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Abstract. This paper is devoted to the numerical treatment of linear
optimality systems (OS) arising in connection with inverse problems for
partial differential equations. If such inverse problems are regularized
by Tikhonov regularization, then it follows from standard theory that
the associated OS is well-posed, provided that the regularization param-
eter α is positive and that the involved state equation satisfies suitable
assumptions.

We explain and analyze how certain mapping properties of the oper-
ators appearing in the OS can be employed to define efficient precondi-
tioners for finite element (FE) approximations of such systems. The key
feature of the scheme is that the number of iterations needed to solve the
preconditioned problem by the minimal residual method is bounded in-
dependently of the mesh parameter h, used in the FE discretization, and
only increases moderately as α → 0. More specifically, if the stopping
criterion for the iteration process is defined in terms of the associated
energy norm, then the number of iterations required (in the severely ill-
posed case) cannot grow faster than O((ln(α))2). Our analysis is based
on a careful study of the involved operators which yields the distribution
of the eigenvalues of the preconditioned OS.

Finally, the theoretical results are illuminated by a number of nu-
merical experiments addressing both a model problem studied by Borzi,
Kunisch and Kwak [14] and an inverse problem arising in connection
with electrocardiography [41].

1. Introduction

Let H1, H2 and H3 be Hilbert spaces with inner products (·, ·)H1
, (·, ·)H2

,
(·, ·)H3

, norms ‖ · ‖H1
, ‖ · ‖H2

, ‖ · ‖H3
and dual spaces H ′

1, H
′
2 and H ′

3. We
will consider parameter identification problems which can be written in the
form

(1) min
v∈H1

{
1

2
‖Tu− d‖2H3

+
1

2
α ‖v − vprior‖2H1

}

subject to

(2) Au = −Bv + g (state equation),
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where

A : H2 → H ′
2,

B : H1 → H ′
2,

T : H2 → H3 (observation operator)

are bounded linear operators, d ∈ H3 and g ∈ H ′
2 are given quantities, and

α > 0 is a regularization parameter. We are thus aiming at using an obser-
vation d ∈ H3 of Tu ∈ H3 to recover the parameter v ∈ H1 present in the
state equation (2). Tikhonov regularization is applied, and vprior represents a
prior (invoking apriori knowledge) for v. In this paper we consider problems
in which (2) is a partial differential equation (PDE). (Our preconditioning
technique and analysis can be generalized in a rather straightforward man-
ner to cases in which (2) is a linear system of PDEs or other well-behaved
linear equations).

As is well-known, the solution of (1)-(2) must satisfy a saddle-point prob-
lem on the form

(3)

[
Mα N ′

N 0

] [
x
y

]
=

[
f
g

]
.

Here, x = (v, u), y is the Lagrange multiplier, and we will return to the
exact structure of the operators Mα and N below.

Preconditioners for saddle-point problems have been studied extensively
the last decades [3, 10, 17, 19, 23, 26, 27, 32, 37, 42, 44, 47, 52]. Our work
is based on the approach suggested in [3, 32, 37], where the saddle point
problem is considered as an isomorphism between an appropriate Hilbert
space and its dual space, provided that the Babuška-Brezzi conditions [20]
are satisfied. By letting the preconditioner be an isomorphism mapping the
dual space back to the Hilbert space, the preconditioned system becomes
well-conditioned, and in the discrete case one obtains conditions numbers
which can be bounded independently of the mesh parameter h.

The problem studied in this paper is different from those analyzed in
[3, 32, 37] because (1)-(2) typically is ill-posed for α = 0. Furthermore,
even though the regularized problem (α > 0) is well-posed, the Babuška-
Brezzi conditions will involve constants that depend on α. This dependency
on the regularization parameter causes the condition number of the matrix
associated with (3) to increase as the regularization parameter decreases
towards zero. We will demonstrate that efficient solution methods can be
constructed in spite of this dependency. More specifically, in the severely
ill-posed case, it turns out that the number of iterations needed by the
preconditioned minimal residual method can not grow any faster than of
order O((ln(α))2), provided that the convergence is measured in the energy
norm. Moreover, numerical experiments indicate that this theoretical worst
case scenario bound is rather pessimistic.

Many researchers have studied numerical methods for PDE constrained
optimization problems. Promising results have been reported for multigrid
methods, see [1, 4, 11, 12, 13, 14, 15, 30, 46, 48] and references therein. Also
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successful preconditioning schemes for a rather wide range of optimality sys-
tems are available [1, 8, 9, 29, 33, 38, 45]. Finally, strategies for accelerating
iterative methods for inverse problems have been proposed and analyzed
[24, 25].

The novelty of our approach is that we observe that certain precondi-
tioners keep almost all the eigenvalues in intervals that can be bounded
independently of both the mesh parameter h and the regularization param-
eter α. It is well-known that Krylov solvers are very efficient when the
spectrum is bounded except for a few isolated eigenvalues. This fact has
been thoroughly explored for the Conjugate Gradient scheme by Axelsson
and Lindskog [5, 6, 7]. We extend their results to the minimal residual
method and hence prove that the combination of our preconditioner and
Krylov solvers yields a very efficient approach.

In [1, 14, 33, 38, 45] results for iterative schemes that are independent of
both h and α are presented for various model problems (i.e. for special cases
of elliptic and parabolic control problems). Furthermore, only a moderate
increase in the workload as α → 0 was observed in [48]. As mentioned
above, for general PDE constrained optimization problems on the form (1)-
(2), the analysis of our preconditioner yields convergence properties which
are independent of h and of order O((ln(α))2). We obtain these results
with rather mild assumptions on the state equation (2) and the observation
operator T .

Our preconditioner is block diagonal where each block is a standard “off-
the-shelves” elliptic preconditioner. Since the resulting preconditioner is
symmetric and positive, the minimal residual method is used. Consequently,
our scheme can be implemented in a rather straightforward manner, taking
into use previously developed PDE software.

Many inverse problems can be written in the form (1)-(2); Section 3 con-
tains two examples. First we consider the case analyzed in [14]. Thereafter
an inverse problem arising in connection with electrocardiography is studied.
In both examples we perform a series of numerical experiments demonstrat-
ing the numerical efficiency of our algorithm.

This text is organized as follows: Section 2 contains the necessary as-
sumptions and the definition of our preconditioner. As mentioned above, in
Section 3 two examples are presented. And, finally, Section 4 is devoted to
theoretical considerations.

2. Assumptions, optimality system and block preconditioners

In what follows, we assume that the forward (direct) mapping

(4) F : H1 → H3, F = TA−1B,

associated with (1)-(2), is not continuously invertible. That is, for α = 0,
(1)-(2) is ill-posed. Please note that H1 is the parameter space, H2 is the
state space, and H3 is the observation space.

2.1. Assumptions. Throughout this text we assume that:

A1: A is a bounded linear operator.
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A2: There exists a constant c1 > 0, independent of the regularization
parameter α, such that

(5) c1‖φ‖2H2
≤ 〈Aφ, φ〉 for all φ ∈ H2.

A3: B is bounded and linear.
A4: The observation operator T is bounded and linear.

From A1-A2 it follows that A is continuously invertible, and, combined with
A3, this implies that the solution u of (2) depends continuously on v and g:

(6) ‖u‖H2
≤ c2

(
‖v‖H1

+ ‖g‖H′

2

)
for all v ∈ H1 and all g ∈ H ′

2,

where c2 is a positive constant not depending on α, i.e. (2) is well-posed.
Throughout this text we assume that the state equation (2) is a partial

differential equation (PDE) or a finite element (FE) approximation of a
PDE. In the latter case, H1, H2 and H3 are finite dimensional;

dim(H1) = ν1 <∞,

dim(H2) = ν2 <∞,

dim(H3) = ν3 <∞,

and the operators A, B and T depend on a mesh parameter h. However,
if the FE discretization procedure is sound, then A, B and T will inherit
suitable bounds from their continuous counterparts. In such situations one
can thus typically bound the quantities involved in A1-A4 by h independent
constants. We thus make the following assumption:

A5: There exist constants b1, b2 and b3, which are independent of h
and α, such that

‖A‖L(H2,H′

2
) ≤ b1,

‖B‖L(H1,H′

2
) ≤ b2,

‖T‖L(H2,H3) ≤ b3.

In addition we assume that the constants c1 and c2, present in (5)
and (6), do not depend on h.

It is important to distinguish between the FE operators and their associated
matrices. The matrices, as mappings between Euclidean spaces, will in most
cases have norms which cannot be bounded independently of h.

Recall the form (4) of the forward operator F . Since we have assumed that
A is continuously invertible, the ill-posed nature of (1)-(2) must be inherited
from T or/and B. The observation mapping T is typically a restriction to
a boundary or some sort of imbedding. Such operations can usually not be
continuously inverted and in most cases the equation; find h2 ∈ H2 such
that

Th2 = h3 ∈ H3,

is ill-posed. In the theoretical part of this paper we will consider the severely
ill-posed situation:

A6: In the finite dimensional case we assume that the eigenvalues σ1 ≥
σ2 ≥ . . . ≥ σν2 of T ∗T : H2 → H2 satisfy

(7) σi ≤ b4 e
−b5i for i = 1, 2, . . . , ν2.
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Here, b4 and b5 are positive constants not depending on ν2 = dim(H2) <
∞, h or α, and T ∗ : H3 → H2 denotes the adjoint of T . (T ∗T is
self-adjoint and positive semi-definite and therefore has ν2 (including
multiplicity) eigenvalues which are larger or equal to zero).

