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Abstract

The main objective with this thesis is to derive drag force reduction, for moderate
Reynolds numbers, when a microscopic rough surface of height ¢ is introduced over a
flat plate. Such a problem is often impossible to treat with numerical methods since the
microscopic scale is much smaller than the macroscopic scale which is present in the
same equation. To overcome this problem, a homogenization process is performed on
the rough surface and an effective (approximate) equation is obtained, which is an O(g?)
approximation. This effective equation describes the flow at the macroscopic scale but it
captures the flow characteristics in the microscopic scale through a constant coefficient
operator. Given the effective equation, the drag force reduction is then derived.
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Chapter 1

Introduction

It is well known that in a turbulent flow there exists a huge range of different scales
of motion. These different scales of motion contributes to different characteristics of the
flow. The largest, energy containing, scales are gigantic in comparison with the smallest,
dissipative, scales. Interaction between these scales are crucial in the understanding how
the flow behaves.

A typical example when these different scales interact is in the flow sourounding a
golf ball. If we take a closer look at the golf ball, the surface is perforated and we see that
the indentions in the center are slightly deeper than those at the poles. The corresponding
wake behind the golf ball is dramatically changed if we compare it to a flat ball of the
same size. We also know that the golf ball, with a proper backspin, would never fly as far
as it does without the dimpled surface. Thus we can conclude that a rough surface can
have a lower drag force than a smooth one.

During the last decade we have seen an increasing scientific interest in rough surfaces
that reduces the drag. The most well known example of such a surface is the shark skin.
Sharks belongs to one of the oldest living species and through millions of years of evolu-
tion, they have developed a drag reducing skin. The skin consists of dermal denticles (see
figure 1.1) where the smallest structures are in the range of 0.01-0.1mm.

Figure 1.1: The shark skin consists of small dermal denticles.
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In this thesis we try to explain why the drag reducing effect appears for a rough sur-
face. We do this by introducing a rough surface on a flat plate and then compare the drag
with corresponding flat plate. To be able to prove this, we make some restriction. First, we
only consider flows with moderate Reynolds numbers. Second, we do not consider flow
separation. Lastly, we consider only skin friction, not form drag.

The outline of this thesis is as follows. We start, in chapter 2, with an introduction
to homogenization theory. In chapter 3, we explore the theoretical frame work that is
needed throughout the thesis. Next, we describe the problem and the rough surface in
detail in chapter 4-5 and in chapter 6-9, we perform a homogenization process on the
rough surface. These chapters also include existence, uniqueness and convergence results
obtained in the homogenization process. In chapter 10, we explain the basic theory of
boundary-layers. Further, in chapter 11, we give the boundary-layer equation which is the
equation describing the flow at the tip of the rough surface. Next, in chapter 12, we present
the effective equation where the flow at the rough surface is replaced with an artificial
smooth boundary along with the constant coefficient operator. This operator captures the
flow characteristics at the rough surface and is evaluated at the artificial smooth boundary.
In chapter 13, we present numerical simulations of the constant coefficient operator C'¢
which is computed in Comsol Multiphysics. Finally, in chapter 14, we summarize the
main conclusions of this thesis.



Chapter 2

Homogenization Theory

The theory of homogenization deals with the study of processes which take place in
heterogenous periodic structures, such as flows over a (periodic) rough surface. In such
flows there exists (at least) two length scales: a microscopic scale associated with the
characteristic height of the rough surface and a macroscopic scale associated with the
mean flow. When the rough surface is very small compared to the macroscopic mean flow
(such as in the case when riblets are attached to air planes) it is natural to introduce a small
parameter € which is the ratio between the scales.

Quite often, the mathematical model describing the phenomena in the microscopic
structures is given by some physics law involving the parameter €. For small values of
¢ the numerical treatment of the macroscopic model is very difficult, often impossible.
On the other hand, in applications, one usually is not interested in what happens exactly
on the microscopic scale; one rather needs macroscopic (effective) approximations which
take into account the local effects.

The process of homogenization consist in deriving such macroscopic descriptions
by performing an asymptotic analysis with the scale parameter ¢ tending to zero. More
precisely, we start with family of operators A, depending on &, whose coefficients are
periodic functions on a domain 2. The law which includes the microscopic variation is
given by the e-problem:

Au. = f inQ

with u. subjected to appropriate boundary conditions. The method of homogenization

leads to a macroscopic law
Agug = f inQ

with a constant coefficient operator .4, (in this thesis our constant coefficient operator will
turn out to be the Navier constant C,). This macroscopic law, together with appropriate
boundary conditions for ug, determines a unique macroscopic approximation for wu., with
the property that the sequence u. tends to 1 in properly chosen function spaces as ¢ — 0.
Next, one has to study the accuracy of the approximation vy by giving estimates on the
rate of convergence.
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Chapter 3

Theoretical Framework

In order to study homogenization processes, we need to consult the tools developed
in functional analysis and theory developed for partial differential equations (PDE). This
section is just a brief review of the most central definitions and theorems (without proofs)
that are used throughout this thesis. It is also meant to introduce the reader to our notation.

3.1 Banach and Hilbert spaces

Definition 3.1.1 (Banach space). A Banach space X is a complete normed vector space,
i.e., forall u,v € X and for \ € R, it satisfies:

(@) llullx >0, if |lu|lx =0 u=0
(i0) | hullx = [X|[lullx
(iii) [Ju+vlx < |lulx + |lv]lx

(iv) every Cauchy sequence in X converges strongly to an element in X.

Definition 3.1.2. Let X be a Banach space over R and let | - | denote the absolute value,
which defines a norm on R. The mapping A : X — R is a bounded linear operator,
denoted A € B(X,R), provided that

(1) | Aul|x < Mu|, VYueX,  forsomeconstant 0 < M < co

(it) AQAu+yv) = Mu+~vAv, VYu,ve X, A\, yeR

Definition 3.1.3. The dual space of a Banach space X is denoted X* and is defined as
X* = B(X,R). Moreover, X is called reflexive if (X*)* = X.
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Definition 3.1.4 (Hilbert space). A Hilbert space X is a Banach space with an inner
product, i.e., a Banach space such that for all u,v, f € X and A\, € C or R, it satisfies:

(1) (u,u)x >0, if (u,u)x =0 u=0
(i) (Au+v, flx = Mu, fx + (v, f)x

(i) (u,v)x = (v,u)y.

We notice that for a complex Hilbert space the inner product is anti-symmetric with
respect to the second argument. A norm on a Hilbert space X is defined as

(u,u)x = [lull%-

When we consider an inner product between dual pairs ,i.e., foru € X* and v € X, we
write the inner product (u,v)x+ x as < u, v >. Furthermore, all elements u, v in a Hilbert
space X satisfies the Cauchy-Schwarz inequality:

|(u, 0) x| < lullx]lv]lx-

3.2 Function spaces

Let 2 be an open set in R™Y. We will denote by C((2) the space of continuous functions
u : €2 — R. This space, when equipped with the supremum norm

ul|c) = sup |u(z)],
e

is a Banach space. Similarly, we can define the space C*() of the k-times continuous
differentiable functions. The notation C'*°(£2) will be used to denote the space of smooth

functions. We will denote the space of smooth functions with compact support in €2 by
Coo ().

