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Efficient and easy implementation of variational forms for finite element discretization can be
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1. INTRODUCTION

A cornerstone when developing finite element simulators is the task of implementing
variational forms of partial differential equations (PDEs), and optimizing this im-
plementation. A software development environment for this task should ideally be
user-friendly and general, in the sense that implementations are close to the under-
lying mathematical concepts, and result in high computational efficiency without
special effort from the user side. We have explored the combination of symbolic
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mathematics and code generation to be able to specify finite element methods in
a user-friendly environment while maintaining efficiency. By employing a symbolic
engine in a high-level language we allow the user to specify the weak form of the
PDE in an abstract format close to the mathematical formulation. Furthermore,
the symbolic framework allow us to do certain calculations automatically that we
earlier typically did by hand, e.g. the calculation of the Jacobian in the case of a
nonlinear PDE, or differentiation of complex material laws for hyper-elastic mate-
rials [Alnæs et al. 2007].

The generated code is often, as will be demonstrated, significantly faster than
traditional codes based on quadrature. This efficiency gain is due to a combination
of the symbolic computations performed prior to the code generation and that the
resulting C++ code is low-level and problem-specific.

Our efforts have resulted in the open source software package SyFi [Alnæs and
Mardal 2008], which is part of the FEniCS project [FEniCS 2008]. SyFi stands for
symbolic finite elements and is implemented in C++ and Python, building on the
symbolic C++ library GiNaC [Bauer et al. 2002; Bauer et al. 2007] and its Python
interface Swiginac [Skavhaug and Certik 2008]. SyFi is largely divided in two: a
kernel and a form compiler.

The SyFi kernel consists of a collection of tools for symbolic computations on
polynomial spaces and polygonal domains, and a collection of elements includ-
ing Arnold-Falk-Winther element [Arnold et al. 2007], the Crouzeix-Raviart ele-
ment [Crouzeix and Raviart 1973], the Hermite element, the standard Lagrange
elements, the Nedelec elements [Nédélec 1980; 1986], the Raviart-Thomas ele-
ment [Raviart and Thomas 1977], and the robust Darcy-Stokes element [Mardal
et al. 2002]. The elements are implemented in a generic way by solving a sym-
bolic linear system, defined by the degrees of freedom, in the construction of the
element. Therefore the elements are defined for arbitrary order except for the
Crouzeix-Raviart and Hermite elements. Another closely related approach of im-
plementing a general finite element package is FIAT [Kirby 2004] which realizes
polynomial spaces and degrees of freedom numerically.

The SyFi Form Compiler (SFC) takes as input a symbolic description of a varia-
tional form and a set of finite elements, and generates problem-specific C++ code.
This code includes function(s) to compute the element tensor(s) for the given prob-
lem, evaluate basis functions and degrees of freedom for the specified finite elements,
and tabulate the local to global mapping of degrees of freedom.

Symbolic computing to simplify finite element methods is not new, but the tradi-
tional way of programming expressions for the quadrature loop based on hand-made
calculations dominates. We believe there are three reasons for this dominance; the
extra effort of implementing a symbolic engine, assumed efficiency, and potential
scalability problems. By reusing an existing symbolic library, the implementation
effort is significantly reduced. The main subject of this paper is to demonstrate
that efficiency does not need to be sacrificed when introducing symbolic comput-
ing. In fact, we will demonstrate that our approach often results in a significant
speed-up. However, care must be taken to avoid various problems with complicated
equations, which we’ll discuss at the end.

There are many other software packages that enable a high-level way of speci-
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fying the variational form. Some projects like GetDp [Dular and Geuzaine 2006]
and FreeFEM [Pironneau et al. 2006] implement domain specific languages. Other
libraries like Diffpack [Bruaset et al. 2006; Langtangen 2003], Deal.II [Bangerth
et al. 2007b; 2007a], Life [Prud’homme 2006] and Sundance [Long 2006] employ
object-orientation and/or template metaprogramming. Another approach which
is very similar to ours is taken by the FEniCS Form Compiler (FFC) [Kirby and
Logg 2006; 2007; Logg 2008; Logg et al. 2008]. Both projects let the user specify
the variational form in Python using a high-level description. This description is
then parsed and efficient low-level C++ code is generated. The main difference
between FFC and SFC is that SFC employs a general symbolic engine, while FFC
exploits the geometric affine mapping to generate an efficient tensor representation
of element matrices and vectors.

Generating code involves some overhead, and in our experience it is important to
have a fixed interface between generated code and handwritten library code. To-
gether with the developers of FFC we have developed a common interface for the
code we generate, called UFC (Unified Form-assembly Code) [Alnæs et al. 2008;
Alnæs et al. 2009]. This interface is well documented in the code and comes with
a detailed manual. UFC is basically a small C++ header file with a few abstract
classes that contain low-level signatures for the computation of element tensors (ma-
trices, vectors and scalars), local to global mappings, and finite element evaluations
etc. Using a fixed interface leads to a clear software separation between the finite
element discretization of the PDE on one side, and the global linear algebra and
mesh formats on the other. With this design, developers can combine the strengths
of their favorite form compiler (at the moment FFC or SFC) with their favorite
mesh and linear algebra libraries by writing the global tensor assembly loop. At
the time of writing, global tensor assembly from UFC form objects is implemented
in the problem solving environment DOLFIN, and an example assembler is sketched
in the UFC documentation for interested developers.

Symbolic computations allow a definition of the equations that is close to math-
ematical notation. In our experience, thinking in terms of the same operators you
would write on paper (such as div, grad, curl, dot) reduces both the time to imple-
ment new equations and the probability for bugs. Using such high-level syntax does
not hinder computational efficiency because of the code generation. Furthermore,
symbolic differentiation can also be a major work saving feature in the implemen-
tation of some forms, for instance in the differentiation of complicated constitutive
laws, or automatic computation of the Jacobi matrix of a nonlinear equation.