The description of Assumption A6 in the infinite dimensional setting is
somewhat more involved and therefore omitted. Our analysis will, for the
sake of clarity, be presented in the finite dimensional setting.

As long as A1-A6 are satisfied, it turns out that further assumptions
about the operator B is not needed. We will return to this issue in Section
4.

For mildly ill-posed problems A6 is replaced with

A7: There exist positive constants b6 and ξ such that the eigenvalues
σ1 ≥ σ2 ≥ . . . ≥ σν2 of T ∗T satisfy

(8) σi ≤ b6i
−ξ, for i = 1, 2, . . . , ν2,

where b6 and ξ do not depend on ν2 = dim(H2) <∞, h or α.

A brief discussion of such cases are presented in Appendix B.

2.2. Optimality system. For the sake of completeness, let us now review
how an all-at-once scheme for (1)-(2) can be derived. The associated La-
grangian Lα reads

Lα(v, u,w) =
1

2
‖Tu− d‖2H3

+
1

2
α ‖v − vprior‖2H1

+〈Au,w〉 + 〈Bv,w〉 − 〈g,w〉
for v ∈ H1 and u,w ∈ H2, with Fréchet derivatives

〈∂Lα

∂v
, φ〉 = α(v − vprior, φ)H1

+ 〈Bφ,w〉 for φ ∈ H1,

〈∂Lα

∂u
, φ〉 = (Tu− d, Tφ)H3

+ 〈Aφ,w〉 for φ ∈ H2,

〈∂Lα

∂w
, φ〉 = 〈Au, φ〉 + 〈Bv, φ〉 − 〈g, φ〉 for φ ∈ H2.

From the first order necessary condition

∂Lα

∂v
= 0,

∂Lα

∂u
= 0,

∂Lα

∂w
= 0

we find that a minimizer of (1)-(2) must satisfy the optimality system

α(v, φ)H1
+ 〈Bφ,w〉 = α(vprior, φ)H1

for all φ ∈ H1,(9)

(Tu, Tφ)H3
+ 〈Aφ,w〉 = (d, Tφ)H3

for all φ ∈ H2,(10)

〈Au, φ〉+ 〈Bv, φ〉 = 〈g, φ〉 for all φ ∈ H2.(11)

In an all-at-once approach one seeks to solve (9)-(11) in a fully coupled
manner, i.e. to solve the primal (11), the dual (10) and the optimality
condition (9) simultaneously.

Please note that (9)-(11) can be written in the form: Find (v, u,w) ∈
H1 ×H2 ×H2 such that

(12)



αL 0 B′

0 K A′

B A 0





v
u
w


 =



αLvprior
Qd
g


 ,
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where

A′ : H2 → H ′
2, w → 〈Aφ,w〉 ∀φ ∈ H2,

B′ : H2 → H ′
1, w → 〈Bφ,w〉 ∀φ ∈ H1,

denote the dual operators of A and B, respectively, and

L : H1 → H ′
1, v → (v, φ)H1

∀φ ∈ H1,(13)

K : H2 → H ′
2, u→ (Tu, Tφ)H3

= (T ∗Tu, φ)H2
∀φ ∈ H2,(14)

Q : H3 → H ′
2, d→ (d, Tφ)H3

= (T ∗d, φ)H2
∀φ ∈ H2.(15)

For the sake of convenience, let us introduce the notation

Aα =



αL 0 B′

0 K A′

B A 0


 ,(16)

p =



v
u
w


 ,

b =



αLvprior
Qd
g


 .

We thus get the compact form

(17) Aαp = b

for (12).

2.3. Preconditioning. Even though the system (17) fits nicely into the
classical framework for saddle point problems, provided that α > 0, it is
difficult to analyze our preconditioning scheme in terms of the standard
norm on H1 × H2 × H2. In fact, due to reasons that will become evident
below, it turns out that it is convenient to employ the following, α dependent,
topology

X = H1 ×H2,(18)

‖x‖2X = ‖(x1, x2)‖2X = α‖x1‖2H1
+ α‖x2‖2H2

+ 〈Kx2, x2〉,(19)

= α‖x1‖2H1
+ α‖x2‖2H2

+ (T ∗Tx2, x2)H2
,

= α‖x1‖2H1
+ α‖x2‖2H2

+ ‖Tx2‖2H3
for x = (x1, x2) ∈ X,

Y = H2,(20)

‖y‖2Y =
1

α
‖y‖2H2

for y ∈ Y.(21)

As will be discussed in detail in Section 4, assumptions A1-A5 and the
Babuška-Brezzi conditions imply that

(22) Aα : X × Y → (X × Y )′

defines an isomorphism for every α > 0.
Preconditioning techniques are usually defined and analyzed in terms of

matrices which define operators between Euclidean spaces, see e.g. [5, 22].
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However, as mentioned in the introduction, an alternative approach has been
suggested in [3, 32, 37]: If

Bα : (X × Y )′ → X × Y

is an isomorphism, then

BαAα : X × Y → X × Y

is well-behaved and we might, in the finite dimensional case, apply an iter-
ative scheme to solve

(23) BαAαp = Bαb,

cf. (17). The efficiency of such a scheme will of course depend on the spectral
condition number of κ(BαAα) and the CPU costs associated with applying
BαAα to an element pn ∈ X × Y .

If the FE method is applied, then Aα and Bα typically inherit the bounds
which their continuous counterparts satisfy. More precisely, ‖Aα‖L(X×Y,(X×Y )′),

‖A−1
α ‖L((X×Y )′,X×Y ), ‖Bα‖L((X×Y )′,X×Y ) and ‖B−1

α ‖L(X×Y,(X×Y )′) are bounded
independently of the mesh parameter h and, consequently,

κ(BαAα) = ‖BαAα‖L(X×Y,X×Y )‖(BαAα)
−1‖L(X×Y,X×Y )

is well-behaved as h→ 0. The role of the regularization parameter α is more
complicated and will be discussed in detail in Section 4.

Based on these considerations, we propose to use a preconditioner of the
form

(24) B−1
α =



αQ1 0 0
0 αQ2 +K 0
0 0 1

αQ2


 ,

where

Q1 : H1 → H ′
1

and

Q2 : H2 → H ′
2

are uniformly elliptic and bounded linear operators which are continuously
invertible. That is, there exists a positive constant b7 such that for i = 1, 2:

(25) b7‖φ‖2Hi
≤ 〈Qiφ, φ〉 for all φ ∈ Hi.

In addition, we assume that

J−1
1 Q1 : H1 → H1 and J−1

2 Q2 : H2 → H2

are self-adjoint operators, where J1 : H1 → H ′
1 and J2 : H2 → H ′

2 are the
Riesz maps.

Since K is positive semi-definite, see (14), condition (25) assures that we
can use the minimal residual method to solve (23). The role of the scaling
with respect to α in (24) will become evident in Section 4.

The precise definition of Q1 and Q2 will of course depend on the appli-
cation under consideration. Provided that J−1

2 A is self-adjoint, one could
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typically use Q1 = L and Q2 = A, see (13) and assumptions A1-A2, which
yield

(26) B−1
α =



αL 0 0
0 αA+K 0
0 0 1

αA


 .

However, αL, αA+K or 1/αA may not be cheap to invert, and in practical
situations we therefore might use multigrid preconditioners

(27) B̂α =




̂(αL)−1 0 0

0 ̂(αA+K)−1 0

0 0
̂( 1
αA
)−1


 .

Here, ̂(αL)−1, ̂(αA+K)−1 and
̂( 1
αA
)−1

are (scalar) multigrid precondition-

ers. More precisely, in the examples presented in the next section, ̂(αL)−1,

̂(αA+K)−1 and
̂( 1
αA
)−1

are approximations of (αL)−1, (αA + K)−1 and(
1
αA
)−1

, respectively, consisting of one V-cycle employing the symmetric
Gauss-Seidel smoother [18, 31, 50].

Please note that our preconditioner is block diagonal where each block

is defined in terms of a classical scalar preconditioner. This means that B̂α

can be implemented in a rather straightforward manner; in many cases old
“scalar” software can be reused. Furthermore, since the involved operators
are positive, we employ the minimal residual method to solve (23).

3. Two examples

3.1. Example 1. We will now consider the problem analyzed by Borzi,
Kunisch and Kwak [14]:

(28) min
v∈L2(Ω)

{
1

2
‖Tu− d‖2L2(Ω) +

1

2
α ‖v‖2L2(Ω)

}

subject to

−∆u = v + g in Ω,(29)

u = 0 on ∂Ω,(30)

where Ω = (0, 1) × (0, 1), α > 0 is a regularization parameter and d, g ∈
L2(Ω) are given functions.

In this case H1 = L2(Ω), H2 = H1
0 (Ω) and H3 = L2(Ω). Furthermore,

the observation operator T is simply the imbedding

T : H1
0 (Ω) ↪→ L2(Ω), φ→ φ,
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and

L : L2(Ω) → (L2(Ω))′, v → (v, φ)L2(Ω) ∀φ ∈ L2(Ω),

B : L2(Ω) → H−1(Ω), v → − (v, Tφ)L2(Ω) ∀φ ∈ H1
0 (Ω),

A : H1
0 (Ω) → H−1(Ω), u→

∫

Ω
∇u · ∇φdx ∀φ ∈ H1

0 (Ω),

K : H1
0 (Ω) → H−1(Ω), u→ (Tu, Tφ)L2(Ω) ∀φ ∈ H1

0 (Ω).