3.2.1 L" spaces

Let1 < p < ooandletwu : 2 — R be a measurable function. We define the L”-norm

by
fullooy o= ([ o)) < o
Q

Remark 3.2.1. For p = 400 we define the norm as
||| Lo () := esssup |ul.
e

Theorem 3.2.2. Some basic properties of LP spaces:
(i) The vector space LP(S)), equipped with the LP-norm, is a Banach space for every
p € [1, +o0].
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(ii) L*(QY) is a Hilbert space equipped with the inner product

(U, v) 2(0) = /ﬂu(m)v(m)dm, Vu,v € L*(Q).

(iii) LP(2) is reflexive for p € (1, +00).

Remark 3.2.3. The physical interpretation of the space L*(Q) is that if we regard u as a
velocity, then for u € L?(Q) the kinetic energy in the domain ) is finite.

3.2.2 Sobolev spaces

In order to define Sobolev spaces we need to define the weak derivative.

Definition 3.2.4. Let u,v € L*(Q)). We say that v is the first weak derivative of u with
respect to x; if

(/%) ~
/ 8:1:de = /Qvgpda:, Vo € C5°(Q).

Throughout this thes1s © will denote test functions of appropriate type. We also use

the notation Vu = 8—71@ for n; being the normal vector in the i:th direction. Also, 2% will

denote Vu - n;. Fmally, we denote the Laplacian as Au = div Vu.

> On
Definition 3.2.5. The Sobolev space H'(Q) consists of all square integrable functions
from €) to R whose first order weak derivatives exist and are square integrable:

HY(Q) ={ue L*(Q): Vue L*(Q)}.

The space H'() is a Hilbert space with norm

1
2
ety = (el + IVl
and an inner product
(u, U)Hl(Q) = (u, U)L2(Q) + (VU, VU)L2(Q)

Definition 3.2.6. The Sobolev space H} () is defined as the completion of C°(S)) with
respect to the H'-norm.

A very important property of the H} () is the fact that we can control elements in L?
in terms of the L?-norm of their gradients via the Poincaré inequality.

Theorem 3.2.7 (Poincaré inequality). Let Q) be open bounded set in R . Then there exist
a constant C, which only depends on (), such that

lullz2 < ClIVullr2@ — forallu € Hy ().
An immediate result of the Poincaré inequality is that
HUHH(%(Q) ~ HVUHH(Q)

i.e., equivalent norms. This property will be extremely important when we use duality
arguments to prove uniqueness and existence of solutions. We can then identify L*((2) as
the dual space of H ().
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3.2.3 Convergence

In this section we give the definitions of the three types of convergence that are being
used in this thesis. The so called two-scale convergence is an essential tool when studying
homogenization theory. This concept was introduced by Gabriel Nguetseng in 1989. For
further reading we strongly recommend [12].

Definition 3.2.8. A sequence {u,}°, C X is strongly convergent, denoted u,, — u in
X, provided that
lim ||u, — ul||x = 0.

Definition 3.2.9. A sequence {u, }>°, C X is weakly convergent, denoted u,, — win X,
provided that
Tim (u,0)x = [l

Corollary 3.2.10. Let X be a reflexive Banach space. Let {u,} C X* be a sequence
weakly convergent towards v € X* and let

< Uy, Uy >—< u,v >, V{u,} C X,
converging weakly in X towards v € X. Then u,, — u in X* strongly.

In order to define two-scale convergence we need to consider a particular type of test
functions, an admissible test function.

Definition 3.2.11. We say that the test function p € L*(Q) x Y) is admissible if

2
11m/‘<p(:c,£> d:c:// lo(x,y)Pdydz.
e=0.Ja € oJy

We notice that an admissible test function asymptotically decouples the dependence
of z and £ in the L?-norm. We are now ready to define the two-scale convergence.

Definition 3.2.12. Let u. be a sequence in L*(Y). We will say that u. two-scale converges

to up(z,y) € L*(Q xY), denoted u. 2w, if for every admissible test function
v € (Q2xY) we have

e—0

liy | we(a)g <$§) dz = /Q /Y wo(z,y)p(z, y) dyds.

We continue with the following powerful theorem which states that if we have a
bounded sequence in L? we can always extract a subsequence which two-scale converges
in the L*-norm.

Theorem 3.2.13. From each bounded sequence u. € L*(Q) one can extract a subse-
quence, still denoted u., with two-scale convergence in L*(Q) to a ug € L*(Q x Y).

An immediate important consequence of the two-scale convergence is the result of
averaging. We have the following lemma.
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Lemma 3.2.14 (Averaging). Let u. 2 ug. Then

e — Tp() ::/Yu0($,y) dy.

This lemma tells us that the fluctuations on the microscopic scale y converge to an
average value in limit process as ¢ — 0. As we will see later, this is the link between
the macroscopic scale x and the microscopic scale y and thus a fundamental result in
homogenization theory. But a obvious question arises: which ug(x) does this sequence
u. converge to? As will see in a moment, if we pick a sequence u. to be a multi scale
expansion we gain knowledge about ().

Definition 3.2.15 (Multi scale expansion). We define u. € L*(Q) as a multi scale expan-

sion for

ue =up (2, %) +euy (2,%) +e%ug (2,%) +...

where u;(x,y) € L*(Q xY), j=0,1,... .

If we choose the multi scale expansion to be periodic in the microscopic variable y we
can use the results of the two-scale convergence. We have then the following lemma.

Lemma 3.2.16. Consider u. € L*(Q) being a multi scale expansion where u;(z,y) €
LA HL (Y)) forj=0,1,..., Q being a bounded domain in RY. Then

per

2
Ue — UgQ.

Thus, if we have a multi scaled sequence u.(x) € L?*(2) such that u;(x,y) €
L*(Q; H! (Y)) forj =0,1,..., we conclude that, together with the result of averaging,

per

ue > Uo(x).

3.2.4 Equations in Hilbert spaces

Throughout this thesis we will frequently encounter linear PDEs in a Hilbert space
setting. It is consequently useful to develop an abstract formulation of such problems. We
summarize this theory here. There are two main result that are of great importance: the
Lax-Milgram existence theory and the Fredholm alternative.

3.2.5 Lax-Milgram theory

Let X be a Hilbert space with an inner product (-, ) x and let 4 : X — X* be a linear
operator. Let f € X* and let < -,- > be the dual paring between X* and X. We are
interesting in studying the equation

Au = f. 3.1

An equivalent formulation of (3.1) is

9
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The linearity of A implies that the left hand side of the above equation defines a bilinear
functional @ : X x X — R such that

alu, ] =< f, o>, Vo€ X. (3.3)

Existence and uniqueness of solutions of the form (3.3) can be proved by the means of the
Lax-Milgram theorem, which is an extension of the Riesz representation theorem. These
theorems implies that every Hilbert space is reflexive. Thus, we can identify the dual space
with itself through the Lax-Milgram theorem.

Theorem 3.2.17 (Lax-Milgram). Let X be a Hilbert space with norm || - ||x and let
< -, - > denote the dual pairing between X* and X. Moreover, leta : X x X — R be a
bilinear functional with the following properties:

(i) (Bounded) There exist a constant C' > 0 such that

afu, o] < Cllullxllellx,  Vu,p € X.

