

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Making an SCI Fabric Dynamically Fault Tolerant

Håkon Kvale Stensland1,2, Olav Lysne1,2, Roy Nordstrøm3, and Hugo Kohmann3

1 Simula Research Laboratory, Lysaker, Norway
2 University of Oslo, Department of Informatics, Oslo, Norway

3Dolphin Interconnect Solutions, Oslo, Norway

Abstract

In this paper we present a method for dynamic fault

tolerant routing for SCI networks implemented on
Dolphin Interconnect Solutions hardware. By dynamic
fault tolerance, we mean that the interconnection
network reroutes affected packets around a fault, while
the rest of the network is fully functional. To the best
of our knowledge this is the first reported case of
dynamic fault tolerant routing available on
commercial off the shelf interconnection network
technology without duplicating hardware resources.
The development is focused around a 2-D torus
topology, and is compatible with the existing
hardware, and software stack. We look into the
existing mechanisms for routing in SCI. We describe
how to make the nodes that detect the faulty component
do routing decisions, and what changes are needed in
the existing routing to enable support for local
rerouting. The new routing algorithm is tested on
clusters with real hardware. Our tests show that
distributed databases like MySQL can run
uninterruptedly while the network reacts to faults. The
solution is now part of Dolphin Interconnect Solutions
SCI driver, and hardware development to further
decrease the reaction time is underway.

1. Introduction

Scalable Coherent Interface (SCI) [1] is a mature
interconnect technology, originally standardized by
IEEE in 1992 as IEEE Standard 1596. The intention
with SCI was to design an interconnect technology
between processors, memory and I/O devices. Today
SCI is primarily used as an interconnect technology for
clusters, distributed databases and in embedded
solutions. In this paper we describe a mechanism that
adds fault tolerance to SCI interconnects.

Fault-tolerant routing methods can be divided into
three groups: Reconfiguration-based, Source-based and

Switch-based. The reconfiguration-based methods
include static and dynamic reconfiguration. Static
reconfiguration involves halting the network and
reconfiguring the routing-function in order to avoid the
failed component while the network is down. Dynamic
reconfiguration means reconfiguring the
interconnection network while it is up and running.
Although several methods for dynamic reconfiguration
have been described in literature, e.g. the Double
Scheme [2], none of them have yet been implemented
in a real system.

 A source-based rerouting approach is based upon
the principle that the sender detects the problem, and
resends the packet using another path. In [3]
intermediate nodes on the path to the destination is
utilized to adaptively route packets to the destination.
In switch-based fault tolerance, the source does not
have to know of the fault in the network, because the
switches hide the network fault by rerouting messages
around the faulty components. In [4, 5] virtual
channels and a number of Up* / Down* graphs is used
to achieve the redundant properties. Both these
solutions use Virtual Channels, and neither of them has
been implemented on real systems.

 By dynamic fault tolerance we mean the ability of
the network to handle a fault dynamically, without
stopping the network operation. Dynamic fault
tolerance methods include dynamic reconfiguration,
source-based rerouting methods, and switch based
rerouting methods. In this work we describe a
dynamic method that is partly switch based, and partly
source based. The reason for this duality is that the
SCI topologies studied are direct networks, where the
nodes act as both sources and switches.

There exist methods for fault tolerance for existing
point-to-point technologies, such as Myrinet [6], and
InfiniBand [7]. However, to the best of our knowledge,
the existing work has taken a static reconfiguration
approach, by stopping the network (and the
applications), reconfiguring, and starting again. The

traditional approach to dynamic fault tolerance in the
industry has been to duplicate all interconnect
resources. This approach is expensive, and the
resources in the network might not be fully utilized.
Therefore we want to use the inherent redundant
resources in a single network to provide fault tolerance.

SCI is a ring-based technology, and from one point
of view, the closest approach to ours is found in the
Element Interconnect Bus (EIB) in the Cell Broadband
Engine. EIB contains two pairs of counter-rotating
rings for communication between the PPE (PowerPC
core), memory controller, I/O controller and the eight
synergistic processor elements (SPE) [8]. This is
exploited to give the Cell a degree of fault tolerance. In
our framework, this would, however, correspond to
having several redundant interconnection networks,
thus the method would not be applicable when there is
a requirement of a single fabric.

