tables in Dolphin Link 

Controller 3 
 

3. Alternatives for fault-tolerant routing in 
SCI 
 

SCI is a mature technology that was specified at a 
time when fault tolerance in the interconnect was not 
considered as important as it is today.  When we set 
out to implement fault tolerant routing on existing SCI 
hardware, the task was therefore to utilize the existing 
features of the components in order to extract the 
fastest possible reaction to faults that these components 
allowed. 

There are three possible approaches to fault tolerant 
routing in an SCI interconnection network. The first is 
to enable fault tolerant routing based upon a static 

reconfiguration of the routing tables. In this solution, 
the routing function is controlled by an application 
running on a centralized front-end node. Through an 
alternative infrastructure, e.g. an Ethernet connecting 
all of the nodes, the cluster nodes report any issues (i.e. 
bad cables) to the front-end. In case a problem is 
reported, all communication in the cluster is halted, 
while the front-end calculates and distributes new 
routing tables to all nodes in the cluster. If the front-
end is unable to reach some nodes, they will be 
considered dead and removed from the routing tables. 
Communication can resume when all nodes accept the 
new routing tables. 

 In this solution, routing tables need to be calculated, 
e.g. using Dijkstra’s shortest-path-first algorithm [12]. 
The drawback for static reconfiguration is a longer 
reconfiguration time. Measurements we have 
conducted have shown that communication downtime 
in a standard 4-node cluster, when an SCI link is 
broken is measured to almost four seconds, thus a 
factor 4 above our threshold. Furthermore, this 
approach will affects all communicating pairs, not only 
those that would communicate through the failed 
component. 

 
Another approach is the use of redundant hardware, 

where two ore more SCI adapters can operate as one 
virtual adapter, thus duplicating the entire interconnect. 
This solution is also available commercially. Its 
drawback is that it will increase the overall cost, 
because of the need for two sets of adapters, and a dual 
fabric. Furthermore, redundant hardware is unable to 
offer any protection in the case of a dead node, as both 
adapters will lose power.  

 
The third approach, which we develop in this paper, 

is to route affected packets around the faulty area 
without halting operation in the rest of the cluster. 
When a node detects a problem with a ring, packets 
bound for the problematic ring will be sent 
downstream, so that it can be routed by the next node, 
and finally be routed to the destination as illustrated by 
the dotted path between node A and C in Figure 4. The 
approach guarantees support for one failure, support 
for two or more faults are not guaranteed. This solution 
is implemented and evaluated in this paper. 

 The implementation consists of two parts. The first 
part consists of the changes done to the routing tables 
to make the SCI-nodes ready to accept packets that are 
on their way around a fault. The second part consists of 
support in Dolphin’s SCI driver for making local 
rerouting decisions in the node that detects the fault.  

   

B-Link Bus Interface 

Recive 
Queue 

 
8 x SCI 
Packets 

Bypass 
FIFO 

Link 
Routing 

Table 

Send 
Queue 

 
8 x SCI 
Packets 

B-link 
Routing 

Table 

MUX 

SCI Link OUT SCI Link IN 

B-Link 



 

 
Figure 4. Routing in a 9-node 2-D SCI topology 
 
4. Changes to the routing algorithm 
 

Several aspects of the routing had to be modified in 
the implementation of our approach. First the Link 
Routing Tables needed to be modified to enable the 
packets to continue on the current dimension if there is 
a problem with the next dimension’s ring. In all 
dynamic fault tolerant routing, this is generally the 
easy part, as this is done in the node that detects the 
fault.  The more complex problem is related to the 
nodes that have no information of the faulty ring.  
When a fault occurs, they need to be able to handle 
packets that they do not see under normal operation, 
and they need to be able to do this without being 
notified of the nature of the fault.    