(ii) (Coercive) There exist a constant K > 0 such that
alu,u] > Kllul3,  Vue X.
Then, for all f € B(X,R) = X*, there exists a unique element u € X such that

alu,p]l =< f,p >  forallp € X.

3.2.6 Fredholm alternative

In order to examine the Fredholm alternative, we need to define some properties of
operators.

Definition 3.2.18. We identify the adjoint operator of A as A" through
(Au, ) = (u, ATp).
Definition 3.2.19. A is called self-adjoint if A = A'.

Definition 3.2.20 (Compact operator). Let {u,}3°, C X be a Cauchy sequence and let
A be a continuous operator, i.e.

lim || Au, — Aul[x = 0.
If there exist a sub Cauchy sequence {u,, }7°, C X such that

klim | Au,, — Au,||x =0

then A is a compact operator.

10
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Assume that X is a Hilbert space and that A : X — X is a linear operator. Consider
the equation (3.1) with f € X. The adjoint operator AT is then defined as

(Au, p)x = (u, -ATQO)X7 Vu,peX.
Let now ¢ € X belong to the null space of AT, i.e.,

NUAN ={pe X : Ao =0}.

If we consider this choice of test function ¢, equation (3.2) simplifies to

(f7 (10>X = 07 v pE N(AT)

Consequently, a necessary condition for the existence of a solution to equation (3.1)
is that the right hand side is orthogonal to the null space of the adjoint operator of .A. The
above formal argument can be extended to the case when A is a compact perturbation of
the identity: A = Z — K, with KC compact. This theory is summarized in the following
theorem.

Theorem 3.2.21 (Fredholm alternative). Let X be a Hilbert space and let IC : X — X
be a compact operator. Then the following holds:
(i) Either the equations

(Z—-Ku=f (3.4)
(IT-KhU=F (3.5)
have unique solutions for every f, F € X or
(ii) the homogeneous equations
(Z-K)ug=0 (3.6)
(T —-KNUy=0 (3.7)

have the same finite number of non-trivial solutions:
dim(N(Z — K)) = dim(N(Z — K")) < oc.
In this case equations (3.4) and (3.5) have a solution if and only if
(f,Us)x =0 VU eNI-K"

and
(F,UO)XZO VUOEN(I—K)

11
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Chapter 4

Problem Description

In this thesis we try to give an answer to the following problem:

Can we obtain a reduction of the tangential drag force F, if we introduce a periodic
rough surface with a characteristic height of € on a flat plate?

= =

Figure 4.1: The left picture illustrates a flow over a plate with a rough surface whilst the
right picture illustrates the same flow over a flat plate.

If we associate u. as the solution for the flow over the rough surface and v with flow
over the flat plate we then seek the difference

| Fi(us) — Fi(u)l. 4.1)

As mentioned above, the solution . is not feasible (for small €) when regarding numerical
simulations. If we want to investigate (4.1) numerically, we need to find an approximate
solution to wu.. Through a homogenization process we can find the so called effective
equation that describes u,. in the macroscopic scale (x) where the flow characteristics of
the microscopic scale (y) is captured in a constant coefficient operator when € — 0.

13
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o, |

—

7 Y
2 / Ly,

Q,
PN

Figure 4.2: Tllustration of the different regions. The rough surface 2, is built up by unit
cells Y which consists of two parts: Yy which represents the fluid part and S which
represents the the solid (rough) part.

To derive the effective equation, u®(z), we construct a computational domain that
consists of separate regions where we can develop equations that fit the local problems.
Once these equations are established, we then start the work to combine these equations
to finally get the effective equation.

The different regions that we divide our flow problem in are (see figure 4.2):

e (2, - the rough surface
e (), - the mean flow
e 7, - the interface between {2; and (),

The rough surface is constructed by unit cells Y. In order to build a microscopic rough
surface of height €, we need to scale the unit cells. This is explained in detail in chapter 5.
The interface between €2, and () is illustrated in figure 4.3.

14



Chapter 4. Problem Description

2 |l
P

Figure 4.3: The interface between €2; and €2,. We denote Z, = Z7_ U Z,, U Z,. Z_ is the
unit cell closest to yo = 0 in {25. Z, (the grey unit cell) is then a unit cell in §25.

Having these pictures in mind, we want to derive the effective equation u°(z) which
is valid in €2, U Z_. This is to be done in the following way:

Find the equation for v. through a homogenization process which describes the flow
in the microscopic scale in ; \ Z_

Find the equation for u. which describes the flow in {2,UUZ_ in both the microscopic
and macroscopic scale.

Find the equation for w,(y) which describes the flow in the microscopic scale in Z,.

Finally, combine the above result to replace u. with the effective u®(x) which
describes the flow only at the macroscopic scale x in {23 U Z_ but captures the
flow characteristics at the microscopic scale y in Z_ through a constant coefficient
operator. u®(x) is then solved exclusively in {2, where the rough surface is replaced

by an artificial smooth surface Z3; and the no-slip boundary condition on the rough
surface is replaced with the constant coefficient operator —cC, 8;; (Qx) ,

slip condition, on Zj,.

1.e., the Navier

We proceed in the next chapter by constructing the rough surface 2;.

15
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Chapter 5
The Rough Surface ()

Let €2; be an open bounded set in (0, L) x (0, L) with a boundary 0f2;. We want to
define the geometrical structures that defines the rough surface inside the unit cell. This
structure will be a periodic arrangement.

Let Y = (0,1) x (0,1) be the unit cell in §2;. We denote the solid part , i.e., the rough
surface, S which is a closed subspace of Y. The remainder of the unit cell is then the
fluid which we denote Yg. Obviously, Yg = Y \ S. Thus is the open set 2; divided
into a number of unit cells containing a rough surface and a fluid, hence Y C (); where
Y = SU Yp. As we mentioned earlier we want to make the rough surface S periodic in
Q. In order to do this we introduce the periodic repetition of S all over R? as

S*=S+k keZ®

Thus we obtain a closed set of all rough surfaces in {2, , denoted Eg, as
Eg= [ J 8"
keZ?

In the same way we define all fluid contained in 2, as
Er = R*\ Eg.

We have thus created a mesh in 2; of unit cells that consist of a rough surface that is
periodic all over R?. Next step is to make this cells and the rough surfaces within the
small cells. To be more precise, we want the structures to be dependent on a parameter ¢.
For simplicity we assume that + = Z. Thus we shrink the surface and the fluid contained
in the unit cells. Before we can do that, we need to make some additional assumptions
regarding Er and Eg.

e E is an open connected set of strictly positive measure with a Lipschitz boundary
and Eg has a positive measure in Y.

e Ej and the interior of Eg are open sets with boundary of class C},which are locally
located on one side of the boundary. Moreover, Er is connected.

With the above assumptions we can define a linear homeomorphism HZ, 1.e., a similar
transformation which preserves orientation. With this transformation we can shrink the

17
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rough surface and the fluid part contained in Y into a cell of size € x . Thus for a given
e > 0, Q is then divided into a regular mesh size of length € and each cell we denote Y
with 1 <7 < N(g) = |Q|e72[1 + O(1)]. Thus each cell Y? is homeomorphic to Y with
a homothety ratio of 2. Now we can describe the rough surface within Y’ as

5t — (H) s)

Ygi = <H> (Yr).