Our effort can be seen as an exercise in providing
dynamic fault tolerance to an exiting and mature
technology that has not been designed for such
advanced features. This means that some of the
techniques we use had to be implemented in the
drivers, rather than in specialized hardware. Still we
were able to achieve the main objective of the fault
tolerant routing method developed, namely that the
local switch based re-routing in the network should
take less than 1 second. The target value is set to 1
second because this enable us to support uninterrupted
operation of distributed database solutions like MySQL
Cluster [9]. Hardware support for our techniques is
currently under development, and this will
substantially reduce the reaction time of the method.

The paper is structured as follows. In section 2 we
give a brief overview of SCI and the technology at
hand. In section 3 we present the alternative methods
for fault tolerant routing in SCI, and give a brief
overview of our approach. In section 4 we discuss the
necessary changes to the routing tables and in section 5
we present the needed changes in the SCI driver.
Measurement results and performance evaluation is
given in section 6 before we conclude in section 7.

2. Scalable Coherent Interface

The SCI standard is designed with unidirectional
point-to-point links, and with a design-goal to
implement a fully hardware based distributed shared
memory. The basic topology in the SCI standard is a
unidirectional ring. A ring topology does, however,
have limited scalability. For that reason, there exist
line cards with more than one SCI interface, allowing a

node to be part of more than one SCI ring. This feature
can be used to build more complex ring based
topologies such as is illustrated in Figure 1.

Figure 1. Example of topologies in SCI

The line cards that we have used for this

development contain two SCI interfaces, and this
allowed us to build a two dimensional torus. The cards
contain two Dolphin Interconnect Solutions Link
Controller 3 (LC3) [10] and a PCI to SCI Bridge
(PSB66) [11]. The architecture of the card is illustrated
in Figure 2. The link controllers and the PSB66 are
connected with a bus called B-link. The B-link is a
back-end interface between a PSB and up to eight link
controllers. The primary topologies used in Dolphin’s
SCI implementation today are: a single ring, or several
rings in a 2-D or 3-D torus topology, meaning that
there are either two or three link controllers on each
card. In the experiments we report in this paper, we
have used cards with two LC3 chips, and the system
was interconnected into a 2D torus (Figure 1).

Figure 2. Architecture on Dolphin 2-D SCI

Card

The current routing algorithm in the 2-D topology is

based upon dimension-order routing. A packet will be
sent to the recipient nodes coordinate in one dimension
before the dimension is changed. To ease the
explanation, we will throughout the paper assume that
the horizontal (X-direction) ring is first by default as
illustrated by the dashed arrow in Figure 4 (the dotted
arrow in figure 4 will be explained below).

LC3 LC3

PSB66

PCI Bus 64 bits/66 MHz

SCI OUT SCI OUT SCI IN SCI IN

B-Link

2D Torus topology Ring topology (ringlet)

The fault-model assumed by our approach is
inherited from properties of the SCI hardware. If a link
in a ring fails, then the entire ring will fail. The reason
for this is that the SCI ring protocol consists of packets
and echoes, and no packet transmission over the link is
complete until the echo has been received by the
sender of the packet. Since the ring is unidirectional,
all packet transmissions will be affected – either
directly or indirectly because of broken transmission of
the echo. If a node dies in a 2-D cluster, both rings
connected to the node will be broken for the same
reason.

 As illustrated in Figure 3, a link controller has two

sets of routing tables: One table is called the Link
Routing Table. This table decides if a packet should be
taken off the SCI ring and sent up to the B-link. The
other table called the B-link Routing Table is used to
decide which link controller the packet will be sent out
on. All packets are routed based on the destination
address.

Figure 3. Routing-tables in Dolphin Link

Controller 3

3. Alternatives for fault-tolerant routing in
SCI

SCI is a mature technology that was specified at a
time when fault tolerance in the interconnect was not
considered as important as it is today. When we set
out to implement fault tolerant routing on existing SCI
hardware, the task was therefore to utilize the existing
features of the components in order to extract the
fastest possible reaction to faults that these components
allowed.

There are three possible approaches to fault tolerant
routing in an SCI interconnection network. The first is
to enable fault tolerant routing based upon a static

reconfiguration of the routing tables. In this solution,
the routing function is controlled by an application
running on a centralized front-end node. Through an
alternative infrastructure, e.g. an Ethernet connecting
all of the nodes, the cluster nodes report any issues (i.e.
bad cables) to the front-end. In case a problem is
reported, all communication in the cluster is halted,
while the front-end calculates and distributes new
routing tables to all nodes in the cluster. If the front-
end is unable to reach some nodes, they will be
considered dead and removed from the routing tables.
Communication can resume when all nodes accept the
new routing tables.