From standard theory for elliptic PDEs and FE discretization of such equa-
tions it follows that assumptions A1-A5 are satisfied, provided that a suit-
able FE scheme is applied. A more thorough investigation is needed to
explore the ill-posed properties of this problem. The next subsection ad-
dresses this issue.

3.1.1. Ill-posed properties. Figure 1 shows a (ln(σi), ln(i)) plot of the eigen-
values of T ∗T , sorted in decreasing order, computed on a grid with mesh
parameter h = 2−6. This graph indicates that there exist positive numbers
b6 and ξ such that

ln(σi) ≈ ln(b6)− ξ ln(i)

or
σi ≈ b6i

−ξ.

That is, example (28)-(30) seems to satisfy Assumption A7.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000

Figure 1. A (ln(σi), ln(i)) plot of the eigenvalues of T ∗T
computed on a grid with mesh parameter h = 2−6 and sorted
in decreasing order. Here, T : H1

0 (Ω) ↪→ L2(Ω) is the obser-
vation operator of the model problem discussed in Example
1.

To further explore the structure of this problem, let us equip H2 = H1
0 (Ω)

with the inner product ∫

Ω
∇ψ · ∇φdx
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and norm

‖φ‖2H2
=

∫

Ω
|∇φ|2 dx

for ψ, φ ∈ H1
0 (Ω).

Note that, for any v ∈ L2(Ω) and any φ ∈ H1
0 (Ω),

〈Bv, φ〉 = −(v, Tφ)L2(Ω)

= −(T ∗v, φ)H1

0
(Ω)

= −〈A(T ∗v), φ〉
and we conclude that

B = −AT ∗.

Consequently, we get the following formula for the forward operator

F = TA−1B = −TA−1AT ∗ = −TT ∗,

and Figure 1 therefore also reveals the eigenvalue distribution of F . This
graph thus indicates that (28)-(30) is mildly ill-posed.

3.1.2. Numerical results. Table 1 shows the numerical results obtained with
the standard stopping criterion, which is defined in terms of the energy norm

‖φ‖2E,α = 〈Aαφ, B̂αAαφ〉 for φ ∈ H1 ×H2 ×H2.

More specifically, the iteration process was stopped as soon as

(31)
〈rk, B̂αrk〉1/2

〈r0, B̂αr0〉1/2
=

‖pk − p∗‖E,α

‖p0 − p∗‖E,α
≤ 10−3,

where p∗ and pk represent the solution of (17) and the kth approximation of
p∗ generated by the preconditioned minimal residual method, respectively.
The kth residual is denoted by rk = Aα(pk − p∗). According to this table,
the number of iterations needed to solve the problem seems to be bounded
independently of the mesh parameter h and only increases moderately as α
decreases.

h \ α 1 10−1 10−2 10−3 10−4

2−1 4 4 4 4 4
2−2 5 8 11 12 8
2−3 7 8 12 17 14
2−4 7 8 12 18 20
2−5 9 10 12 17 21
2−6 9 10 13 17 18
2−7 8 10 13 15 16
2−8 8 10 11 13 13
2−9 8 8 9 11 12

Table 1. This table contains the number of iterations
needed by the preconditioned minimal residual method to
solve the model problem studied in Example 1. These num-
bers were generated with the standard stopping criterion (31)
associated with the energy norm.
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Let us consider the numbers presented in Table 1 in view of the classical
estimate for the minimal residual method. This estimate states that

(32)
‖pk − p∗‖E,α

‖p0 − p∗‖E,α
≤ 2

(
κ(B̂αAα)− 1

κ(B̂αAα) + 1

)dk/2e−1

,

where κ(B̂αAα) is the spectral condition number of B̂αAα, see e.g. page 287
in [31]. (In Hackbusch’s book the minimal residual method is referred to as
the method of conjugate residuals). Here, dae, for a real number a, denotes
the smallest integer ≥ a.

Inequality (32) indicates that the number of iterations needed by the

minimal residual method will be of order O(κ(B̂αAα)). Table 2 contains
κ(BαAα), which clearly seems to be bounded independently of h but in-
creases as the regularization parameter α decreases. Consequently, (32)
predicts accurately the performance, observed in Table 1, of the minimal
residual method with respect to h, but provides a pessimistic estimate for
the workload needed as α→ 0.

h \ α 1 10−1 10−2 10−3 10−4

2−1 1.28 1.45 4.15 17.6 31.0
2−2 1.34 1.61 5.07 16.9 52.3
2−3 1.36 1.67 5.38 16.3 53.2
2−4 1.37 1.68 5.46 16.2 53.5
2−5 1.37 1.69 5.48 16.3 53.5

Table 2. This table contains numerical results obtained in
Example 1. More precisely, the condition number κ(BαAα) of
BαAα for various grid refinement levels and α =
1, 10−1, 10−2, 10−3, 10−4.

To further shed some light onto this problem, we have plotted the absolute
value of the eigenvalues of BαAα in Figures 2 and 3. (In Figure 3 we have
zoomed in on the smallest eigenvalues shown in Figure 2). Please note that
almost all of the eigenvalues are of order O(1). Krylov subspace solvers are
known to handle such cases efficiently [5, 6, 7], and we will use this fact to
explain the behavior, with respect to α, observed in Table 1 in Section 4.

The energy norm depends on the regularization parameter α. Hence, the
stopping criterion (31) gets milder as α decreases, which is also confirmed
by the condition numbers reported in Table 2. We therefore decided to run
a series of tests employing an α independent stopping rule on the form

(33)
〈A1(pk − p∗), B̂1A1(pk − p∗)〉1/2

〈A1(p0 − p∗), B̂1A1(p0 − p∗)〉1/2
≤ 10−3,

where A1 = Aα and B̂1 = B̂α with α = 1. Table 3 contains the iteration
counts obtained in these experiments. The number of iterations required
increases as α decreases, but seems to be “rather bounded” independently
of the mesh parameter h. The results are thus not as nice as those presented
for the energy norm, compare tables 1 and 3.
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(a) α = 10−2
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Figure 2. The absolute value of the eigenvalues of BαAα,
sorted in increasing order, in Example 1. These numbers
were generated with mesh size h = 2−6 and regularization
parameter α = 10−2, 10−3.
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Figure 3. The hundred and five hundred smallest eigenval-
ues of those shown in Figure 2 (a) and Figure 2 (b), respec-
tively.

A remark. In real world simulations, the exact solution p∗ of the optimality
system is not known. Consequently, the α independent stopping criterion
(33) cannot be used. The numbers presented in Table 3 were generated for
a synthetic problem with p∗ = 0 and random initial guess p0 for the minimal
residual method. On the other hand, since rk = Aα(pk−p∗) = Aαpk−b, see
(17), the classical rule (31) can always be employed - even if p∗ is unknown.

3.2. Example 2. Our second example is the inverse transmembrane po-
tential problem in electrocardiography. In this problem one seeks to use
recordings of the electrical potential at the surface of the human body (ECG
recordings) to compute the distribution of the so-called transmembrane po-
tential v inside the heart. Many researchers have analyzed this important
challenge, see e.g. [34, 39, 40, 41]. Usually, it is studied in terms of the
bidomain model [36, 43, 49]. A detailed discussion of this issue is certainly
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h \ α 1 10−1 10−2 10−3 10−4

2−1 4 4 5 5 5
2−2 5 8 13 16 15
2−3 7 8 15 26 27
2−4 7 10 14 27 42
2−5 9 10 14 28 49
2−6 9 10 15 30 54
2−7 8 10 14 32 54
2−8 8 10 16 34 60
2−9 8 10 17 35 64

Table 3. This table contains the number of iterations
needed by the preconditioned minimal residual method to
solve the model problem studied in Example 1. These num-
bers were generated with the α independent stopping crite-
rion (33).

beyond the scope of this text. We will therefore limit ourselves to present-
ing the mathematical formulation of the task and test the preconditioner
proposed above on the associated optimality system.

Let H and G denote the domains occupied by the heart and torso, re-
spectively, and define P = H ∪ G, with boundary ∂P , see Figure 4. In

G

∂P

∂H

H

Figure 4. A schematic 2D illustration of the body P =
H ∪ G, where H and G are the domains occupied by the
heart and torso, respectively.

terms of mathematical symbols, we may express the inverse transmembrane
potential problem on the form:

(34) min
v∈H1(H)

{
1

2
‖Tu− d‖2L2(∂P ) +

1

2
α ‖v − vprior‖2H1(H)

}

subject to
∫

P
(M∇u) · ∇φdx = −

∫

H
(Mi∇v) · ∇φ for all φ ∈ H1(P ) dx,(35)

where we, for the sake of convenience, have written the state equation in
its variational form, see [41] for further information. Here, v and u are the
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transmembrane and extracellular potentials, respectively, and M and Mi

are conductivities. More specifically,

M(x) =

{
Mi(x) +Me(x) for x ∈ H,
Mo(x) for x ∈ G,

Mi is the intracellular conductivity of the heart, Me is the extracellular
conductivity of the heart, and Mo is the conductivity of the torso G.