£

and the fluid part within Y as

It is convenient to define a closed subset of 2; as a cluster of rough surfaces. We denote
this cluster as T'. and define this as

T.={kecZ" :SFcq}.
In a similar manner, we define

0.= [ st

keT.

which is then the total part of the rough surface contained in €2;. Finally, we define all
fluid part contained in €2, as

Qazﬁl\OazﬁlﬂeEF.

18



Chapter 6

Stokes’ Equation in ()4

With the geometry defined for the rough surface, we need an appropriate equation
to describe the flow in (2., which is the fluid contained in €2;. We consider the steady,
newtonian, incompressible Navier-Stokes equations, i.e.,

(v-V)v—vAv+Vqg=f in€, (6.1)
divv=0 1inf), (6.2)

where v is the velocity, ¢ the pressure, v the kinematic viscosity and f a source term.
For convenience, we have a unit density. In order to make use of the homogenization
process in €2;, we need to modify the given Navier-Stokes equations.

The momentum equation (6.1) in €2, will differ whereas the continuity equation (6.2)
will be the same in {2.. The flow is regarded as incompressible and thus is (6.2) valid in
().. But for the momentum equation we need some physical argument to find the right
equation.

As mentioned in the introduction, the flow is highly dependent on the scales of motion.
The flow in €2 is associated with the macroscopic scale x whilst the flow in €2, is
associated with the microscopic scale y. If we apply a Fourier transform on (6.1) we
observe that

F.[-vAu] = £*v 1, (6.3)

where « is the wave number. Since x % for some length scale [, we conclude that
this term is the dominating term in ). where the flow is characterized by the small scale
y ~ [ < 1. Note that we have not given an argument if (6.3) exist, it is just a argument
from a physical point of view. This conclusion is in the agreement of the so called energy
cascade process [1]. In the energy cascade the turbulent kinetic energy are transferred
from the large scale into smaller and smaller scales and is then finally dissipated.

From the above argument, we conclude that the non-linear term in (6.1) is neglected
in ). since the Laplacian term will be dominating in the microscopic scales. The pressure
term remains since this, together with f, is the driving force of the velocity field. Thus we
have, together with the no-slip condition on the rough surface, the Stokes’ equations

A:=—-vAv+Vqg=f inQ.
divo=0 in{),
v=0 ondQ. \ Z_
{v,q} is L — periodic.

(6.4)
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Chapter 7

Existence and Uniqueness of the Stokes’
Equation

Having defined the equation governing the rough surface, we need to investigate its
properties. Equation (6.4) is, as we concluded, valid in €2, and in this section we prove the
uniqueness and existence of (6.4).

7.1 Existence and Uniqueness of the Velocity v

Proof. This proof is based on the Lax-Milgram theorem and this type of argument will be
used many times during this thesis. However, we will only show all steps in this case as
an illustrative example.

Clearly, according to the Lax-Milgram theorem, we need to find a suitable Hilbert
space that both fulfill equation (6.4) and the requirements in the Lax-Milgram theorem. If
we multiply (6.4) with a test function ¢ and integrate over 2. we get

—V/ Avgpdm+/ chpdx:/ f @ dx. (7.1)
Qe Qe Qe

Using Green’s theorem on the left hand side we obtain

0
y/ VvVgpdm—u/ —U<pds—/qdivgodx+/ qg-neds= [ d.
B a e 00

Qe on Q.

If we choose ¢ € V(Q.) where V(%) = {p € Hj(Q) : divp = 0in Q.}, (7.1) is
simplified to

1// VoV dr = / fodr, YpeV(Q). (7.2)
Qe Qe

Clearly, the boundary conditions for v is satisfied for v € V(€).). Thus we can identify
the left hand side in (7.2) as an inner product on Hj(€).). Since f € L?(€).), we identify
the right hand side in (7.2) as a dual inner product between f and . We rewrite (7.2) as

alv, o] =< f,o >. (7.3)
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To prove that there exist a unique v € V' (§2.) we need to prove that the functional
a: V() x V(Q.) — Ris bilinear, bounded and coercive and that f € B(L?(Q.),R) =
V(€)*. Clearly,

Aafv, ] = a[ v, p] = alv, A\p], VN ER,

hence bilinear. Moreover,

alv, o] = v Vo Ve de =v (Vu,Vo)2q) < v (Vo, Vo) 2o, <
Qe
< v [[Vulle2) Vel < Cllivllvies lellve.),

thus bounded. Note that throughout this thesis, we will refer C' as an arbitrary constant
which will vary from time to time. To be able to prove the coericivity of a[-, -] we need to
consult Fredrich’s first inequality.

Corollary 7.1.1 (Fredrich’s first inequality). Let w € H((SY) . There exists a positive
constant o such that

/ |Vw|? dasza/ lw|* dz, Vw € Hy(Q).
0 Q

Using this fact we obtain

av,v] =v | |Vu* dv = Y IVv|? do + - IVo|? do >
0. 2 Ja. 2 Ja.

> ﬂ/ lv|? dx + Z/ [Vol? dv > M”UH%/(Q )3
2 Ja. 2 Ja. E

av v

where M = min{%¥, £}. Thus a[-, -] is coercive. Finally, we need only to prove that f is
linear and bounded. Using the same arguments as above, we conclude that < f, o > is
linear. Furthermore, < f, ¢ > is bounded since

<f,o><|<fo>]<|fllznllellvie) < Cllellva.)-

So, we conclude that there exists a unique v € V/(2) in the sense of (7.2) which we refer
as the weak form of (6.4) which often is presented as:

Find v € V(Q.) such that afv,¢] =< f,o >, Ve V(Q). (7.4)

]

We obviously lost information in transforming (6.4) into the problem (7.4) since
the pressure term q is lost. However, we will prove that there exist a unique pressure
qe L} ().

loc
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7.2 Existence and Uniqueness of the Pressure ¢

To be able to prove the existence and uniqueness of the pressure ¢ in (2., we need to
consult the theory of calculus of variations. This theory is commonly used in nonlinear
problems where relative simple techniques from nonlinear functional analysis can be
applied. The class of problems that is of interest in this case is referred as variational
problems. In this technique, we consider the abstract nonlinear PDE

A(v) = 0. (7.5)

The nonlinear operator A(-) is viewed as a derivative of an appropriate energy functional
J (+). Symbolically we write
Al) =T'0). (7.6)
Then problem (7.5) reads
J'(v) = 0. (7.7)

The advantage of this new formulation is that we can know recognize solutions to (7.5)
as being critical points of [7(+). These in certain circumstances may be relatively easy to
find: if, for instance, the functional 7 (-) has a minimum at v, then presumably (7.6) is
valid and thus v is a solution to the original problem (7.5). For example, the weak form
(7.4) can be viewed as a the minimization problem

J(v) = min J(p), (7.8)

eV (Qe)

2
inequality which then turned (7.4) into finding M to be able to secure coercivity of the

functional af[-,-]. Therefore, (7.8) will satisfy (7.7). For more details of this theory we
strongly recommend [3].