 In this solution, routing tables need to be calculated,
e.g. using Dijkstra’s shortest-path-first algorithm [12].
The drawback for static reconfiguration is a longer
reconfiguration time. Measurements we have
conducted have shown that communication downtime
in a standard 4-node cluster, when an SCI link is
broken is measured to almost four seconds, thus a
factor 4 above our threshold. Furthermore, this
approach will affects all communicating pairs, not only
those that would communicate through the failed
component.

Another approach is the use of redundant hardware,

where two ore more SCI adapters can operate as one
virtual adapter, thus duplicating the entire interconnect.
This solution is also available commercially. Its
drawback is that it will increase the overall cost,
because of the need for two sets of adapters, and a dual
fabric. Furthermore, redundant hardware is unable to
offer any protection in the case of a dead node, as both
adapters will lose power.

The third approach, which we develop in this paper,

is to route affected packets around the faulty area
without halting operation in the rest of the cluster.
When a node detects a problem with a ring, packets
bound for the problematic ring will be sent
downstream, so that it can be routed by the next node,
and finally be routed to the destination as illustrated by
the dotted path between node A and C in Figure 4. The
approach guarantees support for one failure, support
for two or more faults are not guaranteed. This solution
is implemented and evaluated in this paper.

 The implementation consists of two parts. The first
part consists of the changes done to the routing tables
to make the SCI-nodes ready to accept packets that are
on their way around a fault. The second part consists of
support in Dolphin’s SCI driver for making local
rerouting decisions in the node that detects the fault.

B-Link Bus Interface

Recive
Queue

8 x SCI
Packets

Bypass
FIFO

Link
Routing

Table

Send
Queue

8 x SCI
Packets

B-link
Routing

Table

MUX

SCI Link OUT SCI Link IN

B-Link

Figure 4. Routing in a 9-node 2-D SCI topology

4. Changes to the routing algorithm

Several aspects of the routing had to be modified in
the implementation of our approach. First the Link
Routing Tables needed to be modified to enable the
packets to continue on the current dimension if there is
a problem with the next dimension’s ring. In all
dynamic fault tolerant routing, this is generally the
easy part, as this is done in the node that detects the
fault. The more complex problem is related to the
nodes that have no information of the faulty ring.
When a fault occurs, they need to be able to handle
packets that they do not see under normal operation,
and they need to be able to do this without being
notified of the nature of the fault.

The main idea of our algorithm is to let a packet
that is traveling in the X-direction, and that should
have been forwarded onto a faulty ring in the Y-
direction, simply continue one more step in the X-
direction, as is illustrated in figure 4. The dashed arrow
from node A to node C represents the normal path
according to dimension-order routing. If the Y-ring
(labeled Y-ring 2) fails, node B will detect that its
vertical ring has stopped working, and will continue
forwarding the affected packets along the X-dimension
(the dotted arrow). The node downstream from B will
not know of the fault, but by inserting speculative
routing entries on the downstream node, we are able to
route the packets towards their destination.

An important part of this algorithm is to set up a

downstream node to route packets that was supposed to
do a dimension change on the upstream node. This
must, however, be done in such a way that it does not
interfere with the regular routing in the fault free case.
The important observation in this case is the following:
Assume two adjacent nodes A and B on a ring.
Assume further that A is upstream of B. Then under

normal fault free operation, node B will never see any
packet that is supposed to be taken off the ring by A.
Furthermore, B is the only node on the ring that can be
described in this way, as all other nodes on the ring
will see packets that B send to A. Therefore, the
routing entries must be set up in the following way:

• All necessary routing entries for dimension order

routing with the X-dimension first must be
present.

• On rings in the X-dimension, all nodes must have
additional link routing table entries that pick up
packets that under normal operation should have
been picked up by its upstream node.

• On a ring in the Y-dimension, all nodes must have
additional link routing tables for packets that
travel in this Y-dimension ring because faults, but
that would not be on this ring under normal fault
free operation.

The only status available to an SCI node is the

status of its own link controllers. If a problem is
detected on a ring, the driver will disable the faulty link
controller. When this is done, the local routing tables
need to be changed. How this is done is handled in the
next section.