The main idea of our algorithm is to let a packet 
that is traveling in the X-direction, and that should 
have been forwarded onto a faulty ring in the Y-
direction, simply continue one more step in the X-
direction, as is illustrated in figure 4. The dashed arrow 
from node A to node C represents the normal path 
according to dimension-order routing. If the Y-ring 
(labeled Y-ring 2) fails, node B will detect that its 
vertical ring has stopped working, and will continue 
forwarding the affected packets along the X-dimension 
(the dotted arrow).  The node downstream from B will 
not know of the fault, but by inserting speculative 
routing entries on the downstream node, we are able to 
route the packets towards their destination. 

 
An important part of this algorithm is to set up a 

downstream node to route packets that was supposed to 
do a dimension change on the upstream node.  This 
must, however, be done in such a way that it does not 
interfere with the regular routing in the fault free case.  
The important observation in this case is the following:  
Assume two adjacent nodes A and B on a ring.  
Assume further that A is upstream of B.  Then under 

normal fault free operation, node B will never see any 
packet that is supposed to be taken off the ring by A.  
Furthermore, B is the only node on the ring that can be 
described in this way, as all other nodes on the ring 
will see packets that B send to A.  Therefore, the 
routing entries must be set up in the following way:   

 
• All necessary routing entries for dimension order 

routing with the X-dimension first must be 
present. 

• On rings in the X-dimension, all nodes must have 
additional link routing table entries that pick up 
packets that under normal operation should have 
been picked up by its upstream node. 

• On a ring in the Y-dimension, all nodes must have 
additional link routing tables for packets that 
travel in this Y-dimension ring because faults, but 
that would not be on this ring under normal fault 
free operation. 

 
The only status available to an SCI node is the 

status of its own link controllers. If a problem is 
detected on a ring, the driver will disable the faulty link 
controller. When this is done, the local routing tables 
need to be changed.  How this is done is handled in the 
next section. 
 
SCI fabrics are prone to deadlocks if the routing 
algorithm is not carefully selected.  In the topologies 
that we consider here, dimension order routing is used 
in the fault free case, and it is well known that this 
routing algorithm is deadlock free.  In the presence of 
faulty rings, however, we modify the routing algorithm 
so that it is no longer strictly dimension order.  It can 
be shown that with a faulty ring, the routing algorithm 
remains deadlock free. Space restrictions disallows us 
to repeat the full analysis here, but the methodology is 
based on buffer dependency graphs, and is similar the 
one that is described in [13] 
 
5. Implementation in the driver 
 
In the previous section we described the part of the 
rerouting mechanism that can be set up a priori. There 
are, however, parts of the mechanism that need to be 
handled by the drivers at the time when the fault is 
detected.  The most obvious part is that when a node 
detects that one of its rings is dead, the Link Routing 
Table on the link controller connected to the functional 
ring must be altered.  This is necessary to ensure that 
the node lets packets destined for nodes on the dead 
ring pass on to its downstream node.  This section 
gives an overview of how this is handled, and also 
explains the limitations of the existing hardware with 
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respect to reaction time.  Hardware support for the 
functionality that we describe here is under 
development, and this is expected to give near to 
immediate reaction to faulty rings. 

The error handling in Dolphin Interconnect 
Solutions SCI driver is divided into two sections as 
shown in Figure 5. The first section is called 
CableNotOk and has the responsibility for detecting 
faulty SCI rings on the node that detects the fault. The 
error is detected by checking if certain interrupt bit is 
set. The second section is called ReadyToGo, and has 
the responsibility to calculate new routing-tables, and 
set up the card. 

 

 
Figure 5. Simplified error handling overview in 

Dolphin’s SCI driver 
 
The first section, CableNotOk is called when the 

card receives a CableNotOk interrupt related to the link 
controller. When the driver enters the CableNotOk-
section a timer is initialized. This timer is currently set 
to 50 milliseconds. During this time, the CableNotOk 
handler in the driver will disable all interrupts, while 
all link controllers are checked. If a connectivity 
problem is detected, the affected link controller will be 
disabled, and status stored before continuing with re-
enabling interrupts. If no problems are detected, the 
driver will go directly to enabling interrupts. After the 
previously started timer is finished, the driver will 
check for any remaining errors. If errors are found, a 
new pass through the CableNotOk handler will be 
forced. If no problems are present, the driver will 
continue to the next section. 