We consider the two dimensional case, i.e. P ⊂ IR2 is a cross section of
the body, and assume that all of the involved conductivities define uniformly
positive definite tensors. That is, we assume that Mo, Mi and Me are
symmetric and that there exist positive constants κ1 and κ2 such that

0 < κ1 ≤ Mo(x) ≤ κ2 for all x ∈ G,(36)

0 < κ1 ≤
aTMi(x)a

aTa
≤ κ2 for all x ∈ H and all a ∈ IR2 \ {0},(37)

0 < κ1 ≤
aTMe(x)a

aTa
≤ κ2 for all x ∈ H and all a ∈ IR2 \ {0}.(38)

Now, referring to the symbols used in sections 1 and 2, H1 = H1(H),
H2 = H1(P ), H3 = L2(∂P ) and the observation operator T is simply the
trace

(39) T : H1(P ) → L2(∂P ), φ→ φ|∂P .
Furthermore,

L : H1(H) → (H1(H))′, ψ → (ψ, φ)H1(H) ∀φ ∈ H1(H),

B : H1(H) → (H1(P ))′, ψ → −
∫

H
(Mi∇ψ) · ∇(Rφ) dx ∀φ ∈ H1(P ),

K : H1(P ) → (H1(P ))′, ψ → (Tψ, Tφ)L2(∂P ) ∀φ ∈ H1(P ),

A : H1(P ) → (H1(P ))′, ψ →
∫

P
(M∇ψ) · ∇φdx ∀φ ∈ H1(P ),

where

R : H1(P ) → H1(H), φ→ φ|H
denotes the restriction operator.

A remark. For this example it is easy to verify that A1, A3 and A4 are
satisfied, but that Assumption A2 does not hold. If u solves (35), so does
u + c for any constant c. On the other hand, as is explained in [41], the
solution (v, u) ∈ H1(H) × H1(P ) of the optimality problem (34)-(35) is
unique, provided that α > 0, and must satisfy

∫

∂P
u dx =

∫

∂P
d dx.

Consequently, a formulation of (34)-(35) which yields a state equation with
a unique solution is obtained as follows:

(40) min
v∈H1(H)

{
1

2

∥∥∥∥T ũ+
1

|∂P |

∫

∂P
d dx− d

∥∥∥∥
2

L2(∂P )

+
1

2
α ‖v − vprior‖2H1(H)

}



EFFICIENT PRECONDITIONERS FOR OPTIMALITY SYSTEMS 15

subject to: Find ũ ∈ H̃1(P ) such that
∫

P
(M∇ũ) · ∇φdx = −

∫

H
(Mi∇v) · ∇φ for all φ ∈ H̃1(P ) dx,(41)

where

(42) H̃1(P ) =

{
ψ ∈ H1(P );

∫

∂P
Tψ dx = 0

}
.

More precisely, (v, ũ) ∈ H1(H) × H̃1(P ) solves (40)-(41) if and only if
(v, u) = (v, ũ + 1

|∂P |
∫
∂P d dx) ∈ H1(H)×H1(P ) solves (34)-(35). A similar

connection between the optimality systems associated with (40)-(41) and
(34)-(35) can, of course, also be established. We will not dwell any further
upon this issue.

3.2.1. Ill-posed properties. The shapes of the heart H and the body P are
not simple. Consequently, we used nonuniform meshes in the FE discretiza-
tion procedure. In all the figures and tables presented in connection with
(34)-(35), l represents the refinement level of the grid. More precisely, as
l increases the mesh size h decreases. (l is the number of times an initial
coarse mesh has been refined).

Figure 5 shows a (ln(σi), i) plot of the thirty largest eigenvalues of F ∗F
computed on mesh refinement level l = 0, where F is the forward mapping
(4) associated with the model problem (34)-(35). The involved grid con-
tained 1192 nodes of which 312 were located in the heart H. The remaining
eigenvalues of F ∗F were smaller than 1.9292 ∗ 10−16.

Based on Figure 5, it seems reasonable to assume that there exist positive
numbers b4 and b5 such that

ln(σi) ≈ ln(b4)− b5i

or
σi ≈ b4e

−b5i,

which indicates that the present problem is severely ill-posed.
In order to further explore the properties of Example 2, let us consider the

formulation (40)-(41) of this problem. From the following modified version
of Friedrichs’ inequality

∫

P
φ2 dx ≤ C1

(∫

P
|∇φ|2 dx+

{∫

∂P
φdx

}2
)

for all φ ∈ H1(P ),

see [35] and references therein, and assumptions (36)-(38) it follows that one

can equip H̃1(P ), defined in (42), with the inner product

(ψ, φ)H̃1(P ) =

∫

P
(M∇ψ) · ∇φdx

and norm
‖φ‖2

H̃1(P )
= (φ, φ)

H̃1(P )

for ψ, φ ∈ H̃1(P ).

Consider the functions in H̃1(P ) that are zero on the heart, i.e.

(43) V =
{
ψ ∈ H̃1(P ); ψ|H = 0

}
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Figure 5. A (ln(σi), i) plot of the thirty largest eigenval-
ues of F ∗F computed on the coarsest grid, i.e. l = 0, and
sorted in decreasing order. Here, F is the forward mapping
associated with the model problem discussed in Example 2.

and its orthogonal complement

(44) W = V ⊥ =
{
ψ ∈ H̃1(P ); (ψ, φ)

H̃1(P )
= 0 for all φ ∈ V

}
.

Note that the solution ũ of (41) belongs to W , i.e. Ã−1B̃v ∈ W for all
v ∈ H1(H), where

Ã : H̃1(P ) → (H̃1(P ))′, ψ →
∫

P
(M∇ψ) · ∇φdx ∀φ ∈ H̃1(P ),

B̃ : H1(H) → (H̃1(P ))′, ψ → −
∫

H
(Mi∇ψ) · ∇(R̃φ) dx ∀φ ∈ H̃1(P ),

R̃ : H̃1(P ) → H1(H), ψ → ψ|H .
In fact, in Appendix A we prove that the range R(Ã−1B̃) of Ã−1B̃ encom-

passes all of W , i.e. R(Ã−1B̃) = W , and that this mapping is a one-to-one
operator. Since W is closed, it therefore follows from the Bounded Inverse

Theorem that Ã−1B̃ : H1(H) →W is continuously invertible.

The ill-posed properties of the forward operator F̃ = T̃ Ã−1B̃ is hence

(solely) inherited from the observation operator T̃ = T |W , where T is defined

in (39). With other words, the decay of the singular values of F̃ and T̃ are
closely related.

3.2.2. Numerical results. Also for this example the iteration counts obtained

with the multigrid preconditioner B̂α and the standard stopping criterion
(31) are well-behaved, see Table 4. Indeed, the number of iterations needed
seems to be bounded independently of both h and α.

According to Table 5, the condition number κ(BαAα) of BαAα seems to
be approximately of order O(α−1). Hence, the results reported in Table 4
are far better than what one would expect from the standard estimate (32).
As observed in Example 1, almost all of the eigenvalues of BαAα are of order
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l \ α 1 10−1 10−2 10−3 10−4

0 32 40 55 42 25
1 28 36 49 52 24
2 26 30 41 51 26
3 28 28 36 47 32
4 29 28 32 41 41

Table 4. The number of preconditioned minimal residual
iterations needed to solve the model problem studied in Ex-
ample 2. These results were generated with the energy stop-
ping criterion (31). Here, l is the refinement level of the grid,
i.e. the mesh size h decreases as l increases.

l \ α 1 10−1 10−2 10−3 10−4

1 16 108 672 5000 29729
2 16 109 680 5076 40157

Table 5. This table contains numerical results obtained in
Example 2. More precisely, the condition number κ(BαAα)
of BαAα for various grid refinement levels l and α =
1, 10−1, 10−2, 10−3, 10−4. (The mesh size h decreases as l
increases).

O(1), see Figure 6. We will return to this issue in the next section.
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Figure 6. The absolute value of the eigenvalues of BαAα,
sorted in increasing order, computed on mesh level l = 2 with
regularization parameter α = 10−1, 10−2. These results were
obtained for the model problem studied in Example 2.

If the α independent stopping rule (33) is used, then the workload in-
creases as α decreases, see Table 6. Nevertheless, the number of iterations
needed does not “explode” for small values of α. (The results presented in
Table 6 were generated with p∗ = 0 and a random initial guess p0 for the
minimal residual method).
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l \ α 1 10−1 10−2 10−3

0 32 100 358 588
1 28 71 237 771
2 26 54 188 895
3 28 53 179 688
4 29 46 150 494

Table 6. The number of preconditioned minimal residual it-
erations needed to solve the model problem studied in Exam-
ple 2. These results were generated with the α independent
stopping criterion (33). For α ≤ 10−4 instabilities occurred.
Here, l is the refinement level of the grid, i.e. the mesh size
h decreases as l increases.

4. Theoretical considerations

This section is devoted to a theoretical study of the preconditioning strat-
egy proposed and tested above. We have seen that the standard estimate
(32) cannot explain the results presented in tables 1 and 4. In order to ana-
lyze these observations, we will show that Aα is bounded, that the Babuška-
Brezzi conditions hold and characterize the eigenvalues of the preconditioned
operator BαAα. More specifically, it turns out that almost all of the eigen-
values are bounded independently of the mesh size h and the regularization
parameter α. This fact is combined with certain properties of Krylov sub-
space solvers to prove the main result of this paper; in the severely ill-posed
case the number of iterations needed by the minimal residual method to
solve (23) is bounded independently of h and cannot grow faster than of
order O((ln(α))2).