Finally, it is worth noting that an advantage with a compiler is that it can detect
user errors of a more abstract or mathematical kind than a standard C++ compiler
since it is a special purpose compiler for finite element methods.

The purpose of this paper is to compare the efficiency of the element tensor com-
putations as conventionally programmed by using hand-written quadrature with our
approach using symbolic mathematics and code generation. Hand-written quadra-
ture examples are programmed using Diffpack 4.0 and Deal.II 6.0.0. The efficiency
of the code generated by SFC 0.5.1 is also compared to FFC 0.4.3 since FFC is
known to produce very efficient code, as documented in [Kirby and Logg 2006;
2007].
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While presenting the code examples we hope to demonstrate the user-friendliness
of our software tools. The source examples work with SyFi release 0.5.1.

An outline is as follows. In Section 2 we introduce the necessary mathematical
background and notation for discrete variational forms. We also introduce symbolic
and numeric integration techniques, and show how this can be used as a basis for
optimization. In Section 3 the corresponding software abstractions are presented,
as well as the code generation process and issues related to generating efficient
code. Section 4 contains a series of efficiency comparisons of the element tensor
computations in Deal.II, Diffpack, FFC and SFC. Finally, in Section 5 we discuss
limitations, advantages and future possibilities.

2. PRELIMINARIES

2.1 Variational Forms and Functionals in the Continuous Case

We will consider variational forms and functionals on the following form

aΩ(u0, . . . , un−1; w0, . . . , wm−1) → R, (1)

where 0 ≤ n ≤ 2, u0 is the test function, u1 is the trial function and w0, . . . , wm−1

are the coefficient functions (or prescribed functions). Furthermore, uk ∈ Uk and
wl ∈ Wl where Uk and Wl typically are some Sobolev spaces. We only handle forms
that map to real numbers. Some examples (to illustrate the notation) are:
1) The bilinear form of a second order elliptic PDE with a coefficient µ,

a1
Ω(v, u; µ) =

∫

Ω

µ∇u · ∇v dx,

2) the linear form of a typical right hand side with a given coefficient function f ,

a2
Ω(v; f) =

∫

Ω

fv dx,

3) and finally the inner product of the given coefficient functions f and g

a3
Ω(; f, g) =

∫

Ω

fg dx.

Neither the trial nor test function need to be present, but if the trial function is
present then so is the test function. The variational forms or functionals may take
any number of coefficients.

In the case of a form based on a nonlinear PDE, we may compute the Jacobian
matrix as follows. Let the nonlinear differential operator be

L(w0, . . . , wk, . . . , wm−1).

The weak form is then:

aΩ(v; w0, . . . , wm−1) =

∫

Ω

A(v, w0, . . . , wm−1) dx +

∫

∂Ω

B(v, w0, . . . , wm−1) dß,

where A(. . .) and B(. . .) are obtained by multiplying L(. . .) by the test function v

and performing integration by parts. The form aΩ is linear in the first argument
(the test function v) and nonlinear in wk. If we then assume that Wk = span({φk

j })
1

1The Sobolev space must be separable.
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and wk =
∑

j wk
j φk

j , then the Jacobian with respect to coefficient number k is the

derivative of aΩ(φ0
i ; . . .) with respect to {wk

j },

Jk
ij =

∂

∂wk
j

aΩ(φ0
i ; w

0, . . . , wm−1), ∀i, j

where {φ0
i } spans U0. This produces a bilinear form

aJ
Ω(φ0

i , φ
1
j ; w

0, . . . , wm−1) = Jk
ij ,

where {φ1
j} spans U1 = Wk and the functions w0, . . . , wm−1 are fixed.

2.2 Variational Forms and Functionals in the Discrete Case Using Finite Elements

In the finite element method the variational form (1) is split up as a sum of varia-
tional forms over a set of simple polygons {Ti} such that

∑

i Ti = Ωh ≈ Ω. Hence,
we need to be able to compute

aT (u0, . . . , un−1; w0, . . . , wm−1) → R. (2)

on a generic polygon T . Here u0, . . . , un−1 and w0, . . . , wm−1 are functions in the
finite element spaces {Uk} and {Wl}, respectively. The element tensor (matrix,
vector or scalar) is computed as

AT
ι0,...,ιr−1

= aT (N0
ι0

, . . . , N r−1
ιr−1

; w0, . . . , wm−1),

where ι = ι0, . . . , ιr−1 is a multi-index with r indices and dim ιi = dimUi. We
will refer to the element tensor as a rank r tensor, i.e. rank 2 is a matrix, rank
1 is a vector, and rank 0 is a scalar. Each element tensor index ιi corresponds to
the degree of freedom/basis function number ιi in the finite element space Ui, i.e.,
N0

ι0
represents basis function number ι0 in the space of test functions U0 (rank ≥

1) and N1
ι1

represents basis function number ι1 in the space of trial functions U1

(rank=2). The coefficient functions wk are given2 functions, represented by a set of
degrees of freedom {wk

j }. In the case of integration by quadrature, the coefficients
may be represented as the point-wise evaluation of a function in quadrature points,
but in the general case {wk

j } will be defined by the degrees of freedom of the finite

element space used to represent the coefficient, with wk =
∑

j wk
j Nwk

j . See [Alnæs
et al. 2008; Alnæs et al. 2009] for more details.