SCI fabrics are prone to deadlocks if the routing
algorithm is not carefully selected. In the topologies
that we consider here, dimension order routing is used
in the fault free case, and it is well known that this
routing algorithm is deadlock free. In the presence of
faulty rings, however, we modify the routing algorithm
so that it is no longer strictly dimension order. It can
be shown that with a faulty ring, the routing algorithm
remains deadlock free. Space restrictions disallows us
to repeat the full analysis here, but the methodology is
based on buffer dependency graphs, and is similar the
one that is described in [13]

5. Implementation in the driver

In the previous section we described the part of the
rerouting mechanism that can be set up a priori. There
are, however, parts of the mechanism that need to be
handled by the drivers at the time when the fault is
detected. The most obvious part is that when a node
detects that one of its rings is dead, the Link Routing
Table on the link controller connected to the functional
ring must be altered. This is necessary to ensure that
the node lets packets destined for nodes on the dead
ring pass on to its downstream node. This section
gives an overview of how this is handled, and also
explains the limitations of the existing hardware with

Y-dimension

X-dimension

Speculative
Routing

Changes in driver & routing table
A

C
X-ring 3

X-ring 2

X-ring 1

Y-ring 1

B

Y-ring 2 Y-ring 3

respect to reaction time. Hardware support for the
functionality that we describe here is under
development, and this is expected to give near to
immediate reaction to faulty rings.

The error handling in Dolphin Interconnect
Solutions SCI driver is divided into two sections as
shown in Figure 5. The first section is called
CableNotOk and has the responsibility for detecting
faulty SCI rings on the node that detects the fault. The
error is detected by checking if certain interrupt bit is
set. The second section is called ReadyToGo, and has
the responsibility to calculate new routing-tables, and
set up the card.

Figure 5. Simplified error handling overview in

Dolphin’s SCI driver

The first section, CableNotOk is called when the

card receives a CableNotOk interrupt related to the link
controller. When the driver enters the CableNotOk-
section a timer is initialized. This timer is currently set
to 50 milliseconds. During this time, the CableNotOk
handler in the driver will disable all interrupts, while
all link controllers are checked. If a connectivity
problem is detected, the affected link controller will be
disabled, and status stored before continuing with re-
enabling interrupts. If no problems are detected, the
driver will go directly to enabling interrupts. After the
previously started timer is finished, the driver will
check for any remaining errors. If errors are found, a
new pass through the CableNotOk handler will be
forced. If no problems are present, the driver will
continue to the next section.

The next section of the driver is called ReadyToGo,

and it is responsible for the initialization of the link
controllers, changing of routing tables in the link
controllers and checking the connectivity on the SCI
link. ReadyToGo is also controlled by a timer,
similarly to the CableNotOk handler. The default value
to this timer is currently set to 200 milliseconds. The

first event in ReadyToGo is the initialization of the
link controllers with basic information like node ID,
link frequency and the current topology selected. Next
step is to calculate the routing tables. These
calculations are based on a normal default routing
table, and the status stored away in the CableNotOk
handler. After the routing tables are completed, the link
controllers are set up, and the process to check the SCI
link is started. The link controllers will send a probe
request to itself around the SCI ring. This is done to
make sure that the ring is initialized and ready.

A workaround was also needed to handle side-effect
of our fault-tolerant routing caused by the SCI
scrubber. The scrubber is a hardware mechanism built
to protect SCI rings from packets without a valid
destination. A potential problem occurs when a Y-ring
is broken, and a node upstream of this broken Y-ring
sends packets to a node in the broken Y-dimension. In
this case the upstream node would continue to forward
the packet on the X-dimension, until the packet has
traveled around the ring back to the sender, as
illustrated by the dashed arrow in Figure 6. A packet
that travels around the entire ring without being taken
by any node will be removed from the ring by the
scrubber. The scrubber can not be disabled. This was
solved by using the low-level probe mechanism in the
SCI driver to query the upstream nodes Y-ring status.
In Figure 6, node C would probe node D, and detect
the broken Y-ring. A local list with broken links will
then be updated, and another reset of the driver will be
issued. This is done to incorporate the broken Y-rings
status into the routing table. If a broken Y-ring is
detected on the upstream node, all packets for
destinations on the affected Y-ring will be sent directly
out on the local Y-ring.

Figure 6. Workaround to support broken Y-
rings

A final feature that was implemented in the driver is

the ability to re-enable a SCI link when a cable is re-
inserted. When a SCI link is disabled, the link
controllers bit in the IO interrupt control register is

CableNotOk

Cable
ok?

ReadyToGo

ok?

Yes
No

No

Yes

A B

D C

masked, and a watchdog is initialized. This watchdog
checks the masked register every second to se if there
is a change in cable status. If a change is detected, the
driver will initialize a re-routing process. This feature
is, however, not the focus of this paper.