For the sake of convenience, we consider the finite dimensional case in
this section. That is,

dim(H1) = ν1 <∞,(45)

dim(H2) = ν2 <∞,(46)

dim(H3) = ν3 <∞,(47)

where ν1, ν2, ν3 are positive integers. Please keep in mind that we assume
that the operator norms of A, B and T are bounded independently of h and
α, see Assumption A5, and that the constants c1, c2, b4 and b5 in (5), (6)
and (7) do not depend on h or α.

If we introduce the notation

Mα =

[
αL 0
0 K

]
: X → X ′,(48)

N =
[
B A

]
: X → Y ′,(49)

f =

[
αLvprior
Qd

]
,
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then we can write (12) in the form: Find x = (x1, x2) ∈ X and y ∈ Y such
that

Mαx+N ′y = f,(50)

Nx = g.(51)

Please note that, for x = (x1, x2) ∈ X, z = (z1, z2) ∈ X, and y ∈ Y ,

〈Mαx, z〉 = α(x1, z1)H1
+ 〈Kx2, z2〉(52)

= α(x1, z1)H1
+ (Tx2, T z2)H3

,

〈Nx, y〉 = 〈Bx1, y〉+ 〈Ax2, y〉,(53)

and recall the definitions (19) and (21) of the ‖ · ‖X and ‖ · ‖Y norms.

4.1. Continuity. We will now show that the operators Mα and N are con-
tinuous and that the involved constants do not depend on the regularization
parameter α or on the mesh size h.

Lemma 4.1. The mappings Mα and N , defined in (48) and (49), satisfy

a) |〈Mαx, z〉| ≤ 2 ‖x‖X ‖z‖X for all x, z ∈ X,

b) |〈Nx, y〉| ≤ (‖B‖+ ‖A‖) ‖x‖X ‖y‖Y
≤ (b1 + b2) ‖x‖X ‖y‖Y for all x ∈ X and all y ∈ Y,

where ‖B‖ = ‖B‖L(H1,H′

2
) and ‖A‖ = ‖A‖L(H2,H′

2
) denote the operator

norms of B and A, and b1 and b2 are independent of h and α (see As-
sumption A5).

Proof. Let x, z ∈ X be arbitrary. The triangle and Cauchy-Schwarz inequal-
ities imply that

|〈Mαx, z〉| ≤ α|(x1, z1)H1
|+ |(Tx2, T z2)H3

|
≤

√
α‖x1‖H1

√
α‖z1‖H1

+ ‖Tx2‖H3
‖Tz2‖H3

≤ ‖x‖X ‖z‖X + ‖x‖X ‖z‖X
= 2‖x‖X ‖z‖X ,

which finishes the proof of part a).
Part b) is a consequence of the assumed boundedness of the operators A

and B present in the state equation (2);

|〈Nx, y〉| ≤ |〈Bx1, y〉|+ |〈Ax2, y〉|
≤ ‖B‖ ‖x1‖H1

‖y‖H2
+ ‖A‖ ‖x2‖H2

‖y‖H2

= ‖B‖
√
α‖x1‖H1

1√
α
‖y‖H2

+ ‖A‖
√
α‖x2‖H2

1√
α
‖y‖H2

≤ ‖B‖ ‖x‖X ‖y‖Y + ‖A‖ ‖x‖X ‖y‖Y
= (‖B‖+ ‖A‖) ‖x‖X ‖y‖Y .

�

From this lemma it follows that Aα : X × Y → (X × Y )′ is bounded
(uniformly with respect to α and h).
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4.2. Babuška-Brezzi conditions. The purpose of this section is to show
that Mα is coercive on the kernel of N and that the famous inf-sup condi-
tion for saddle point problems is satisfied. It turns out that the coercivity
condition holds independently of the regularization parameter α and that
the inf-sup condition involves a constant of order O(

√
α). The details are

as follows:

Lemma 4.2. There exists a constant c3, independent of α and h, such that

〈Mαz, z〉 ≥ c3‖z‖2X for all z ∈ Z = {z ∈ X; Nz = 0},

where Mα is defined in (48).

Proof. This inequality is a consequence of the assumed well-posedness of the
state equation (2). More precisely, let z = (z1, z2) ∈ X be such that Nz = 0,
i.e.

Az2 = −Bz1.
Then (6) implies that

(54) ‖z2‖H2
≤ c2‖z1‖H1

,

and from (52) and (54) we find that

〈Mαz, z〉 = α‖z1‖2H1
+ ‖Tz2‖2H3

≥ α

2
‖z1‖2H1

+
α

2c22
‖z2‖2H2

+ ‖Tz2‖2H3

≥ c3
(
α‖z1‖2H1

+ α‖z2‖2H2
+ ‖Tz2‖2H3

)

= c3‖z‖2X ,

where

c3 =
1

2
min

(
1,

1

c22

)
.

�

Lemma 4.3. There exists a constant c4 > 0 such that the operator N , see
(49), satisfies

inf
y∈Y

sup
x∈X

〈Nx, y〉
‖x‖X‖y‖Y

≥ c4
√
α,

provided that 0 < α ≤ 1.

Proof. Let y ∈ Y be arbitrary and define

x̂ = (0, y) ∈ X,

see (18) and (20). Clearly,

sup
x∈X

〈Nx, y〉
(‖x‖X ‖y‖Y )

≥ 〈Nx̂, y〉
(‖x̂‖X ‖y‖Y )

and

〈Nx̂, y〉 = 〈B0, y〉 + 〈Ay, y〉 = 〈Ay, y〉 ≥ c1‖y‖2H2
,
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see Assumption A2 (inequality (5)). Furthermore, for α ∈ (0, 1],

‖x̂‖X ‖y‖Y = ‖(0, y)‖X ‖y‖Y

=
[
α‖y‖2H2

+ ‖Ty‖2H3

] 1
2

[
1

α
‖y‖2H2

] 1

2

≤
[
α‖y‖2H2

+ ‖T‖2 ‖y‖2H2

] 1
2

[
1

α
‖y‖2H2

] 1

2

≤
√

1 + ‖T‖2 ‖y‖2H2

1√
α
.

We can thus conclude that

〈Nx̂, y〉
‖x̂‖X‖y‖Y

≥
c1‖y‖2H2√

1 + ‖T‖2 ‖y‖2H2

1√
α

=
c1√

1 + ‖T‖2
√
α.

Since y ∈ Y was arbitrary, it follows that

inf
y∈Y

sup
x∈X

〈Nx, y〉
‖x‖X‖y‖Y

≥ c4
√
α,

where, see Assumption A5,

c4 =
c1√
1 + b23

.

�

From lemmas 4.1, 4.2 and 4.3 it follows that

(55) Aα =

[
Mα N ′

N 0

]

defines an isomorphism between X × Y and its dual X ′ × Y ′, see e.g. [16].
Furthermore, these standard results also provide upper bounds for the op-
erator norms of Aα and A−1

α :

Theorem 4.1. The operator Aα defined in (55) defines an isomorphism
between X × Y and its dual X ′ × Y ′. Furthermore

(56) ‖Aα‖L(X×Y,X′×Y ′) ≤ c5 and ‖A−1
α ‖L(X′×Y ′,X×Y ) ≤ c6

1

α
,

where c5, c6 > 0 do not depend on the regularization parameter α or on the
mesh size h.

This theorem indicates that the boundedness of A−1
α deteriorates as α→ 0,

which is consistent with the ill-posed nature of the underlying PDE con-
strained optimization problem.
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4.3. An auxiliary operator. Our analysis of the eigenvalue distribution
of BαAα is based on the properties of the auxiliary operator

(57) Âα =



αL 0 B′

0 K A′ + 1
αK

′

B A+ 1
αK 0


 ,

which we may write in the form

Âα =

[
Mα N̂ ′

N̂ 0

]
,

where

(58) N̂ =
[
B A+ 1

αK
]
: X → Y ′

and Mα is defined in (48).

For Âα we can prove an inf-sup condition which is independent of α.

Lemma 4.4. Assume that assumptions A1-A6 hold. Then there exists a
constant c12 > 0, independent of α and h, such that

inf
y∈Y

sup
x∈X

〈N̂x, y〉
‖x‖X‖y‖Y

≥ c12.

Proof. As in the proof of Lemma 4.3, let y ∈ Y be arbitrary and note that

x̂ = (0, y) ∈ X.

Clearly

sup
x∈X

〈N̂x, y〉
(‖x‖X ‖y‖Y )

≥ 〈N̂ x̂, y〉
(‖x̂‖X ‖y‖Y )

and

〈N̂ x̂, y〉 = 〈B0, y〉+ 〈Ay, y〉+ 〈 1
α
Ky, y〉

= 〈Ay, y〉+ 1

α
〈Ky, y〉

≥ c1‖y‖2H2
+

1

α
‖Ty‖2H3

,

cf. inequality (5) and the definition (14) of K.
Note that

‖x̂‖2X ‖y‖2Y = ‖(0, y)‖2X ‖y‖2Y
=

[
α‖y‖2H2

+ ‖Ty‖2H3

] [ 1
α
‖y‖2H2

]

= ‖y‖4H2
+

1

α
‖Ty‖2H3

‖y‖2H2

≤ ‖y‖4H2
+

1

α
‖Ty‖2H3

‖y‖2H2
+

1

α2
‖Ty‖4H3

≤
(
‖y‖2H2

+
1

α
‖Ty‖2H3

)2

.
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We can thus conclude that

〈Nx̂, y〉
‖x̂‖X‖y‖Y

≥
c1‖y‖2H2

+ 1
α‖Ty‖2H3

‖y‖2H2
+ 1

α‖Ty‖2H3

≥ min{c1, 1}.
Finally, because y ∈ Y was arbitrary, it follows that

inf
y∈Y

sup
x∈X

〈N̂x, y〉
‖x‖X‖y‖Y

≥ c12.