To clarify the distinction between forms of various ranks we consider a few ex-
amples. The rank 2 form without any coefficients

Aij = a(N0
i , N1

j ) =

∫

T

N0
i N1

j dx

produces a matrix (the mass matrix), while the rank 1 form with one coefficient

Ai = a(N0
i ; w0) =

∫

T

N0
i w0 dx

2From an implementation point of view they are typically prescribed at run-time prior to the
element tensor computations.
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produces a vector (the load vector or source vector), and the rank 0 form with two
coefficients

A = a(; w0, w1) =

∫

T

w0 w1 dx

produces a scalar (the L2 inner product of w0 and w1). Of course, we can relate
the forms of rank 2, 1 and 0 obtained from the same variational form a as above
by Ai =

∑

j Aijw
0
j and A =

∑

Aiw
1
i .

Finally, we note that the element Jacobian matrix of a rank 1 form with respect
to its k’th coefficient is

AT
ι0,ι1

= Jk
ι0,ι1

=
∂

∂wk
ι1

aT (N0
ι0

; w0, . . . , wk, . . . , wm−1).

This is precisely what is needed when using Newtons method to solve a nonlinear
PDE using the finite element method.

2.3 Integration Techniques

Computing the element tensor AT involves integration of some expressions over
an element, which can be handled in two different ways. In this section we will
first discuss the mapping from a global element to a reference element, before we
describe traditional integration by quadrature as well as our analytical integration
approach.

On a general polygon T , the variational form and the finite elements are usually
defined in terms of a mapped reference element3. This is done as follows. Let T

be a polygon and T̂ the corresponding reference polygon. Between the coordinates
x ∈ T and ξ ∈ T̂ we use the mapping

x = G(ξ) + x0, (3)

and define the Jacobian determinant of this mapping as

J(x) =

∣

∣

∣

∣

∂G(ξ)

∂ξ

∣

∣

∣

∣

. (4)

The basis functions are defined in terms of the basis function on the reference
element as

Nj(x) = N̂j(ξ), (5)

where N̂j is basis function number j on the reference element. The integral can
then be performed on the reference polygon,

∫

T

f(x) dx =

∫

T̂

f(ξ)Jdξ, (6)

and the spatial derivatives are defined by the derivatives on the reference element

3This is not possible for all elements, e.g. the Rannacher-Turek [Rannacher and Turek 1992]
element has better properties on anisotropic meshes when defined globally. The SyFi kernel
supports both approaches, but only mapped elements are currently implemented in the form
compiler.
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Triangle Tetrahedron Quadrilateral Hexahedral

p nq q nq q nq q nq q

1 3 (2) 4 (2) 4 (3) 8 (3)

2 6 (4) 11 (4) 9 (5) 27 (5)

3 12 (6) 24 (6) 16 (7) 64 (7)

4 16 (8) 43 (8) 25 (9) 125 (9)

5 25 (10) 126 (11) 36 (11) 216 (11)

Table I. For each element order p, the number of quadrature points used in a quadrature rule of
order q = 2p or q = 2p + 1.

and the geometry mapping simply by using the chain rule,

∂N

∂xi

=
∂N

∂ξj

∂ξj

∂xi

. (7)

If we let GT denote the set of variables depending on the geometry of the cell T

(e.g. x0, G, and n), and WT = {wi
j} denote the set of degrees of freedom for all

coefficients, we can write the expressions for the element tensor entries as

Aι =

∫

T̂

fι(ξ, GT , WT ) dξ. (8)

The traditional approach is to perform numerical integration by quadrature,
which means approximating the integral with a weighted sum of the integrand
evaluated in certain points,

∫

T̂

fι(ξ, GT , WT ) dξ ≈

nq−1
∑

i=0

ωifι(ξ
q
i , GT , WT ),

where the points ξ
q
i and weights ωi together form a quadrature rule. For triangles

and tetrahedrons we use the economical Gauss rules found in [Solin et al. 2004],
and for quadrilaterals and hexahedrons we use simple tensor products of 1D Gauss
rules. The order of the quadrature rule can be specified as an option when compiling
the form. Table I shows the number of quadrature points in some of the these rules.

Alternatively, analytical integration can be applied. Symbolic integration is
slower than integration by quadrature, but this can be done as a preprocessing
step prior to code generation by the form compiler. This way the dependency on
x or ξ is integrated away in the expressions we generate code from, and we obtain
a set of explicit expressions for the integrals

∫

T̂

fι(ξ, GT , WT ) dξ = Fι(GT , WT ), (9)

where the functions Fι(GT , WT ) are often much simpler than fι(ξ, GT , WT ). This
is particularly the case when the geometry mapping is affine, the order of finite
element spaces for test and trial functions is greater than 1 or 2, and with forms
where the dependencies on GT and WT are simple. Thus we can expect the analytic
integration to be more beneficial when using high order basis functions and less so
with coefficient functions that are of high order or occur in complex nonlinear terms.
We will demonstrate this in the efficiency comparisons described below.
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Fig. 1. Information flow from weak form of the PDE to global matrix assembly. The form
compiler (SFC) takes a symbolic representation of the weak form and produces a C++ program
which implements the UFC interface. This program is used as a computational kernel in the
DOLFIN Assembler to produce the global matrix.

from sfc import *

# A) Define elements and arguments

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

# B) Define integrand

def mass(v, u, itg):

return inner(u, v)

# C) Generate and compile code

form = Form(basisfunctions = [v, u])

form.add_cell_integral(mass)

compiled_form = compile_form(form)

# D) Assemble global vector and matrix

from dolfin import *

mesh = UnitSquare(10, 10)

M = assemble(compiled_form, mesh)

Fig. 2. Code for defining and assembling a mass matrix

Symbolic integration requires fι to be possible to integrate automatically. Be-
cause of limitations in GiNaC, they must be polynomials. Polynomials can always
be obtained by taking the Taylor series, using the moment basis in GiNaC, but
this may not always be stable or efficient. Other symbolic engines may manage to
integrate some more complicated expressions, but in general a similar limitation
will still apply. Additionally, the coefficients must be represented by a polynomial
such as a field over a finite element space, whereas when using quadrature the co-
efficients can be evaluated point-wise in quadrature points. Thus we wish to apply
analytic integration when it improves performance and quadrature where dictated
by practical and theoretical limitations.