6. Performance Evaluation

To evaluate the performance of the fault-tolerant
routing algorithm, two test clusters are set up as
illustrated in Figure 7. The first cluster is a 4 node
cluster, with Intel Xeon 2,8GHz CPUs, 1GB RAM,
Intel E7520 Lindenhurst chipset, Dolphin Interconnect
PCI (64-bit) SCI 2D Card (D334), and run the Linux
2.6.9-42.EL x86_64 kernel.

The second cluster is a 9-node cluster with AMD
Athlon 64 X2 4200+ dual-core CPUs, 2GB RAM,
nVidia nForce 570 SLI chipset, Dolphin Interconnect
PCI Express SCI 2D Card (D352) and run the Linux
2.6.9-42.0.3-EL x86_64 kernel.

The driver version is Dolphin DIS 3.1.10. The tests

are done with two tools: A tool called scibench2 to
measure bandwidth and one-way latency, and a tool
called downtime to measure the communication
downtime while the cluster is doing rerouting. Both
tools are available as open source in Dolphin’s SCI
driver.

Figure 7. Cluster setup with hostname

The first test is on the 9-node cluster illustrated in

Figure 7. We have communication from tiger-1 to
tiger-8, from tiger-3 to tiger-7 and from tiger-1 to tiger-
3. During the test, a cable on the X-ring between tiger-
1, tiger-2, and tiger-3 is removed.

Figure 8. 9-nodes – Total bandwidth – Ring

down

Figure 8 is a plot of total bandwidth in the cluster
during the test. Before the ring is broken, an even
amount of bandwidth is available. After the error has
occurred, a drop from around 620MB/sec to around
530MB/sec can be observed. This is expected to be due
to more competing traffic in the fabric, and because we
are removing 1/6 of the available aggregate bandwidth
in the cluster. The average communication downtime
seen in during this test is 401.15 milliseconds, while
the worst case communication downtime is measured
to 597.16 milliseconds.

The average latency measured in Figure 9 is

showing a small increase on about 0.20 microseconds.
Increase can be explained with the increased amount of
competing traffic, since a ring is missing, and the fact
that some of the traffic gets a longer path after the
reconfiguration.

MySQL Cluster has also been tested with the 9-

nodes and 4-nodes. Cables have been removed, and the
database has continued to run uninterrupted in all the
scenarios tested. We have also tested powering down a
node. This obviously requires MySQL to reconfigure,
because of the lost node, but the rerouting process was
finished well before the 1000 millisecond deadline.

tiger-7 tiger-8 tiger-9

tiger-6

tiger-3

tiger-5 tiger-4

tiger-1 tiger-2

linden-3

linden-1

linden-4

linden-2

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
B

yt
es

/s
ec

Bandwidth Measurement

Figure 9. 9-nodes - Average latency - Ring down

The second test is done on the 4-node cluster. In this

test we run communication from linden-1 to linden-4.
In this test, we did a complete power down of the node
linden-2. This disabled both the X-dimension link from
linden-1 to linden-2 and the Y-dimension link from
linden-2 to linden-4. The length of the packets path
will be the same before and after node linden-2 is
powered down.

Figure 10. 4-nodes – Total bandwidth - Node

down

Figure 11. 4-nodes - Average latency - Node

down

In Figure 10 and Figure 11 total bandwidth and

average latency for the second test shows no

degradation in either bandwidth or latency after the
power to linden-2 is switched off.

 The average communication downtime in this test is

770.87 milliseconds. And the worst-case is 805.50
milliseconds. This is a higher number than the first test,
and is due to the fact that two of the remaining nodes
in the cluster have to do a remote probe for Y-ring
status, and since is has changed, another run through
the rerouting mechanism must be taken. In order to
incorporate the remote Y-ring status in the routing
tables. We have made an analysis on where in the
reconfiguration process most of the time is used, and
this is in the CableNotOk timer, currently set to 50
milliseconds, and in the ReadyToGo timer currently set
to 200 milliseconds. Both these timers are to make sure
that all the nodes in the cluster are in a ready before the
process continues.

Tests show that the extra pass through the rerouting

algorithm, whenever a Y-ring is broken does increase
the reconfiguration time. We will now discuss some
alternative solutions to probing the downstream nodes
Y-ring status:

1) Add an extra redundant Y-ring: The first
alternative is to add an extra Y-ring in the cluster. On a
3x3 cluster this would require three extra nodes with
extra hardware and cables. These nodes would also
only be available for forwarding packets. It would have
been impossible with existing hardware to filter out
only the traffic affected by the broken Y-ring. This
could have resulted in this ring quickly becoming a
hotspot.