�

On the other hand, N̂ is not bounded independently of the regularization
parameter α:

|〈N̂x, y〉| ≤ |〈Bx1, y〉|+ |〈Ax2, y〉|+
1

α
|(Tx2, T y)H3

|

≤ ‖B‖ ‖x1‖H1
‖y‖H2

+ ‖A‖ ‖x2‖H2
‖y‖H2

+
1

α
‖T‖2 ‖x2‖H2

‖y‖H2

= ‖B‖
√
α‖x1‖H1

1√
α
‖y‖H2

+

(
‖A‖+ 1

α
‖T‖2

) √
α‖x2‖H2

1√
α
‖y‖H2

≤ ‖B‖ ‖x‖X ‖y‖Y +

(
‖A‖+ 1

α
‖T‖2

)
‖x‖X ‖y‖Y

=

(
‖B‖+ ‖A‖ + 1

α
‖T‖2

)
‖x‖X ‖y‖Y .

From these considerations and Theorem 1.1 on page 42 in [21] we obtain
the following lemma:

Lemma 4.5. There exist constants C2 and C3, which are independent of h
and α, such that

‖Âα‖L(X×Y,X′×Y ′) ≤ C2
1

α
and ‖Âα

−1‖L(X′×Y ′,X×Y ) ≤ C3,

where Âα is the operator defined in (57).

4.4. Distribution of eigenvalues. We will now analyze the distribution
of the eigenvalues of the preconditioned operator BαAα and use it to char-
acterize the convergence properties of the minimal residual method.

Recall the definition (24) of the preconditioner Bα and the definition (18)-
(21) of the Hilbert spaces X and Y . It follows that Bα defines an isomor-
phism between X ′ × Y ′ and X × Y and that

(59) ‖Bα‖L(X′×Y ′,X×Y ) ≤ c7 and ‖B−1
α ‖L(X×Y,X′×Y ′) ≤ c8,

where c7, c8 > 0 are independent of α and h.
We now use (56) and (59) to bound the eigenvalues of BαAα:

Theorem 4.2. Let Aα and Bα be the operators defined in (55) and (24),
respectively. The eigenvalues of the preconditioned operator BαAα satisfy
the bound

c9α ≤ |λ| ≤ c10 for all λ ∈ sp(BαAα),

where c9, c10 > 0 do not depend on α or h and sp(BαAα) denotes the spec-
trum of BαAα.
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Proof. Assume that λ, q is an eigenvalue, eigenvector pair of BαAα, i.e.

BαAαq = λq.

Then

‖BαAαq‖X×Y = |λ|‖q‖X×Y

and

|λ| = ‖BαAαq‖X×Y

‖q‖X×Y
≤

‖Bα‖L(X′×Y ′,X×Y ) ‖Aα‖L(X×Y,X′×Y ′) ‖q‖X×Y

‖q‖X×Y
≤ c7 c5,

where the last inequality follows from (59) and (56).
Furthermore, since

1

λ
q = A−1

α B−1
α q,

we find that
1

|λ| ‖q‖X×Y = ‖A−1
α B−1

α q‖X×Y

≤ ‖A−1
α ‖L(X′×Y ′,X×Y ) ‖B−1

α ‖L(X×Y,X′×Y ′) ‖q‖X×Y

≤ c6
1

α
c8‖q‖X×Y .

Consequently

|λ| ≥ α

c6c8
,

which finishes the proof. �

From Theorem 4.2 we find that the spectral condition number κ(BαAα)
of BαAα is of order O(α−1):

Corollary 4.1. Let Aα and Bα be the operators defined in (55) and (24),
respectively. Then

κ(BαAα) =
maxλ∈sp(BαAα) |λ|
minλ∈sp(BαAα) |λ|

≤ c11
α
.

This bound is certainly consistent with the results reported in Table 5.
(The condition numbers associated with the problem studied in Example
1 increase slower as α decreases, see Table 2). In view of the numbers
presented in tables 1 and 4, Corollary 4.1 and the classical error estimate
for the minimal residual method (32) provide a pessimistic bound for the
number of Krylov subspace iterations needed to solve (23). A more careful
study of the distribution of the eigenvalues of BαAα is required.

The next step in our analysis is to write BαAα in the form

(60) BαAα = Bα

(
Âα +Kα

)
= BαÂα + BαKα,

where Âα is defined in (57) and

(61) Kα =




0 0 0
0 0 − 1

αK
′

0 − 1
αK 0


 .

More precisely, first we show that the absolute value of the eigenvalues of

BαÂα is bounded below independently of α and h. Thereafter the decay of
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the eigenvalues of BαKα is discussed, and finally we use a theorem due to
Hermann Weyl to reveal the basic properties of the spectrum of BαAα.

4.4.1. Eigenvalues of BαÂα. Recall that

‖Bα‖L(X′×Y ′,X×Y ), ‖B−1
α ‖L(X×Y,X′×Y ′) and ‖Âα

−1‖L(X′×Y ′,X×Y )

are bounded independently of h and α and that

‖Âα‖L(X′×Y ′,X×Y ) ≤ C2α
−1,

cf. Lemma 4.5. Therefore, analogous to the arguments shown in the proof
of Theorem 4.2, we can obtain the following lemma:

Lemma 4.6. The eigenvalues of the operator BαÂα satisfy the bound

C4 ≤ |γ| ≤ C5
1

α
for all γ ∈ sp(BαÂα),

where Bα and Âα are the operators defined in (24) and (57), respectively.
Here, C4 and C5 are positive constants that do not depend on α or h.

Note the difference between Theorem 4.2 and Lemma 4.6: The absolute
value of the eigenvalues of BαAα are bounded above independently of α,

whereas the absolute value of the eigenvalues of BαÂα are bounded below
independently of α. These facts turn out to be crucial in our analysis.

4.4.2. Eigenvalues of BαKα. We now turn our attention to the properties of
BαKα. From the definition (14) of K we find that K ′ = K, where

K ′ : H2 → H ′
2, u→ (Tφ, Tu)H3

= (T ∗Tu, φ)H2
∀φ ∈ H2.

This means that

BαKα =




0 0 0
0 0 −(αQ2 +K)−1 1

αK
0 −αQ−1

2
1
αK 0




=




0 0 0
0 0 −(αQ2 +K)−1 1

αK

0 −Q−1
2 K 0


 ,(62)

see (24) and (61). We will now characterize the properties of Q−1
2 K : H2 →

H2 and (αQ2 + K)−1K : H2 → H2 and use that information to explore
BαKα.

Please note that all the eigenvalues of Q−1
2 K must be larger or equal to

zero: If σ̃i, xi is an eigenvalue, eigenfunction pair of Q−1
2 K, i.e.

(63) Q−1
2 Kxi = σ̃ixi,

then
Kxi = σ̃iQ2xi

which implies that
〈Kxi, xi〉 = σ̃i〈Q2xi, xi〉.

From (25) and the fact that 〈Kx, x〉 ≥ 0 for all x ∈ H2 we find that σ̃i must
be non-negative.

Next,
(αI +Q−1

2 K)xi = (α+ σ̃i)xi,



26 BJØRN FREDRIK NIELSEN AND KENT-ANDRE MARDAL

and hence

(64) (αI +Q−1
2 K)−1xi =

1

α+ σ̃i
xi.

Clearly

(αQ2 +K)−1 = [Q2(αI +Q−1
2 K)]−1 = (αI +Q−1

2 K)−1Q−1
2 ,

which together with (63) and (64) imply that

(αQ2+K)−1Kxi = [(αI+Q−1
2 K)−1][Q−1

2 K]xi =
σ̃i

α+ σ̃i
xi for i = 1, 2, . . . , ν2,

and furthermore

(65) [(αQ2 +K)−1K][Q−1
2 K]xi =

σ̃2i
α+ σ̃i

xi for i = 1, 2, . . . , ν2.

Here, σ̃i, xi for i = 1, 2, . . . , ν2 are the eigenvalue, eigenfunction pairs of
Q−1

2 K.
We are now in the position to find formulas for the eigenvalues of BαKα.

Assume that

BαKα



vi
ui
wi


 = βi



vi
ui
wi


 ,

that is, see (62),

− 1

α
(αQ2 +K)−1Kwi = βiui

−Q−1
2 Kui = βiwi,

or

[(αQ2 +K)−1K][Q−1
2 K]ui = αβ2i ui

wi = − 1

βi
Q−1

2 Kui,

provided that βi 6= 0. By invoking (65) and (63) we find that

ui = xi, wi = − σ̃i
βi
xi, and αβ2i =

σ̃2i
α+ σ̃i

.

Consequently,

β2i =
1

α

(
σ̃2i

α+ σ̃i

)
≤ σ̃2i
α2
,

where we have used the fact that σ̃i ≥ 0. We hence conclude that

(66) |βi| ≤
σ̃i
α

for i = 1, 2, . . . , ν2.

That is, ν2 of the eigenvalues of BαKα are “inherited” from Q−1
2 K, and the

dimension of the null space of BαKα is at least ν1 + ν2, see (45)-(47).
Since σ̃i is an eigenvalue of Q−1

2 K we need to understand more about this
operator in order to fully characterize the spectrum of BαKα. To this end,
recall the definition (14) of K and that, in the infinite dimensional case, 0 is
a cluster point for the eigenvalues of T ∗T : H2 → H2, cf. Section 2. Clearly,

K = J2T
∗T,
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where J2 : H2 → H ′
2 denotes the Riesz map. Note that

Q−1
2 K = (Q−1

2 J2)(J
−1
2 K) = (Q−1

2 J2)(T
∗T )

and that (Q−1
2 J2) : H2 → H2 is bounded and continuously invertible, cf.