3. DEFINING AND COMPILING FORMS

The SyFi Form Compiler (SFC) is a Python module which takes as input a
symbolic definition of a variational form or functional and a choice of finite element
spaces. The compiler produces as output C++ code which can compute the element
tensor given cell and coefficient data, as well as code for the finite elements and local
to global mapping. SFC uses the Python interface Swiginac of the symbolic C++
library GiNaC as the base of its input language. On top of this general symbolic
engine, common operators for PDEs are defined, the most important being the
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/// Tabulate the tensor for the contribution from a local cell

void cell_itg__mass__Lagrange_1_2D::tabulate_tensor(double* A,

const double * const * w,

const ufc::cell& c) const

{

// geometric quantities

double x0 = c.coordinates[0][0]; double y0 = c.coordinates[0][1];

double x1 = c.coordinates[1][0]; double y1 = c.coordinates[1][1];

double x2 = c.coordinates[2][0]; double y2 = c.coordinates[2][1];

double G00 = x1-x0;

double G01 = x2-x0;

double G10 = y1-y0;

double G11 = -y0+y2;

double t6 = G11*G00;

double t7 = -G10*G01;

double t8 = t7+t6;

double detG = fabs(t8);

// local_tokens, product of optimization

const double t10 = 8.3333333333333329e-02*detG;

const double t11 = 4.1666666666666664e-02*detG;

A[3*0 + 0] = t10;

A[3*0 + 1] = t11;

A[3*0 + 2] = t11;

A[3*1 + 0] = t11;

A[3*1 + 1] = t10;

A[3*1 + 2] = t11;

A[3*2 + 0] = t11;

A[3*2 + 1] = t11;

A[3*2 + 2] = t10;

}

Fig. 3. Snippet of generated C++ code for computing the mass matrix

differential operators grad, div, and curl, as well as operators like dot and inner4.
The basis functions of the finite elements are provided by the SyFi kernel.

Figure 1 shows the information flow from the hand written user implementation
of a weak form, through the form compiler to C++ code which is used to assemble
the global matrix by the DOLFIN library. In the following we first step through
an example Python code and show the resulting generated code, before we go into
some more details about the code generation process.

Figure 2 shows a Python script which defines and computes the mass matrix
using linear Lagrange elements on triangles. We will explain each step in the script
below, but refer to the SyFi manual for more details about the user interface. Note
that step D uses PyDOLFIN.

In step A we define a finite element in terms of its family name, the order and
polygon type. Using this element, we construct the arguments of the variational
form, namely the test and trial functions.

4Notice that the inner product of vectors or the contraction of matrices is denoted by inner, while
matrix vector multiplication (or the inner product of vectors) is denoted by dot.
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Step B defines the integrand in terms of a callback function mass. This function
takes as input explicit symbolic expressions (swiginac objects) for its arguments
and returns the corresponding integrand for a single element tensor entry.

In step C a form is defined with the test and trial functions from step A as
arguments. When calling add cell integral, the integrand of each element matrix
entry AT

ij is computed by one call to mass with the test function v = φ0
i and

trial function u = φ1
j , and the resulting symbolic expression for each integrand

is integrated analytically. In the call to compile form, corresponding C++ code
is generated by the form compiler. This C++ code is an implementation of the
UFC interface. The generated C++ code is compiled and linked into a Python
extension module, which is loaded dynamically into Python, a kind of Just-In-Time
compilation5. The code for computing this element matrix is shown in Figure 3.

Finally, to assemble a global tensor, the UFC implementation must be combined
with other software components like a mesh library and a linear algebra library, tied
together with an assembly algorithm. See [Alnæs et al. 2009] for a discussion of
how the UFC interface is intended to be combined with other software components.
Step D shows how this step looks in the PyDOLFIN [Hoffman et al. 2008a; 2008b]
problem solving environment.

3.1 Generating Efficient Code

There are two main reasons for the speed-up when comparing SFC generated code
with conventional quadrature codes: SFC 1) performs some computations prior
to the code generation and 2) generates low-level and problem-specific code. In
this section we will describe the techniques used in SFC, before several examples
demonstrating significant speed-up is shown in the next section.

The code generation in SFC relies on a few simple principles. The overall code
structure is provided by templates for each class in the UFC interface. These
templates are distributed with UFC. Formatting of a symbolic expression as a C
expression is provided by GiNaC. A variable in the generated code is represented
before code generation as a symbolic (symbol, expression) tuple we call a token,
which can be formatted as a variable declaration, definition, assignment or accu-
mulation using some simple helper functions. A block of the program in SSA form
(Single Static Assignment, where each variable is assigned a value only once) is rep-
resented as a list of tokens. Generating code for a sequence of variable assignments
or declarations can thus be done using a single function call, given a symbolic SSA
form (a list of tuples of symbols and expressions). In other words, the symbolic
expressions are directly inlined in the generated C++ code.

There are many ways a symbolic engine can be used for doing computations prior
to the code generation and we have only tested a few techniques, so far. Our greatest
success comes from employing analytical integration on the entries in the element
tensor. By doing this we remove the spatial dependency of the integrand function,
as seen in equation (9), and hence the quadrature loop. With this technique it is
also easy to estimate the speed-up, as will be done in the next section.