With this short introduction to the field of variational problems, we present the theo-
rem that is needed to prove that there exist a unique pressure q. It turns out that we can
only determine the uniqueness of ¢ up to a constant.

where J(p) = 5 [ (V@[> — f ¢)dz. This is a consequence of the Fredrich’s first

Theorem 7.2.1 (Pressure as Lagrange multiplier). There exist a scalar function q €
L? () such that

loc

/VUVgpdx—/ qdivgodx:/ fedx (7.9)
Qg QE QE

forall p € HY(.) with compact support within ..

Remark 7.2.2. We interpret (7.9) as saying that {v,q} form a weak solution of the
Stokes’ problem (6.4). The pressure q arises as a Lagrange multiplier corresponding to
the incompressibility condition div v = 0. Since q is a scalar function, q is only unique
up to a constant.

Proof. See [3]. ]
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Chapter 8

Homogenization Process in ()

In the above proofs we view v and ¢ as functions dependent of one variable. To be
able to detect the microscopic scale we need to define a microscopic equation. To do this
we need to perform a homogenization process in ;. We start by making a multi scale
expansion in both v and g. Hence, we make the following ansatz:

”UE200(1'73/)+€U1($,y)+€2vg(1’,y)+... Y = (81)

QE:q0<x>y)+€Q1(x7y)+€2QQ(xay)+"' Y = (82)

MR o8

where v;(z,y), ¢;(x,y) € L*(Q; H),,(Y)), for j = 0,1,... . We choose both v and ¢.
to be periodic in Y since the rough boundary is periodic and we can by this fact use the
theory of two-scale convergence. In other words, we can with this expansion investigate,
asymptotically, how the flow is behaving in the periodic rough surface in the local variable
y in the limit process.

Having defined the expansions (8.1) and (8.2) we now describe the flow in two
different scales and thus we must transform the derivatives in the same manner. We then

have by the chain rule, the total derivatives

1
V.=V, + - Vy (8.3)
) ) 1 ..
div, = div, + B div, (8.4)
2 . 1
A€ = Am + g leI(vy> + gAy (85)

With (8.1)-(8.5) defined, we can establish a priori estimates of v. and ¢. in the sense of
the both scales x and y. We start with estimating v..

8.1 A priori estimate of v.

We have the following energy estimate in v. by simply replacing ¢ and v with v, in
(7.3)

afve, ve] = I/||ngg||%2(95) < Hf”LQ(QE)HUEHB(QE)' (8.6)
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In the above estimate, we do not use the fact that v. is a function of both x and y. To get
hold of this, we need the following lemma, which can be viewed as a Poncaré inequality.

Lemma 8.1.1. Let W (Q.) = {w € H'(Q.) : w=0 on 9.\ Z_ ¢ is L — periodic}.
Then

2
wlde < | Vo wPde, Vwe W(Q).
Ql « Q1

Proof. If we apply corollary (7.1.1) over Yg forw € H(Yr) : w =00n9YF \ Y we
obtain

1
ey AR
Yr @ JYg
Change of variables x = ey yields V, = eV, and Yy = €Y. Thus

2
/ jw]? de < — |V, w|? dx.
6YF «

€YF

N(e)
i=1

Adding all integrals over {2, and define v = > .|’ o we obtain lemma 8.1.1. []

If we apply the above lemma to the a priori estimate (8.6), we obtain the following esti-
mates

1
) e 220y < C, (8.7)

1
z [Veve|lzz.) < C. (8.8)

In (8.7) we see that the solution will blow up in the limit process as € — 0. Thus we need
to scale our multi scaled expanded v, with a factor €2 to avoid this blow up. Note that this
scale parameter dos not inflict on the existence and uniqueness of (6.4), since this holds
for any order of magnitude of scale parameter £ > 0.

It is well known that the L”-norm is preserved when extended by zero (the velocity
obeys the no-slip condition on the rough surface) and thus is (8.7)-(8.8) valid in the whole
Ql, i.e.,

1
2 e || 20y < C,

1
g HVEUEHLQ(Ql) S C

8.2 A priori estimate for g.

In this section we present the a priori estimates for the pressure ¢. that are established
in [13]. The extension of the estimates in ). into {); is not trivial as in the case for the
velocity. This is obvious since we can of course define a pressure over the rough (solid)
part in €. If we define the extension of ¢. as ¢ in the same way as [13], we obtain the
following a priori estimates

26
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1
gz — Q_l/g q. dz| 20, < C, (8.9)
1
Ve ¢llw« < C, (8.10)
where ¢_ is defined as
. in
q. = ! (8.11)

1 - . .
Yo ng g- dy in Yg, for each i,

and W = {w € Hp,,.() : [, w dr = 0}.If we recall corollary (3.2.10) we conclude
that the sequences {q. — Q% Jo, & dr} and {V. ¢} are strongly relatively compact in 17

and L?, respectively.

8.3 Scaled Stokes’ Equation

As a consequence of the a priori estimate (8.7), we define the scaled Stokes’ equation
as
-'45 = _A5<€2 Us) + VEQE = f(l’) in Ql X YF
div. (e?v.) =0 inQ; X Yg
e2v.=0 on; xIYp\OY
{ve,q.} is 1 — periodic in v,

(8.12)

where we have set v = 1 for simplicity. Note that the right hand side f(x) is only a
function of the macroscopic variable x, which write explicitly. If a function depends on
both z and y we do not write it explicitly. The no-slip condition is slightly changed to fit
the local variable y, but the physical interpretation is exactly the same as in (6.4). Having
defined (8.12), we can start our asymptotical expansion. It is convenient to rewrite the
operator A. to identify it as a function of power in ¢ as

1 1
A, = ;Ao +—(A; + All) + (A + A/Q),

€

where
Ag = —A, (8.13)
A= -2div, V, (8.14)
1=V, (8.15)
Ay = —A, (8.16)
b= V. (8.17)

Applying (8.13)-(8.17) we can identify the operator A in (8.12) as
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1
A = E.A&QO + (Aovo + «4’1611 + AIQCJO)—F (8.18)

+e(Aovr + Ajvg + Ajge + Asqr )+

+€2(-/40112 + Ay + Agvg + Ajgs + Ayqe) + 0(53) = f(z).

To make use of the multi scale expansion, we begin to rewrite (8.18) in the different
powers of € with the corresponding boundary conditions. Note that for every O(g”), for
N = —1,0,1,... {ue,p:} is 1-periodic in y by the definition (8.1) and (8.2). Thus, we
obtain the cascade equations

O

1900=0 inQ xYg (8.19)

O(1)
./401)() + ./4,1(]1 + A,QQ() = f([[‘) in Ql X YF (820)

O(eh)
Aovy + Ajvg + Algo + Abqn =0 inQ x Y 821)

divy vg =0 in )y Xx Yg ’
O(e?)

Agvg + Ajvy + Agvg + Algs + A5 =0 in Q) X Y
div, vg +divy vy =0 in{ x Y (8.22)
UQIO anlanF\Y

As we mentioned in chapter 2, we are only interested in the lowest order of approxima-
tion, the so called homogenized problem. In the limit process as ¢ — 0 the only term that
survive is O(1). This implies that only equation (8.20) will determine our homogenized
equation. We also need appropriate boundary conditions for the homogenized equation
in order to find a unique solution. From the cascade equations (8.19)-(8.22), we use the
boundary conditions prescribed for the velocity and the pressure in order to find the proper
homogenized equation.