 
The next section of the driver is called ReadyToGo, 

and it is responsible for the initialization of the link 
controllers, changing of routing tables in the link 
controllers and checking the connectivity on the SCI 
link. ReadyToGo is also controlled by a timer, 
similarly to the CableNotOk handler. The default value 
to this timer is currently set to 200 milliseconds. The 

first event in ReadyToGo is the initialization of the 
link controllers with basic information like node ID, 
link frequency and the current topology selected. Next 
step is to calculate the routing tables. These 
calculations are based on a normal default routing 
table, and the status stored away in the CableNotOk 
handler. After the routing tables are completed, the link 
controllers are set up, and the process to check the SCI 
link is started. The link controllers will send a probe 
request to itself around the SCI ring. This is done to 
make sure that the ring is initialized and ready.  

A workaround was also needed to handle side-effect 
of our fault-tolerant routing caused by the SCI 
scrubber. The scrubber is a hardware mechanism built 
to protect SCI rings from packets without a valid 
destination. A potential problem occurs when a Y-ring 
is broken, and a node upstream of this broken Y-ring 
sends packets to a node in the broken Y-dimension. In 
this case the upstream node would continue to forward 
the packet on the X-dimension, until the packet has 
traveled around the ring back to the sender, as 
illustrated by the dashed arrow in Figure 6. A packet 
that travels around the entire ring without being taken 
by any node will be removed from the ring by the 
scrubber. The scrubber can not be disabled. This was 
solved by using the low-level probe mechanism in the 
SCI driver to query the upstream nodes Y-ring status. 
In Figure 6, node C would probe node D, and detect 
the broken Y-ring. A local list with broken links will 
then be updated, and another reset of the driver will be 
issued. This is done to incorporate the broken Y-rings 
status into the routing table. If a broken Y-ring is 
detected on the upstream node, all packets for 
destinations on the affected Y-ring will be sent directly 
out on the local Y-ring. 

  
 
 
 
 
 
 
 

 
 

Figure 6. Workaround to support broken Y-
rings 

 
A final feature that was implemented in the driver is 

the ability to re-enable a SCI link when a cable is re-
inserted. When a SCI link is disabled, the link 
controllers bit in the IO interrupt control register is 
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masked, and a watchdog is initialized. This watchdog 
checks the masked register every second to se if there 
is a change in cable status. If a change is detected, the 
driver will initialize a re-routing process.  This feature 
is, however, not the focus of this paper. 
 
6. Performance Evaluation 
 

To evaluate the performance of the fault-tolerant 
routing algorithm, two test clusters are set up as 
illustrated in Figure 7. The first cluster is a 4 node 
cluster, with Intel Xeon 2,8GHz CPUs, 1GB RAM, 
Intel E7520 Lindenhurst chipset, Dolphin Interconnect 
PCI (64-bit) SCI 2D Card (D334), and run the Linux 
2.6.9-42.EL x86_64 kernel.  

The second cluster is a 9-node cluster with AMD 
Athlon 64 X2 4200+ dual-core CPUs, 2GB RAM, 
nVidia nForce 570 SLI chipset, Dolphin Interconnect 
PCI Express SCI 2D Card (D352) and run the Linux 
2.6.9-42.0.3-EL x86_64 kernel. 

 
The driver version is Dolphin DIS 3.1.10. The tests 

are done with two tools: A tool called scibench2 to 
measure bandwidth and one-way latency, and a tool 
called downtime to measure the communication 
downtime while the cluster is doing rerouting. Both 
tools are available as open source in Dolphin’s SCI 
driver. 

 

 
Figure 7. Cluster setup with hostname 

 
The first test is on the 9-node cluster illustrated in 

Figure 7. We have communication from tiger-1 to 
tiger-8, from tiger-3 to tiger-7 and from tiger-1 to tiger-
3. During the test, a cable on the X-ring between tiger-
1, tiger-2, and tiger-3 is removed. 