(24)-(25). In the infinite dimensional case it therefore follows that the ill-
posedness of the equation

T ∗Tx = y

is inherited by

Q−1
2 Kx = Q−1

2 J2y.

That is, the decay of the eigenvalues of T ∗T and Q−1
2 K are closely related.

Finite dimensional problems are more subtle since linear operators on
finite dimensional spaces always are continuously invertible on the orthogo-
nal complement of their null space. However, it seems reasonable to assume
that the discretized operators inherit the basic properties of their continuous
counterparts, and we therefore make the following assumption:

A8: In the finite dimensional case we assume that the eigenvalues σ̃1 ≥
σ̃2 ≥ . . . ≥ σ̃ν2 of Q−1

2 K : H2 → H2 satisfy

(67) 0 ≤ σ̃i ≤ b8 e
−b9i for i = 1, 2, . . . , ν2.

Here, b8 and b9 are positive constants not depending on ν2 = dim(H2) <
∞, h or α.

For mildly ill-posed problems we must of course make an analogous assump-
tion. Further details concerning such cases can be found in Appendix B.

From (66) and Assumption A8 we conclude that the eigenvalues1

(68) |β̃1| ≥ |β̃2| ≥ . . . ≥ |β̃n|
of BαKα must satisfy

(69) 0 ≤ |β̃i| ≤
1

α
b8e

−b9i for i = 1, 2, . . . , n.

Here, n is the dimension of X × Y , i.e. n = ν1 + ν2 + ν2, cf. (45)-(47).

4.4.3. Eigenvalues of BαAα. We will now employ Theorem 4.2, Lemma 4.6,
inequalities (69) and a theorem characterizing the spectrum of sums of self-
adjoint2 operators to reveal the structure of the eigenvalue distribution of
BαAα. To this end, let

• λ1 ≥ λ2 ≥ . . . λn denote the eigenvalues of BαAα,

• γ1 ≥ γ2 ≥ . . . γn denote the eigenvalues of BαÂα,
• β1 ≥ β2 ≥ . . . βn denote the eigenvalues of BαKα. (In contrast to
(68), now sorted with respect to value).

Keep in mind that

|λi| ≤ c10 and |γi| ≥ C4 for i = 1, 2, . . . , n,

where c10 and C4 are independent of α and h, cf. Theorem 4.2 and Lemma
4.6.

1We order these eigenvalues with respect to absolute value.
2Please note that BαAα, BαÂα and BαKα are self-adjoint operators with respect to

the inner product (x, y) = 〈B−1

α x, y〉, cf. the discussion of the preconditioner (24).
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Inequalities (69) imply that a majority of the eigenvalues of BαKα are, in
the sense of absolute value, very small. Let m be the integer such that

(70) . . . |β̃m−1| ≥ |β̃m| > C4

2
≥ |β̃m+1| ≥ |β̃m+2| ≥ . . . ,

where C4 is the constant present in Lemma 4.6. In fact, from (69) we obtain
the following bound for m in terms of α

(71) m ≤
⌈
C6 − ln(α)

b9

⌉
,

where C6 = ln(2) + ln(b8)− ln(C4). Here, dae, for a real number a, denotes
the smallest integer ≥ a.

Recall that BαAα = BαÂα + BαKα. According to [28] (page 255) and/or
[51]:

(72) λi+j−1 ≤ γi + βj for i+ j − 1 ≤ n,

and, since BαÂα = BαAα −BαKα,

γi+j−1 ≤ λj − βn−i+1 for i+ j − 1 ≤ n

or

(73) λj ≥ γi+j−1 + βn−i+1 for i+ j − 1 ≤ n.

We are now in the position to prove the following result:

Theorem 4.3. Assume that A1-A6, A8 hold and let

(74) q = 2

⌈
C6 − ln(α)

b9

⌉
.

Then there exist real numbers λ̃1, λ̃2, . . . , λ̃q, possibly depending on α and h,
such that the spectrum sp(BαAα) of BαAα satisfies

(75) sp(BαAα) ⊆
(
∪q
i=1{λ̃i}

)
∪ [−C7,−C8] ∪ [C8, C7].

The constants C7 and C8 are independent of α and h.

Proof. First, in Theorem 4.2 we proved that

(76) |λi| ≤ c10 for i = 1, 2, . . . , n,

and hence we may choose C7 = c10.
Let l be the integer such that

(77) γ1 ≥ γ2 ≥ . . . ≥ γl ≥ 0 > γl+1 ≥ . . . ≥ γn,

where {γi}ni=1 are the eigenvalues of BαÂα. Note that Lemma 4.6 implies
that

(78) γl ≥ C4 and γl+1 ≤ −C4.

For j = l − i+ 1 it follows from inequality (73) that

λl−i+1 ≥ γl + βn−i+1 for i = 1, 2, . . . , l,

and by employing (78):

(79) λl−i+1 ≥ C4 + βn−i+1 for i = 1, 2, . . . , l.
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Consequently, from (70) we conclude that

(80) At most m of the eigenvalues λ1, λ2, . . . , λl are smaller than C4

2 .

By choosing i = l + 1 in (72) we find that

λl+j ≤ γl+1 + βj for l + j ≤ n,

or

λl+j ≤ −C4 + βj for j = 1, . . . , n− l,

where we have used (78). Hence, (70) yields that

(81) At most m of the eigenvalues λl+1, λ2, . . . , λn are larger than −C4

2 .

From (76), (80) and (81) it follows that at most 2m of the eigenvalues of
BαAα are outside the set [−C7,−C4/2] ∪ [C4/2, C7]. The theorem is now a
consequence of the bound (71) for m. �

Thus, the number of eigenvalues outside the set [−C7,−C8] ∪ [C8, C7]

grows at most logarithmically as α decreases. We will refer to λ̃1, λ̃2, . . . , λ̃q
as isolated eigenvalues. This is certainly in agreement with what we observed
in figures 2 and 6.

4.5. Convergence properties. Convergence properties of iterative
schemes for linear systems with isolated eigenvalues have been analyzed by,
among others, Andersson, Axelsson and Lindskog [2, 6, 7]. However, as
far as the authors know, such results have so far not been presented for the
minimal residual method. To prove the main result of this paper we combine
techniques from Axelsson and Lindskog [6, 7] and Hackbusch [31]. The
following theorem states that the order of the number of iterations needed
cannot be any worse than O

(
(ln(α))2

)
, provided that the convergence is

measured in the energy norm.

Theorem 4.4. Let p∗ denote the solution of (23), assume that assumptions
A1-A6 and A8 hold, and let ε > 0 be a given error tolerance. If

k ≥ 2

ln(η−1)

{
ln

(
2

ε

)
+ 2

⌈
C6 − ln(α)

b9

⌉
(ln(c17)− ln(α))

}

+2

⌈
C6 − ln(α)

b9

⌉
+ 4

then

‖pk − p∗‖E,α

‖p0 − p∗‖E,α
=

(〈Aα(pk − p∗),BαAα(pk − p∗)〉
〈Aα(p0 − p∗),BαAα(p0 − p∗)〉

)1/2

≤ ε

where pk is the kth approximation of p∗ generated by the minimal residual
method applied to (23). The constants C6, b9, c17 and η do not depend on
the regularization parameter α or on the mesh size h.

Proof. According to Hackbusch [31], see page 287,

(82)
‖pk − p∗‖E,α

‖p0 − p∗‖E,α
≤ min

Φk∈Πk

max
λ∈sp(BαAα)

|Φk(λ)|,

where Πk is the set of all polynomials of degree ≤ k with Φk(0) = 1.
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Recall the distribution (75) of the eigenvalues of BαAα. Let

l = dk/2e − 1,

c14 = C2
8 ,

c15 = C2
7 ,

and consider the polynomial

Φ∗
l−dq/2e(x; c14, c15) =

Tl−dq/2e
(
c15+c14−2x
c15−c14

)

Tl−dq/2e
(
c15+c14
c15−c14

) ,

where q is the number of isolated eigenvalues in (75) and Tl−dq/2e is the
Chebyshev polynomial of order l − dq/2e. It is well known that, see e.g.
Axelsson and Lindskog [7] and references therein,

(83) max
x∈[c14,c15]

|Φ∗
l−dq/2e(x; c14, c15)| = 2

ηl−dq/2e

1 + η2l−2dq/2e ≤ 2ηl−dq/2e,

where

η =

(
1−

√
c14
c15

)
/

(
1 +

√
c14
c15

)
∈ (0, 1).

Please observe that

λ ∈ [−C7,−C8] ∪ [C8, C7] ⇒ λ2 ∈ [C2
8 , C

2
7 ] = [c14, c15]

and that Φ∗
l−dq/2e(λ

2; c14, c15) is of degree 2l−2dq/2e ≤ k−q. Consequently,
the polynomial

Ψk(λ) =

[
q∏

i=1

(
1− λ

λ̃i

)]
Φ∗
l−dq/2e(λ

2; c14, c15)

is in Πk and satisfies

Ψk(λ̃i) = 0 for i = 1, 2, . . . , q.