We see that, in view of (8.19),

Algo =V, 00 =0< q = qlx). (8.23)

Also, the first boundary condition in (8.22) can be simplified. We recall the surjectivity of
the div operator in the following lemma.

Lemma 8.3.1. Let G € L?(Yw). Then there exist aw € H}, (Yg) such that

per

{ divywu=G inYp (8.24)

w =0 ondYp\Y

/ G dy = 0.
YF

28

if and only if



Chapter 8. Homogenization Process in {2,

Since vy, v; € H}!

per

(Yr) we conclude that, by lemma (8.3.1),

{ divy v; = —div, vy in Yg (8.25)

1)1:0 0n8YF\Y

if and only if
divx/ vo dy = div, 19 = 0.
Yr

If we summarize the conditions for {vg, go(x),q1} and let v # 1 we end up with the
homogenized equation:

VA, v+ Vy g = f(2) = Veq(r) inQ xYp
div, v =0 in X Yg
div, vo(z) =0 inQ X Yp (8.26)
vo=0 ondYr\OJY
{vg,p1} is 1 — periodic in y.

We refer (8.26) as the homogenized equation of (6.4). In order to find a unique solution
in an appropriate functional space we need to impose more boundary conditions in the z-
variable. It turns out that, after a Fredholm alternative argument, if we add

{po(x),/ up dy =0} is L — periodic, (8.27)
Yr

to (8.26), we can find unique solutions to {ug, po(z),p1}. The system (8.26)-(8.27) is
referred to as the Stoke’s system with two pressures. To find a variational form of the
system (8.26)-(8.27), we introduce the following Hilbert spaces

HYYy) ={¢ € H,,,(Yp) : divy, o =0in Yg : o =00n9Yp \ 0Y}

W= {w e L*(Q; H (Yg)) : divx/ w(z,y) dy = 0in

Yr
n(x) / w(z,y) dy is H~Y/? -antiperiodic, }
Yr

where n(x) is the outward unit normal on €2;. Also we need the corresponding bilinear
forms

ayg|w, o] = VywVypdy, w,pc€ Hﬁ(YF) (8.28)
YFr
ag, [w, p] = /Q ayg|w, ol de, w,p € wt (8.29)
< f,SD >Q1><YF: / f 2 dydl’, f € Wﬂ*’gp € Wﬁ (830)
o JYp

With these Hilbert spaces we can define a variational form of the system (8.26)-(8.27) .
We thus end up with the following variational formulation

Find vy € W* such that aq,[ve, ] =< f, 0 >a,xve, Vo€ W (8.31)
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Theorem 8.3.2. There exist a unique vy € W* such that (8.31) holds for all o € W*.

Proof. Obviously, agq, [vo, ¢] defines an inner product and a norm on W*. Moreover, W*
is a Hilbert space with respect to the inner product induced by aq,. Consequently, the
Lax-Milgram theorem implies a unique vy € W in the sense of (8.31). [

As in the first variational formulation (7.4), the pressure terms are eliminated. We thus
need to find the unique pressure terms go(x) and ¢;.

Theorem 8.3.3. Let vy be a solution to (8.31). Then there exist a unique qo(x) €
Hyers fo, @0(x) dz = 0 and a unique q1 € L*(Q1 x Yr), [o, fYF ¢ dydx = 0 such that
(8.26)-(8.27) holds in the sense of distributions.

Proof. We are going to show that an interpretation of (8.31) gives ¢o(x) and ¢y, as the in-
terpretation of a weak solution of the Stokes’ system which then gives the pressure field.
Let T = {p € Cp2.() : div ¢ = 0 in ©;} and H be the completion of T in 2; with
respect to the L?-norm. Then H = {z € L?(Q) : div z = 0, nz is L — antiperiodic} and
H-={2€L*(): 2=V, veH, ()}

If we consider the Stokes’ system with the two pressures, i.e., system (8.26)-(8.27),
we separate the variables as

2

W= (@) - Vem(@) wly), w0 yEYe (83
i=1
2

@ = (f(&) = Veao(2))i miy), @€, y€Yp. (8.33)

=1

Substitute (8.32)-(8.33) into (8.26)-(8.27) and divide by (f(x) — V,po(z)); we obtain the
cell problem in Yg:

For i = 1,2, find {w;(y), m:(y)} € H,,,.(Yr) x L*(Yr) such that

—Aywi(y) +V, m(y) =¢e inYp

diVy w,(y) =0 in YF
Jy, wily) dy =0,

where e; represents the unit vector. Again, there exist a unique solution w;(y) to the cell
problem (8.34) by the Lax-Milgram theorem. Moreover, there exist a unique solution
mi(y) to (8.34) by the De Rahms’ theorem. We define the permeability matrix K as

sz/'wﬂw 1<ij<2
Yr

The permeability matrix is symmetric and positive definite. Consequently, the drag matrix
K~ is then positive definite. Now, let § ¢ LQ(QI). Following [13] we set ® to be the
scalar product ® = 37 (K~ ¢;) w;(y). Then ® € L*( x H*(Yr)) and satisfies
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/ dy=0(x) inQ and [P 20 xmtye) < CllOl2))-
YF

Hence, the mean value 6 of ® over Y is a bounded surjective operator between L?(€); x
H*(Yr)) and L*(€). Now, let § € H. Then there exista s € W such that [, vy dy =
0 and

lf(x) </Y ©g dy> dr = X f(x)0(x)dx.

Therefore, there is a qo(v) € H,,,,(21), [, go(x) dz = 0 such that V0 € L*() we
have

ag, [Vo, o] =< f, 00 >(Quxmt(Ye)= /
Q

aon [to, 0] = /Q ((2) = Vado()( /Y oo dy) dz = (8.35)

F

- / (F(2) = Vago(a))6(z) do.

Condition le ¢o(x) dx = 0 implies uniqueness of go(z). (8.35) is equivalent to

avg[Vo(z, ), @] = (f(z) — quo(x))/ ¢ dy, (8.36)
YF
Vi € H*(YF) a.e. on Q. Existence and uniqueness of ¢; € L*(QxYF), fYF le q dxdy =
0, such that (8.26)-(8.27) holds in the sense of distributions, is now a classical result an
we refer to the classical textbook [19]. []

Remark 8.3.4 (Darcy’s law). If we integrate to obtain the mean velocity over the cell
then Uo(x) obeys the Darcy’s law, i.e.,

do(x) = /Y vo dy = %( F(@) = Vago (). (837)

where K is the permeability matrix.

Remark 8.3.5. Darcy’s law is sometimes written as
div 9p(z) = 0. (8.38)

We recognize y(z) as the seepage velocity. Hence, we can identify the rough surface
as a porous medium since the average velocity is the seepage velocity divided by | Y|
which is the porosity of €2;. This is indeed a very important observation from a physical
point of view since the rough surface asymptotically tends to a porous medium. The cell
problem (8.34) is then the equation in €2; \ Z_ which describes the flow characteristics at
the microscopic scale.