  

 
Figure 8. 9-nodes – Total bandwidth – Ring 

down 
 

Figure 8 is a plot of total bandwidth in the cluster 
during the test. Before the ring is broken, an even 
amount of bandwidth is available. After the error has 
occurred, a drop from around 620MB/sec to around 
530MB/sec can be observed. This is expected to be due 
to more competing traffic in the fabric, and because we 
are removing 1/6 of the available aggregate bandwidth 
in the cluster. The average communication downtime 
seen in during this test is 401.15 milliseconds, while 
the worst case communication downtime is measured 
to 597.16 milliseconds.  

 
The average latency measured in Figure 9 is 

showing a small increase on about 0.20 microseconds. 
Increase can be explained with the increased amount of 
competing traffic, since a ring is missing, and the fact 
that some of the traffic gets a longer path after the 
reconfiguration. 

 
MySQL Cluster has also been tested with the 9-

nodes and 4-nodes. Cables have been removed, and the 
database has continued to run uninterrupted in all the 
scenarios tested. We have also tested powering down a 
node. This obviously requires MySQL to reconfigure, 
because of the lost node, but the rerouting process was 
finished well before the 1000 millisecond deadline. 
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Figure 9. 9-nodes - Average latency - Ring down 

 
The second test is done on the 4-node cluster. In this 

test we run communication from linden-1 to linden-4. 
In this test, we did a complete power down of the node 
linden-2. This disabled both the X-dimension link from 
linden-1 to linden-2 and the Y-dimension link from 
linden-2 to linden-4. The length of the packets path 
will be the same before and after node linden-2 is 
powered down. 

  

 
Figure 10. 4-nodes – Total bandwidth - Node 

down 
 

 
Figure 11. 4-nodes - Average latency - Node 

down 
 
In Figure 10 and Figure 11 total bandwidth and 

average latency for the second test shows no 

degradation in either bandwidth or latency after the 
power to linden-2 is switched off.  

 
 The average communication downtime in this test is 

770.87 milliseconds. And the worst-case is 805.50 
milliseconds. This is a higher number than the first test, 
and is due to the fact that two of the remaining nodes 
in the cluster have to do a remote probe for Y-ring 
status, and since is has changed, another run through 
the rerouting mechanism must be taken. In order to 
incorporate the remote Y-ring status in the routing 
tables. We have made an analysis on where in the 
reconfiguration process most of the time is used, and 
this is in the CableNotOk timer, currently set to 50 
milliseconds, and in the ReadyToGo timer currently set 
to 200 milliseconds. Both these timers are to make sure 
that all the nodes in the cluster are in a ready before the 
process continues. 

 
Tests show that the extra pass through the rerouting 

algorithm, whenever a Y-ring is broken does increase 
the reconfiguration time. We will now discuss some 
alternative solutions to probing the downstream nodes 
Y-ring status: 

1) Add an extra redundant Y-ring: The first 
alternative is to add an extra Y-ring in the cluster. On a 
3x3 cluster this would require three extra nodes with 
extra hardware and cables. These nodes would also 
only be available for forwarding packets. It would have 
been impossible with existing hardware to filter out 
only the traffic affected by the broken Y-ring. This 
could have resulted in this ring quickly becoming a 
hotspot.  

2) Use 3D cards and utilize the Z-ring as a 
redundant Y-ring: This alternative suggests using SCI-
cards with three link controllers, and use the third 
controller (Z-dimension) as a redundant Y-ring. This is 
easy to implement from a technical standpoint. The 
negative with is that it would increase the cost, since it 
requires more expensive hardware. 