In section 3 we saw that the form compiler gets the user code for an integrand as

5Using the package Instant [Mardal and Westlie 2008], which caches the compiled modules and
compares MD5 sums of the source code to avoid recompilation if the source code doesn’t change.
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a callback function. In the simplest case, the form compiler calls the user code to
compute the integrand expression for each combination of basis functions, integrates
the expression analytically, and stores the resulting expressions in symbolic SSA
form from which we can easily generate C++ code. In the case of quadrature
code, the tokens can be analyzed to split them in one SSA form to be computed
outside the quadrature loop and one inside the quadrature loop based on their
dependencies.

We can also apply further optimizations on the symbolic SSA form. Constant
propagation and removal of unused variables is fairly easy in symbolic SSA form.
Common Subexpression Elimination (CSE) is implemented in two steps. The first
step uses the knowledge that many element tensors inhibit symmetries, and detects
equal element tensor entries directly by inserting their expressions in a hashmap.
The second step is a single sweep over subexpressions, creating new variables for
each operation and reusing them where possible. This is not a particularly good
algorithm, since it scales poorly and does not identify all common subexpressions.
Neither does it consider the effect of too many temporary variables, and as a result
it may actually degrade the performance in some cases. A similar technique is
likely used by the C++ compiler, since we compile the code with optimization (-
O2). Still, as will be shown, it may produce a significant speed-up when applied
prior to code generation.

The second reason for our efficiency is that we generate low-level and problem-
specific code. This is in some sense similar to template metaprogramming in C++,
where user-level abstractions are removed during the C++ compilation stage and
code is inlined. With either technique parts of expressions can be removed at
compile time. For example, as pointed out in [Prud’homme 2006], when writing
expressions like dot(u, v) then the terms associated with zeros in the vectors u

and v may cancel automatically, yielding a smaller expression. Instead of exploit-
ing the template engine of the C++ compiler, we generate explicitly inlined C++
expressions. Notice further that (problem-specific) code generation offers greater
flexibility than template metaprogramming in C++. For example, when one or
more of the coefficients are piecewise constants, computations related to these co-
efficients may be performed outside the quadrature loop.

Other traditional code optimization techniques are inlining and loop unrolling,
which are both natural results of our code generation approach since we produce
explicit expressions for each element tensor entry.

Finally, the generated code is low-level without abstractions and external depen-
dencies. Therefore the C++ compiler is not hindered by abstraction barriers like
virtual functions when optimizing the machine code.

4. EXAMPLES DEMONSTRATING EFFICIENCY

Below we will look at a few examples of variational forms, and present comparisons
of the time taken to run the generated code versus more traditional hand-written
quadrature based code. Note that all the examples use an affine geometry mapping.

In the performed tests we have measured the time to compute a single element
tensor by computing element tensors in a loop, without the overhead of matrix
insertion and mesh iteration found in the actual assembly algorithm. Therefore, the
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speed-up presented here is only a part of the assembly of a global tensor. The actual
speed-up seen in an application depends on the mesh and linear algebra library in
use, and is limited by the fraction of the assembly time spent on the element tensor
computation in the first place. An approximate timing of the Deal.II codes show us
that the element tensor computation for computing the stiffness matrix take from
30% for linear elements to 86% for fifth order elements. With SFC/Dolfin a similar
test shows that the element tensor computations vary from 2% for linear elements to
6% for fifth order elements. The Deal.II assembly process is about 30% faster than
SFC/Dolfin on linear elements, but more than twice as slow for fifth order elements.
Deal.II uses quadrilateral elements while SFC/Dolfin uses triangular elements and
in these experiments the number of degrees of freedom is the same. Since Dolfin
uses triangles the mesh then consists of twice as many cells.

All codes are compiled using g++ 4.1 with the optimization flag -O2, and run on
a Dell XPS M1710 with an Intel T2600 @ 2.16 GHz CPU (using a single core only).
Measured times varied about 5% between runs, which is well within the accuracy
of interest. A subset of the tests has been run on a different computer, achieving
similar relative times.

Code is generated by SFC using both analytic integration and quadrature, and
for comparison with external software we have chosen FFC, Deal.II and Diffpack.
Deal.II and Diffpack are C++ libraries for the finite element method using quadra-
ture. FFC has an approach similar to the analytic integration in SFC, known to
produce very efficient code [Kirby and Logg 2007]. Note that FErari [Kirby et al.
2005; Kirby et al. 2006], an optimizing backend used by FFC, was not available in
FFC during these tests.

Not all libraries could be compared in each testcase. FFC only supports simplex
elements, and Deal.II only supports hypercube elements, while SyFi supports both.
Diffpack supports both polygon types, but only low order elements. Optimized
versions of SFC code (with CSE applied) are included in the benchmarks only in
the cases optimization resulted in a definite speed-up.

Below we will present mathematical definitions of the forms used as testcases,
along with an analysis and discussion of the test results. Note that while we use
Lagrange elements in all examples, the conclusions are independent of the actual
element type. SFC code which defines the integrands of these forms is shown in
Figure 4.

For each test case we measured code both generation time (time spent by SFC
alone) and total compile times (time spent by SFC and GCC). In most cases pre-
sented here the total code generation and compilation time is between 10 s and a
minute (when the code is not cached). For each test case we discuss the cases where
compilation becomes slower or breaks down.