Furthermore, from (83) we find that

max
λ∈sp(BαAα)

|Ψk(λ)| ≤ max
λ∈(∪q

i=1
λ̃i)∪[−C7,−C8]∪[C8,C7]

|Ψk(λ)|

= max
λ∈[−C7,−C8]∪[C8,C7]

|Ψk(λ)|

≤
[

q∏

i=1

max
λ∈[−C7,C7]

∣∣∣∣1−
λ

λ̃i

∣∣∣∣

]
max

λ2∈[c14,c15]
|Φ∗

l−dq/2e(λ
2; c14, c15)|

≤ 2

[
q∏

i=1

c16

|λ̃i|

]
ηl−dq/2e

≤ 2

(
c16
c9α

)q

ηdk/2e−1−dq/2e,

where the last inequality follows from Theorem 4.2 and c16 = 2C7.
Clearly,

2

(
c16
c9α

)q

ηdk/2e−1−dq/2e ≤ ε
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if

k ≥ 2

ln(η−1)

(
ln

(
2

ε

)
+ q(ln(c16)− ln(c9α))

)
+ q + 4

=
2

ln(η−1)

{
ln

(
2

ε

)
+ 2

⌈
C6 − ln(α)

b9

⌉
(ln(c16)− ln(c9α))

}

+2

⌈
C6 − ln(α)

b9

⌉
+ 4,(84)

where (74) is used in the last equality. Since Ψk ∈ Πk the theorem is now a
consequence of (82). �

Theorem 4.4 was derived assuming that the eigenvalues of T ∗T satisfy (7),
i.e. we considered the severely ill-posed case. Our argument can be modified
in a rather straightforward manner to also cover mildly ill-posed problems.
That is, to cases in which A6 is replaced by A7. In such situations the
number of iterations needed by the minimal residual method will not grow

faster than O(−α−1/ξ̃ ln(α)). The result is thus somewhat weaker for mildly
ill-posed problems, which might surprise some readers. Further details about
this topic can be found in Appendix B.
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Appendix A

In this section we use the notation introduced in Section 3.2 for Example

2. Our goal is to prove that R(Ã−1B̃) =W and that Ã−1B̃ is a one-to-one
mapping. To this end, let us analyze the bilinear form

a(ψ, φ) =

∫

H

(
Mi∇(R̃ψ)

)
· ∇(R̃φ) dx for ψ, φ ∈ H̃1(P )

associated with the right hand side of the state equation (41). Since H ⊂ P ,
assumptions (36)-(38) imply that a(·, ·) is continuous.

In the first part of this proof we will show that a(·, ·) is coercive on W ×
W ⊂ H̃1(P )× H̃1(P ). Let w ∈W be arbitrary. From the definition (44) of
W it follows that q = w|G is the weak solution of

∇ · (M∇q) = 0 in G,

q = ER̃w on ∂H,

(M∇q) · n = 0 on ∂P,

where n is the outwards directed normal vector of unit length of ∂P and
E : H1(H) → H1/2(∂H) is the trace operator. It thus follows that q̄ = w̄|G,
where

w̄ = w − 1

|H|

∫

H
w dx,
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is the weak solution of

∇ · (M∇q̄) = 0 in G,

q̄ = ER̃w̄ on ∂H,

(M∇q̄) · n = 0 on ∂P.

Classical stability estimates for elliptic PDEs, the trace theorem and Poincaré’s
inequality imply that

‖q̄‖H1(G) ≤ ‖ER̃w̄‖H1/2(∂H) ≤ ‖E‖ ‖w̄‖H1(H) ≤ C‖E‖ |w̄|H1(H),

from which we conclude that

|w|H1(G) ≤ C‖E‖ |w|H1(H).

The coercivity of a(·, ·) on W ×W is now a consequence of (36)-(38).
In the second part of this proof we consider an arbitrary τ ∈W . Assump-

tions (36)-(38) assert that

φ→ −
∫

P
(M∇τ) · ∇φdx

is a bounded linear functional onW . Standard theory therefore implies that
the following problem has a unique solution: Find s ∈W such that

(85)

∫

H

(
Mi∇(R̃s)

)
· ∇(R̃φ) dx = −

∫

P
(M∇τ) · ∇φdx for all φ ∈W.

Furthermore, since H̃1(P ) = W ⊕ V , see (42), (43) and (44), every φ ∈
H̃1(P ) can be written in a unique way as φ = φW +φV , where φW ∈W and
φV ∈ V . Since φV = 0 on the heart H, it follows that
∫

H

(
Mi∇(R̃s)

)
·∇(R̃φ) dx =

∫

H

(
Mi∇(R̃s)

)
·∇(R̃φW ) dx for all φ ∈ H̃1(P ).

Recall that τ ∈W = V ⊥, and therefore
∫

P
(M∇τ) · ∇φdx =

∫

P
(M∇τ) · ∇φW dx for all φ ∈ H̃1(P ).

Equation (85) is thus not only valid for all φ ∈W , but for all φ ∈ H̃1(P );

(86)

∫

H

(
Mi∇(R̃s)

)
·∇(R̃φ) dx = −

∫

P
(M∇τ)·∇φdx for all φ ∈ H̃1(P ).

This means that Ã−1B̃R̃s = τ , and, due to the fact that τ ∈ W was

arbitrary, we conclude that R(Ã−1B̃) = W . The one-to-one property of

Ã−1B̃ : H1(H) →W follows from the uniqueness of the solution of (85).

Appendix B

This appendix is devoted to mildly ill-posed cases. If A6 is replaced by A7
then the integer m in (70) will become larger. Consequently, the number q of
isolated eigenvalues of BαAα in Theorem 4.3 will grow. Our result for mildly
ill-posed problems is therefore weaker than for severely ill-posed cases.
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The details are as follows. If A7 holds then we may use (8) and an
argument similar to that presented in Section 4.4.2 to conclude that the
eigenvalues

|β̃1| ≥ |β̃2| ≥ . . . ≥ |β̃n|
of BαKα must satisfy

0 ≤ |β̃i| ≤
1

α
b10 i

−ξ̃ for i = 1, 2, . . . , n.

This gives us the following bound for the integer m defined in (70):

m ≤ db11α−1/ξ̃e,
where

b11 =

(
2b10
C4

)1/ξ̃

.

The formula for the integer q in Theorem 4.3 therefore reads

(87) q = 2
⌈
b11α

−1/ξ̃
⌉
.

Please note that (75) still holds, but with q given by (87).
Concerning the proof of Theorem 4.4, the only modification needed occurs

in connection with (84). More specifically, from (87) it follows that: If

k ≥ 2

ln(η−1)

(
ln

(
2

ε

)
+ q(ln(c16)− ln(c9α))

)
+ q + 4(88)

=
2

ln(η−1)

{
ln

(
2

ε

)
+ 2

⌈
b11α

−1/ξ̃
⌉
(ln(c16)− ln(c9α))

}

+2
⌈
b11α

−1/ξ̃
⌉
+ 4,

then
‖pk − p∗‖E,α

‖p0 − p∗‖E,α
=

(〈Aα(pk − p∗),BαAα(pk − p∗)〉
〈Aα(p0 − p∗),BαAα(p0 − p∗)〉

)1/2

≤ ε,

The number of iterations needed for mildly ill-posed problems, by the mini-

mal residual method, can therefore not grow faster than of orderO(−α−1/ξ̃ ln(α)).

References

[1] S. S. Adavani and G. Biros. Multigrid algorithms for inverse problems with linear
parabolic PDE constraints. To appear in SIAM Journal on Scientific Computing,
2008.

[2] L. Andersson. SSOR preconditioning of Toeplitz matrices. PhD thesis, Chalmers Uni-
versity of Technology, Göteborg, Sweden, 1976.
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lag, Basel, 1998.

[9] A. Battermann and E. W. Sachs. Block preconditioners for KKT systems in PDE-
governed optimal control problems. In K. H. Hoffmann, R. H. W. Hoppe, and
V. Schulz, editors, Workshop on Fast Solutions of Discretized Optimization Problems,
volume 138 of International Series of Numerical Mathematics, pages 1–18. Birkhäuser
Verlag, Basel, 2001.

[10] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[11] A. Borz̀ı. Multigrid methods for optimality systems. University of Graz, 2003. Habil-
itation Thesis.

[12] A. Borz̀ı and K. Kunisch. The numerical solution of the steady state solid fuel ignition
model and its optimal control. SIAM Journal on Scientific Computing, 22(1):263–284,
2000.

[13] A. Borz̀ı and K. Kunisch. A multigrid scheme for elliptic constrained optimal control
problems. Computational Optimization and Applications, 31(3):309–333, 2005.

[14] A. Borz̀ı, K. Kunisch, and Do Y. Kwak. Accuracy and convergence properties of the
finite difference multigrid solution of an optimal control optimality system. SIAM

Journal on Control and Optimization, 41(5):1477–1497, 2003.
[15] A. Borzi and V. Schulz. Multigrid methods for PDE optimization. SIAM review,

51(2):361–395, 2009.
[16] D. Braess. Finite elements. Theory, Fast Solvers, and Applications in Solid Mechan-

ics. Cambridge University Press, second edition, 2001.
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[51] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-

ferentialgleichungen. Mathematische Annalen, 71(4):441–479, 1912.
[52] G. Wittum. Multigrid methods for Stokes and Navier-Stokes equations. Numerische

Mathematik, 54(5):543–564, 1989.

Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway. Email:

bjornn@simula.no, kent-and@simula.no