To be able to use the cell problem in such way that we can find a corresponding
macroscopic law that describes the microscopic behaviour, we need not only the cell
problem but also the equations that are valid in Z;; and in {2,. We proceed in chapter
10 with the equations governing §25.
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Chapter 9

Convergence Result

In this chapter we examine the two-scale convergence in L? of the sequence {v.}
towards v, and strong L2-convergence of ¢ towards ¢o. For simplicity, we choose

ng ge dxdy =0

9.1 Two-scale Convergence in the Homogenization Pro-
cess

Theorem 9.1.1. Let {v., q.} be solutions to (8.12) and er q- dxdy = 0. We suppose v. is
extended by zero in )y and the extension ¢ is given by (8.11). Let vy and qo be given by
(8.26). Then

1

) Ve N vy N Ql (91)
€
1 2 .
B Veve =Vyu in (9.2)
¢ — qolx) in L*() (9.3)

Proof. By the multi scale expansion and the scale parameter introduced in the Stokes’
system we have for ¢ (z,%) 1= ¢. € L*(Q; H..(Yr))

per

lim [ A v.) pedr = / / Ay vo(z,y)p(z, y) dyda (9.4)
=0 Jq, o JYp

and
lim VE(EQ v:) gogdx:/ / Vv, 50(x,y)g0(x,y) dydzx. (9.5)
=0 Jq, 0 JYp

We need to prove that Vo = g in order to obtain (9.1)-(9.2). For this proof see [13] as
well as the proof for (9.3). [
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Chapter 10

Equation for the Rough Surface of
height ¢

With the homogenization process given in €21 \ Z_, we need to find the proper equation
that describes the flow in {25 U Z_, i.e., the one for u.. In order to understand how the flow
behaves near a body, we need to understand the fundamental theory of boundary-layers.
We continue to explain the basic concepts of boundary-layer theory with the aid of purely
physical ideas.

10.1 Basic Boundary-Layers Theory

The boundary-layer concept was introduced by L. Prandtl in 1904. In his hypothesis
the fluid friction on a body is limited to a thin layer near the boundary of a body, hence
the term boundary-layer. He proposed that the boundary-layer thickness ¢ for a flow over
a plate is the distance away from the the surface of the plate where the velocity reaches
0.99 Uy, where Uy free stream velocity.

This theory was further developed by H. Schlichting. According Schlichting, the
boundary layer is divided in to three regions. In theses three regions, different equations,
or rather velocity profiles, describes the flow. To separate these regions, a dimensionless
number 7, = % is introduced. 7, is interpreted as a characteristic wall coordinate.

The viscous sublayer is the region nearest the plate where 1, < 5 and the velocity
profile in this region is consider to be linear. For 5 < 7, < 20 the region is called the
buffer layer. Finally, the logarithmic sublayer is defined for n, > 20 where the profile
can be described by a logarithmic law.

10.2 The Viscous Sublayer

In this thesis we only consider the flow within the viscous sublayer. Hence, the
equation that describes the flow in €2, U Z_ is a linear velocity profile. It is well known
that this kind of flow is described by the Couette flow, which is a shear-driven fluid motion
with no-slip on the wall. This equation is given by

35



Drag Reduction Over Rough Surfaces

(e - V)ue — vAu. + Vp. =0 in QU Z_
divu.=0 inQyUZ_
u-=0 ond(QUZ.) (10.1)
u. = (U,0)  on (-, L))
{ue,pe} isx; — periodic.

where u. = u.(x,y) is the velocity field, p. = p.(z,y) is the pressure and L}, >> ¢ the
characteristic height of (2o U Z_. It is proved in [8] that (10.1) admits a unique solution
{uz,p-} € H*(Qy) x H'(Qy) for

UL

v

Re <2

, (10.2)
where Re is the dimensionless Reynolds number. The Reynolds number is the ratio
between the inertial forces and the viscous forces. It is very important to understand that
the Reynolds number is a property of the flow, not the fluid. In general, for high Reynolds
number the flow is considered turbulent where the inertia forces are dominant. On the
other hand, for low Reynolds number the flow is laminar and the flow is governed by
viscous forces, as in the case for the viscous sublayer. Moreover, the thickness of the
boundary-layer is given by
vL,

i
If we choose water as the fluid, then v = 107° [mTQ] at room temperature. Due to the
condition (10.2), we set U = 107°[] and L}, = 10*[m] which yields Re = 1 < 2 and
8§ = 1073[m]. Hence, the viscous sublayer is approximately 5 - 10~3[m]. The Couette flow
is then valid in this range for Re < 2.

O~

To summarize, we now have a microscopic law, the cell problem (8.34), which de-
scribes the flow in 21 \ Z_ and (10.1) in £2; U Z_ which describes the Couette flow in both
the macroscopic and microscopic scale. As mentioned in the introduction, to calculate
the solution {u., p.} in (10.1) is numerically difficult. Because of the rough boundary we
need a very fine mesh to capture the flow behaviour. As we will see in the next chapters,
we can replace the rough surface with an artificial smooth surface 7.
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Chapter 11

The Boundary-Layer Equation

We here present the auxiliary boundary-layer equation that is valid in the boundary
Z. = 4 _UZyJUZ, . This equation has been rigorously studied by Andro Mikeli¢ and Willy
Jager in [5], [6], [7] and [9]. In these papers, the result from the homogenization process
in ©; \ Z_ has been used to find appropriate velocity corrector terms. With these corrector
terms, an artificial smooth surface 7, is obtained which is an O(&?) approximation of
(10.1).

11.1 The Auxiliary Boundary-Layer equation
The equation that is valid in Z, is called the auxiliary boundary-layer equation,

( A, w,(y) +V, m(y) =0 inZ,UZ_
diVy W (y) =0 in Z*
(Wi(¥))z,(0) =0  on Zy
(Vy wily) — W*(y)I)GQ)ZbZ('a 0) =e on Zy
wily) =0 on8S
L {w,, 7} isx; — periodic,

(11.1)

where w, is the velocity field and 7, is the pressure. This equation is quite similar with
the cell problem (8.34) and in a sloppy sense can (11.1) be viewed as the homogenous
cell problem with the additional constraint ((V, w.(y) — m.(y)T)e2)z, (-,0) = e; on the
interface between €2 and (2,.

LetV,={pel?.(Z,): Vo€ L} (Z): ¢=00nS: div, »p =0in Z,}. Using

loc loc

test functions ¢ from this space we get the following weak formulation of (11.1):

Find w, € V, such that a|w., 9] =< e, o>, VeV, (11.2)

where
Uy Wy, 0] = / Vywe Vy, @ dy
Z*

and
< ey, >= —/ et o dy.
AN

Theorem 11.1.1. There exist a unique solution {w,, m.} to (11.1).

37



Drag Reduction Over Rough Surfaces

Proof. Using Lax-Milgram theorem there is a unique w, € V, satisfying (11.2) and using
De Rahm’s theorem we obtain 7. € L7 (Z,) satisfying (11.2), which is unique up to a
constant. [

In the next lemma we recall two important properties of the solutions to the auxiliary
boundary-layer equation.