4.1 Example: Mass Matrix

The element mass matrix is

Aij = a(Ni, Nj) =

∫

T

Ni(x)Nj(x)dx. (10)

Applying analytic integration results in

Aij = MijJ, (11)
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def mass(v, u, itg):

return inner(u, v)

def rhs_vector(v, f, itg):

return inner(f, v)

def stiffness(v, u, itg):

GinvT = itg.GinvT()

Du = grad(u, GinvT)

Dv = grad(v, GinvT)

return inner(Du, Dv)

def convection_vector(v, w, itg):

GinvT = itg.GinvT()

Dw = grad(w, GinvT)

return dot(dot(w, Dw), v)

def convection_jacobi(v, w, itg):

GinvT = itg.GinvT()

Du = grad(u, GinvT)

Dw = grad(w, GinvT)

return dot(dot(w, Du) + dot(u, Dw), v)

def power_functional(w, itg):

p = 2

return w**p

Fig. 4. Definition of example forms with SFC

where Mij are real numbers and J is the Jacobian determinant of the affine geom-
etry mapping. Hence, the computation of the element mass matrix will consist of
computing J , plus one floating point multiplication per entry in the matrix regard-
less of the choice of element and its order. Thus the computational cost of one entry
in the element matrix is constant, and dominated by the cost of memory access.
In contrast, when using numerical integration the cost per entry is proportional to
the number of quadrature points. Figure 3 shows the code generated by SFC for
computing this element matrix. The timing results presented in Table II, Table III,
and Figure 7 clearly show the large speed-up resulting from analytic integration.
This speed-up ranges from a factor 50 to a factor 800 compared to Deal.II. It is
also evident that the generated code using quadrature is several times faster than
the handwritten C++ codes.

Compilation times are generally low for this simple form, but grows to about
a minute for a 5th order tetrahedron element and blows up faster for hexahedron
elements, from several minutes for a 4th order element to about an hour for the
5th order element.
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from sfc import *

# Define elements and arguments

element = VectorElement("Lagrange", "triangle", 1)

v = TestFunction(element)

w = Function(element)

# Define integrand

def convection_vector(v, w, itg):

GinvT = itg.GinvT()

Dw = grad(w, GinvT)

return dot(dot(w, Dw), v)

# Define forms

F_form = Form(basisfunctions = [v], coefficients = [w])

F_form.add_cell_integral(convection_vector)

J_form = Jacobi(F_form)

# Generate and compile code

compiled_F_form = compile_form(F_form)

compiled_J_form = compile_form(J_form)

Fig. 5. Code for defining and compiling forms for a convection vector and its Jacobi matrix

# Assemble global vector and matrix using PyDOLFIN

from dolfin import *

class W(cpp_Function):

def __init__(self, mesh):

cpp_Function.__init__(self, mesh)

def rank(self):

return 1

def dim(self, i):

return 2

def eval(self, v, x):

v[0], v[1] = x[0], x[1]

mesh = UnitSquare(10, 10)

w_function = W(mesh)

# Assemble global vector and matrix

F = assemble(compiled_F_form, mesh, coefficients = [w_function])

J = assemble(compiled_J_form, mesh, coefficients = [w_function])

Fig. 6. PyDOLFIN code for assembling the compiled convection vector and Jacobi matrix forms
defined in Figure 5

4.2 Example: Right Hand Side Vector

The element right hand side vector, often called the load vector or source vector, is

Ai = a(Ni; w) =

∫

T

Ni(x)w(x) dx =

∫

T̂

N̂i(ξ)
N−1
∑

k=0

wkN̂k(ξ)J dξ, (12)
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Fig. 7. Time to compute the element tensor of the mass form on quadrilateral elements, in µs

Triangle Tetrahedron

Order 1 2 3 4 5 1 2 3 4

Timescales (µs) 0.024 0.039 0.083 0.16 0.29 0.051 0.095 0.28 0.82

SFC 1.0 1.0 1.0 1.0 1.0 1.00 1.0 1.0 1.0

SFC (quad.) 7.3 26.8 61.8 114.2 177.9 6.6 48.1 161.8 333.2

SFC (quad., opt.) 5.4 18.7 46.0 71.4 111.0 5.3 36.6 104.1 198.5

FFC 1.0 1.1 1.0 1.1 1.1 0.9 1.0 1.0 1.1

Diffpack 19.0 56.4 – – – 15.1 – – –

Table II. Time to compute the element tensor of the mass form, relative to a symbolic integration
for each order.

where the coefficient w is assumed to be a finite element field, i.e., w =
∑N−1

k=0 wkNk.
Analytic integration results in

Ai = J
∑

k

Mikwk ≡ Fi(J, wk), (13)

where Fi will be linear polynomials in {wk}. The number of floating point op-
erations per element vector entry is proportional to the degrees of freedom per
element, N when using analytical integration, while it is proportional to the num-
ber of quadrature points in quadrature based implementations. This reduces the
benefit of analytical vs numerical integration, as seen in the testcase using quadri-
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Quadrilateral Hexahedron

Order 1 2 3 4 5 1 2 3 4

Timescales (µs) 0.035 0.069 0.18 0.42 0.82 0.072 0.49 5.45 21.8

SFC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SFC (quad.) 9.1 40.7 73.2 154.4 210.8 32.6 204.9 264.2 –

SFC (quad., opt.) 6.5 32.5 54.3 99.5 125.4 25.0 120.1 201.5 379.5

Deal.II 50.4 128.4 223.5 345.2 518.3 160.8 404.5 453.2 811.2

Diffpack 30.1 78.6 – – – 88.3 228.2 – –

Table III. Time to compute the element tensor of the mass form, relative to a symbolic integration

for each order.