2) Use 3D cards and utilize the Z-ring as a
redundant Y-ring: This alternative suggests using SCI-
cards with three link controllers, and use the third
controller (Z-dimension) as a redundant Y-ring. This is
easy to implement from a technical standpoint. The
negative with is that it would increase the cost, since it
requires more expensive hardware.

3) Make hardware changes for fault tolerant
routing: This could easily be solved if the existing SCI
hardware had the ability to support two addresses per
node, and utilize one address to route X-dimension
first, and one address to route Y-dimension first. When
an error is detected, the destination address on the
packets could have been changed, and the packet
handled differently. This option has already been
implemented. A revised version of Dolphin
Interconnect Solutions LC3, called P2S is currently
being tested. This new revision increases the routing
tables (Routing RAM) from 256 entries to 8192

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ic

ro
se

co
nd

s

Latency Measurements

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
By

te
s/

se
c

Bandwidth Measurement

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ic

ro
se

co
nd

s

Latency Measurement

entries, and enables a node the have two addresses. The
14th bit in the Routing RAM is reserved to indicate
which of the nodes two addresses to use. If bit 14 is set
to 0, then X-dimension is routed first, and if it is set to
1, Y-dimension is routed first.

7. Conclusion and further work

In this paper we have developed a dynamically fault-
tolerant routing method for SCI networks. This method
has been implemented on existing hardware from
Dolphin Interconnect Solutions, and is now a part of
the official Dolphin SCI driver. Performance tests
show very little degradation in performance before and
after a fault occurs. Tests have also shown that we are
able to support rerouting faster than the 1 second goal
that was set to support the distributed MySQL database
server.

Samples of the next revision SCI hardware are up
and running in the lab at Dolphin, and it is expected to
be available to the market shortly. This new hardware
has hardware support for dynamic fault-tolerant
routing, by implementing the ability to use two
addresses per node, and the ability to use independent
routing tables for both addresses. The limitation of the
current generation of SCI hardware is the need to probe
the downstream node on the X-dimension link, and ask
for cable status on the Y-ring. This step is the most
time-consuming step in the process. In the new SCI
revision, P2S does not require this step, because the
hardware will automatically change and route Y-
dimension first if an error occurs. With the probe for
remote Y-ring status step removed, fast re-routing
times as low as 100 milliseconds is expected.

8. References

[1] IEEE, Std. 1596 "Scalable Coherent Interface (SCI)".
IEEE, 1992.

[2] T. M. Pinkston, R. Pang, and J. Duato. "The Double
Scheme: Deadlock-free Dynamic Reconfiguration of Cut-

Through Networks". in International Conference on Parallel
Processing. 2000.

[3] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A.
Robles, J. Duato, T. Skeie, and O. Lysne, "A Routing
Methodology for Achieving Fault Tolerance in Direct
Networks". IEEE Transactions on Computers, 2006. vol. 55,
no. 4: pp. 400-415.

[4] O. Lysne and T. Skeie, "Load Balancing of Irregular
System Area Network through Multiple Roots". International
Conference on Communication in Computing, 2001.

[5] I. Theiss and O. Lysne, "FRoots, a Fault Tolerant and
Topology-Flexible Routing Technique". 2005.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su, "Myrinet: A Gigabit-
per-Second Local Area Network. IEEE MICRO, 1995.

[7] InfiniBand Trade Association, "InfiniBand Architecture
Specification".

[8] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bollinger,
R. Chaudhry, D. Cox, and P. Harvey, "Overview of the
Architecture, Circuit Design, and Physical Implementation of
a First-Generation Cell Processor". IEEE Journal of Solid-
State Circuits, 2006. vol. 41, no. 1: pp. 179-196.

[9] MySQL AB, "MySQL Cluster Architecture Overview".
2004.

[10] Dolphin Interconnect Solutions, "Link Controller 3
Specification D666 - LC3". 2002.

[11] Dolphin Interconnect Solutions, "PSB66 Specification
D667". 2001.

[12] E. W. Dijkstra, "A note on two problems in connexion
with graphs", in "Numerische Mathematik 1". 1959. pp. 269-
271.

[13] O. Lysne and S. Gjessing, ”Constructing SCI-
Configurations that are free from Deadlocks”. In
International Workshop on SCI-based High-performance
Low-Cost Computing. 1996