Lemma 11.1.2 (Navier Constant C.). Any solution {w., 7.} of (11.1) satisfies

C, = wi(y1,0) dy; = / IV, w.? dy (11.3)
1

Cf::/ wo(yr,a) dyy =Cy —a ,h—1<a, (11.4)
0

where h is the height of the rough surface. In the next chapter we will identify this
constant C, as the constant coefficient operator that will give the effective equation u®(x).
Furthermore, we will also identify C', in the effective equation as the Navier constant.
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Chapter 12

The Effective Equation

As mentioned in the introduction we are interested in finding the effective equation
u®(x) which approximates u.. Until this point, we have established the equation for u. in
(10.1) and the equation for the rough surface in the boundary 7, between (2; and €2, via
the auxiliary boundary layer equation (11.1). In order to find the effective equation, we
need to find the last equation, i.e. an equation for u(z), which is the Couette flow in 2.
With this last equation, we can use all the information obtained in the homogenization
process, which lead to the auxiliary boundary problem, and finally find u¢(z). We shall
see that in the homogenization process the rough boundary is replaced, asymptotically,
with an artificial smooth boundary where the constant coefficient operator is the Navier
constant C..

12.1 Couette Flow in )

Since we only consider the viscous sublayer, the flow in (25 is governed by the Couette
flow with the no-slip on the flat surface at zo = 0. The solution to the Couette flow is given
by

UZL’Q
— 22 12.1
ulw) = - (12.1)
p(z) =0, (12.2)

where L is the height of €2,.

12.2 Derivation of the Effective Equation

Having defined all equation that is needed, we now present the results that Andro
Mikeli¢ and Willy Jdger obtained in [7] and [8]. In these papers, the authors obtained
uniform a priori estimates for approximation of w.. It is proved in these papers that the
Couette flow u is an O(s2) approximation of u, in L*({):

0 9,
U =U— € w*a—;t + eC, (8—261 + dl) H(zy) + O(?), (12.3)
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where H (x9) is the Heaviside distribution and d; corresponds to the counter flow gener-
ated by the artificial boundary Z;;, which is , when restricted to Z;;, an O(¢) of u. on Zy,
in LQ(Zbl>2

(9u51 8u1 ( aw*l )
= (- +O(e
Oy ya Y2 ( )

1 . 8u1
guel == a—y2w*1
The first term on the right hand side of (12.3) is the Couette flow, the second is the first
order boundary layer correction to obtain the correct boundary condition at the artificial
smooth boundary Z;. This term is a constant order €. This means that the linear profile is
shifted to the right by this amount which gives the wrong boundary condition on the upper
boundary where the velocity U is prescribed. To correct this we have to add the third term
which contains the counter flow and the resulting profile is again a linear one with a lower
origin.
After averaging these equations on Z;; and neglecting higher order terms the effective
equation is obtained on the artificial smooth surface as:

+ O(e).

ous
ut = —eC,—

S (12.4)

With (12.4) defined we have derived, through a homogenization process, a macro-
scopic law that describes the flow over a rough surface of characteristic height ¢ which
captures the flow behaviuor at the microscopic scale through the Navier constant C',. The
effective Couette Navier flow is then given by:

(u®- V)u* —vAu®+Vp* =0 in€y
divuc=0 in )y
u® = (U,0) forazy = Lo

uj = —60*2—225 on Zy (12.5
US =0 on Zbl
L {u®,p°} isx; — periodic.
Theorem 12.2.1. If Re = % < 2, there exist a unique solution to (12.5):
e __ T2 € -1
p¢ =0, x €
Proof. See [8]. [

Hence, we have replaced the equation (10.1) with (12.5). Clearly, if we choose € = 0
we obtain the flow over the flat plate with the no-slip condition at the wall at x5 = 0.
The boundary condition on the artificial boundary is referred as the Navier slip condtion
and it was suggested by C.L. Navier in the early 19th century. His argument was based on
physics, which is quite different from the argument used in this thesis.
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Chapter 12. The Effective Equation

12.3 Drag Reduction Over the Rough Surface

Having derived (12.5) we can now investigate if the tangential drag force is reduced
for the microscopic rough surface. If we only consider the skin friction the tangential drag
force on Zy; is defined as

Fi(ue) = %/Z n-o.-e dry, (12.7)
bl

. 5 . Ou; .
where n = e is the normal vector to Zy and o, = %(% + au;{ ) — =0, is the total stress
J 1

tensor, consisting of both viscous shear stress and pressure stress. The corresponding
effective drag is

. v o . 0 . v o .
Fi(u®) = E/sz (a_xz%(xlao) + 8_:51u2<x1’0)> dxy = oL/, 8x2u1($1’0) dzy.

The last equation holds since the Couette flow is independent of x;. If we insert the
effective Couette flow (12.6) in (12.7), we get

v U

== — 12.8
2 L2 — 60* ( )

Fi(uf)
By the definition of C,, we see that (12.8) reaches a maximum when ¢ = 0, i.e.,
when we have a flat plate. Hence, the tangential drag force is reduced when a microscopic
rough surface is introduced in the viscous sublayer. It is important to emphasize that the
approximate drag force is an O(¢?) approximation and it is proved in [8] that
U? v

— NN < e, —(1 :
File) = Fi(u)] < Co (14 175)
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Chapter 13

Numerical Simulations of (',

As a consequence of the effective equation the rough surface reduces the drag. By
the definition (11.3), C is always negative. In order to maximize the drag reduction
introduced by rough surface, the Navier constant C, is then to be minimized. Clearly,
C. is then highly shape dependent since the problem can be formulated

minyer C. (13.1)

St ayw, o] =< eq,p >,
where 7 is the shape of a rough structure R. In [4] this shape optimization problem is
studied in detail. In this section we only give numerical result with no intention of finding
the optimal shape.

13.1 Simulations using Comsol Multiphysics

Comsol Multiphysics were used to simulate the auxiliary boundary problem in Z, to
obtain C'?. We have used the data that is presented in the section 10.2. The simulations
where performed by a fixed ¢ = 1 x 107%[m] with the same shape but different hight % of
the microstructure. The result can be found in the table below.

h| C°

0.3 | -0.6989
0.4 | -0.5988
0.5 | -0.4986
0.6 | -0.3983
0.7 | -0.2984
0.8 | -0.1970
0.9 | -0.0952
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Drag Reduction Over Rough Surfaces

The Navier constant depends linearly on height for a fixed shape of the rough surface.
This is expected since, for example, a small fish has a lower drag than a large fish with
the same shape. The contour plots for the solution w, in Z, are displayed for the different
heights below.

(@) h =03 (b) h=0.4 () h=05

Figure 13.1: The solution w, to the auxiliary boundary problem

(a) h=0.7 (b) h=0.8 (¢) h=0.9

Figure 13.2: The solution w, to the auxiliary boundary problem
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Chapter 14

Conclusions

In essence, we have achieved our main goal to explain how the drag force can be re-
duced when a rough surface is introduced over a flat plate. The expression (12.8) clearly
illustrates this fact.

We have also showed that, through a homogenization process in {2;, we can describe
the microscopic behaviuor of the flow in the macroscopic scale where the dependence of
the microscopic scale is captured in the constant coefficient operator C',. This effective
equation can be treated numerically once the coefficient operator C', has been established.
Moreover, the rough surface is replaced by an artificial smooth boundary in the effective
equation, which is as an O(¢?) approximation, with the Navier slip condition. A boundary
condition that was suggested almost two centuries ago.
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