Fig. 8. Time to compute the element tensor of the rhs vector form on quadrilateral elements, in

µs

lateral elements presented in Figure 8. Here the speed-up of SFC with analytic
integration vs Deal.II varies from a factor 32 for linear elements to a factor almost
8 for 5th order elements, while the speed-up vs generated quadrature code varies
from a factor 3.5 to 2.5.

Although the number of element vector entries grows slower than the number of
entries in the element mass matrix (n vs n2), the complexity of the integrand in-
creases faster. As a result of this complexity, the code generation is a bit slower than
for the mass matrix, and grows from a couple of minutes for 3rd order hexahedron
elements to several hours for 4th order hexahedron elements.
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Triangle Tetrahedron

Order 1 2 3 4 5 1 2 3 4

Timescale (in µs) 0.057 0.10 0.28 0.8 1.5 0.14 0.7 2.6 11.3

SFC (analytic) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SFC (quadrature) 2.7 9.6 17.0 17.3 24.9 2.1 8.6 20.4 36.5

FFC 0.8 0.7 0.7 0.6 0.7 0.7 0.4 0.5 0.8

Diffpack 10.5 31.0 – – – 8.2 – – –

Table IV. Time to compute the element tensor of the stiffness form for each order respectively on
triangle and tetrahedron elements.

Quadrilateral Hexahedron

Order 1 2 3 4 5 1 2 3 4

Timescale (in µs) 0.073 0.24 0.52 1.2 3.2 0.36 2.3 20.6 75.8

SFC (analytic) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SFC (quadrature) 4.5 11.7 26.1 41.7 68.5 7.8 52.2 83.8 209.6

Deal.II 31.6 52.8 109.3 169.2 186.1 42.3 123.0 166.9 332.4

Diffpack 18.1 37.1 – – – 27.5 105.4 – –

Table V. Time to compute the element tensor of the stiffness form for each order respectively on
quadrilateral and hexahedron elements.

4.3 Example: Stiffness Matrix

The element stiffness matrix is

Aij = a(Ni, Nj) =

∫

T

∇Ni(x) · ∇Nj(x) dx

=

∫

T̂

G
−T∇N̂i(ξ) ·G−T∇N̂j(ξ)J dξ.

(14)

Analytic integration results in

Aij = Fij(G
−T , J), (15)

where the polynomials Fij(G
−T , J) are quadratic in G

−T and linear in J . Tables IV
and V and Figure 9 shows the timing results. Here we see a growing speed-up
with element order similar to the behavior in the mass matrix testcase, but to a
lesser extent because the integrated expressions are more complicated. The highest
observed speed-up is 332.

Code generation times grow to about ten minutes for hexahedron 3rd order and
tetrahedron 5th order elements, and several hours for 4th order hexahedron ele-
ments. The time spent is dominated by analytic integration of the large number of
element tensor entries.

4.4 Example: Nonlinear Convection Vector

The nonlinear convection vector is

Ai = a(Ni;w) =

∫

T

w · ∇w Ni dx. (16)
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Fig. 9. Time to compute the element tensor of the stiffness form on quadrilateral elements, in µs

Analytic integration results in

Ai = Fi(G
−T , J,w), (17)

where Fi(G
−T , J,w) are polynomials that are linear in G

−T and J and quadratic
in w. Figure 5 shows definition and computation of this form in SFC, and Figure 10
shows the timing results. A PyDOLFIN example performing assembly of the global
tensors is shown in Figure 6.

The reason for the poor performance of analytic integration in this case is the
product of the coefficient function w with its gradient. To perform the analytic
integration, the functions w and ∇w are expanded in their polynomial finite ele-
ment basis. While integration still removes the spatial dependencies, the resulting
expressions can be written on the form

Fi = J

n
∑

j=1

n
∑

k=1

Mjk(G−T )wjwk.

Thus the number of operations to compute the length n element vector is propor-
tional to n3, with n = |W k|. A good factorization algorithm capable of factoring
multiple expressions at once would be needed to optimize this.

In contrast, the quadrature code can compute w and ∇w once per quadrature
point, and the operation count per element vector entry is constant, yielding a
number of operations proportional to nqn, with nq being the number of quadrature
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Fig. 10. Time to compute the element tensor of the convection vector form on quadrilateral
elements, in µs

points.
Note that quadrature rules of order q = 2p or q = 2p+1 have been used, where p is

the element order. The polynomial order of the integrand here is actually 3p, which
means we are under-integrating. Increasing q here to achieve exact integration with
quadrature will increase the computation time with less than a factor 3 which still
leaves the analytical integration slower than the generated quadrature code.

For quadrilateral elements of orders 1 and 2, the convection vector form compiled
in less than a minute. However, the generation time exploded to a couple of hours
for cubic elements and failed to complete within a day for higher order. For 4th
and 5th order elements on triangles the generation times were about ten minutes
and five hours respectively. For tetrahedra this blowup occurred at cubic elements
and for hexahedral elements only linear elements finished within a day.

4.5 Example: Convection Jacobian Matrix

The Jacobian element matrix of the nonlinear convection form from Example 4.4
is

Aij =
d

dwi

[a(Nj;w)] =
d

dwi

∫

T

w · ∇w Nj dx

=

∫

T

(w · ∇Nj + Nj · ∇w) ·Ni dx.

(18)
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Fig. 11. Time to compute the element tensor of the convection jacobi form on triangle elements,
in µs

Applying analytic integration results in

Aij = Fij(G
−T , J,w), (19)

where Fij(G
−T , J,w) are linear polynomials in G

−T , J and w. The code in Figure 5
shows definition and computation of this form in SFC, and Figure 11 shows the
timing results.

In this case the differences in computational time are much smaller, with only
about a factor 2.5 between the extreme cases. Analytic integration with SFC
and the tensor representation in FFC are roughly equivalent, while the optimized
quadrature code is faster than the other approaches with a factor 2 - 2.5 when using
cubic elements.