3) Make hardware changes for fault tolerant 
routing: This could easily be solved if the existing SCI 
hardware had the ability to support two addresses per 
node, and utilize one address to route X-dimension 
first, and one address to route Y-dimension first. When 
an error is detected, the destination address on the 
packets could have been changed, and the packet 
handled differently. This option has already been 
implemented. A revised version of Dolphin 
Interconnect Solutions LC3, called P2S is currently 
being tested. This new revision increases the routing 
tables (Routing RAM) from 256 entries to 8192 
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entries, and enables a node the have two addresses. The 
14th bit in the Routing RAM is reserved to indicate 
which of the nodes two addresses to use. If bit 14 is set 
to 0, then X-dimension is routed first, and if it is set to 
1, Y-dimension is routed first. 
 
7. Conclusion and further work 
 

In this paper we have developed a dynamically fault-
tolerant routing method for SCI networks. This method 
has been implemented on existing hardware from 
Dolphin Interconnect Solutions, and is now a part of 
the official Dolphin SCI driver. Performance tests 
show very little degradation in performance before and 
after a fault occurs. Tests have also shown that we are 
able to support rerouting faster than the 1 second goal 
that was set to support the distributed MySQL database 
server.  

Samples of the next revision SCI hardware are up 
and running in the lab at Dolphin, and it is expected to 
be available to the market shortly. This new hardware 
has hardware support for dynamic fault-tolerant 
routing, by implementing the ability to use two 
addresses per node, and the ability to use independent 
routing tables for both addresses. The limitation of the 
current generation of SCI hardware is the need to probe 
the downstream node on the X-dimension link, and ask 
for cable status on the Y-ring. This step is the most 
time-consuming step in the process.  In the new SCI 
revision, P2S does not require this step, because the 
hardware will automatically change and route Y-
dimension first if an error occurs. With the probe for 
remote Y-ring status step removed, fast re-routing 
times as low as 100 milliseconds is expected. 
 
8. References 
 
[1] IEEE, Std. 1596 "Scalable Coherent Interface (SCI)". 
IEEE, 1992. 
 
[2] T. M. Pinkston, R. Pang, and J. Duato. "The Double 
Scheme: Deadlock-free Dynamic Reconfiguration of Cut-

Through Networks". in International Conference on Parallel 
Processing. 2000. 
 
[3] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. 
Robles, J. Duato, T. Skeie, and O. Lysne, "A Routing 
Methodology for Achieving Fault Tolerance in Direct 
Networks". IEEE Transactions on Computers, 2006. vol. 55, 
no. 4: pp. 400-415. 
 
[4] O. Lysne and T. Skeie, "Load Balancing of Irregular 
System Area Network through Multiple Roots". International 
Conference on Communication in Computing, 2001. 
 
[5] I. Theiss and O. Lysne, "FRoots, a Fault Tolerant and 
Topology-Flexible Routing Technique". 2005. 
 
[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, 
C. L. Seitz, J. N. Seizovic, and W. Su, "Myrinet: A Gigabit-
per-Second Local Area Network. IEEE MICRO, 1995. 
 
[7] InfiniBand Trade Association, "InfiniBand Architecture 
Specification". 
 
[8] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bollinger, 
R. Chaudhry, D. Cox, and P. Harvey, "Overview of the 
Architecture, Circuit Design, and Physical Implementation of 
a First-Generation Cell Processor". IEEE Journal of Solid-
State Circuits, 2006. vol. 41, no. 1: pp. 179-196. 
 
[9] MySQL AB, "MySQL Cluster Architecture Overview". 
2004.  
 
[10] Dolphin Interconnect Solutions, "Link Controller 3 
Specification D666 - LC3". 2002. 
 
[11] Dolphin Interconnect Solutions, "PSB66 Specification 
D667". 2001. 
 
[12] E. W. Dijkstra, "A note on two problems in connexion 
with graphs", in "Numerische Mathematik 1". 1959. pp. 269-
271. 
 
[13] O. Lysne and S. Gjessing, ”Constructing SCI-
Configurations that are free from Deadlocks”. In 
International Workshop on SCI-based High-performance 
Low-Cost Computing. 1996 
 

 