Note that the quadrature rules are the same ones used for nonlinear convection,
and in this case using exact rules would make the quadrature code slower than the
code using analytic integration.

Compilation and generation times for the convection Jacobi form relate to the
convection vector similarly to the relation between the mass matrix and the rhs
vector. The matrix has more entries but the vector expressions are more compli-
cated. Generation and compilation times blow up for the convection Jacobi as well,
but at somewhat higher element orders.
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Fig. 12. Time to generate code for the power functional on quadratic tetrahedron elements, in s

4.6 Example: Power Functional

By the power functional we mean

a(; u) =

∫

Ω

up dx, (20)

with u ∈ Vh. In the following Vh is taken to be a Lagrange finite element space
of degree q on a cell K, and the integer exponent p can be varied over a suitable
range. Inserting the finite sum of basis functions and degrees of freedom for u, the
integrand polynomial on a cell K becomes

F (u) = up =

(

nq
∑

i=1

uiφi(x)

)p

, (21)

where nq = |V K
h | is the dimension of the local finite element space. To integrate

this expression, the polynomial F is expanded into monomials, which results in an
exponential growth in the number of terms as p grows, roughly estimated as O(np

q).
To demonstrate the limits of the symbolic integration approach clearly, we show

run time and code generation time for this functional with increasing p. An exact
quadrature rule of order q ∗ p is chosen for this comparison6.

6Unlike the other tests, these were run on a computer with an Intel Xeon L5420 2.5 GHz CPU
(using a single core) and 8 Gb RAM.
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Fig. 13. Time to compute the power functional on quadratic tetrahedron elements, in µs

We measured code generation time and time to compute the functional on a
single cell on triangles and tetrahedra with q = 1, 2, 3 and p in the range [1, 10].
With q = 1 no problems occurred, but there was no significant efficiency gain
and generated quadrature code was faster for p > 2. With q = 3 the symbolic
computations break down for p > 4.

Results from the power functional tests with q = 2 on tetrahedra are presented in
more detail here. Figure 12 shows code generation time for analytically integrated
and quadrature based code over varying p. While quadrature code generation
time is a constant fraction of a second independent of p, the analytic integration
approach gives exponentially growing time with increasing p as anticipated. For
p > 6 the code generation broke down because of excessive memory usage. Looking
at Figure 13, we see that the time to compute the functional is not improved by
this precomputation. In fact, the generated quadrature code is faster for all p > 1
and shows a slower growth in run time with increasing p, so there is no reason to
choose the analytic approach here.

5. DISCUSSION

5.1 Computational Efficiency

As demonstrated, symbolic computations combined with code generation can often
lead to high computational efficiency. The code generated with analytical integra-
tion often outperforms integration by quadrature with orders of magnitude. Fur-
thermore, the generated code based on quadrature is several times more efficient
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than corresponding code in Deal.II and Diffpack, even though the codes essentially
performs the same operations in the same language. Writing the same kind of low-
level code by hand would be tedious, error prone, and very inflexible, which is why
FEM libraries provide abstractions in the first place. By positioning the user-level
abstractions prior to the compilation phase, the low-level code is automatically
tailored to the problem at hand with no additional manual work.

We have in this paper mainly considered two techniques, analytical integration
and common subexpression elimination (CSE). Usually, approximate speed-up can
be predicted by counting the necessary operations in the code. However, it is worth
noting that none of these techniques always produce efficient code. For instance, in
the case with complex material laws for hyper-elastic materials considered in [Alnæs
et al. 2007], analytic integration can produce huge expressions and corresponding
C++ code, which is not always possible to compile. Furthermore, in cases where
analytic integration and CSE gave speed-up, combining the techniques did not
necessarily improve the performance. The reason for this lack of improvement can
be due to the fact that our CSE routine is fairly primitive, and also that the C++
compiler performs similar optimizations. Benchmarks of code optimized like this
have only been shown for the cases it resulted in a speed-up.

5.2 Metaproblems

Our approach is a form of metaprogramming, since the program we write using
symbolic computing has a C++ program as its output data. Metaprogramming
carries its own set of problems and disadvantages.

Debugging a C++ application can be difficult enough with all the tools a pro-
grammer has at his disposal. When a bug is located in generated C++ code, it
cannot (or should not) be fixed directly, since it reflects a bug in the form compiler
or the metaprogram. Thus the problem must be possible to trace back to the form
compiler and fixed at the actual source. The C++ code generated by SFC is fairly
easy to follow, which makes this process manageable.

For complicated problems and high order elements, code generation, optimiza-
tion, and compilation of the resulting code can carry high memory requirements
and take much time. For example, analytic integration of the element mass matrix
using 4th order hexahedron elements can take several hours to complete, because
each of the 15625 (1252) element tensor entries is integrated separately. The power
functional example in subsection 4.6 involves the integration of only one expres-
sion, and demonstrates how the cost of even a single integral may be too high for
practical usage.

Finally, techniques like loop-unrolling and inlining must be used with care. In
Table III, timing of the element mass matrix with 4th order hexahedron elements
and quadrature is left out because g++ required too much memory to compile the
code using -O2. For similar reasons, the results seen in Figure 10 are truncated
because of problems with code size and memory usage. This is usually a result of
too much explicit inlining in the code generation.

5.3 Limitations

The technology presented here has several limitations, both theoretical and im-
plementation specific. Analytic integration is not even possible for all nonlinear
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operators, and doesn’t scale performance wise to more complicated forms. For
some simple forms the run time performance is excellent for high order elements
but the integration time becomes too high for most practical use.

By using quadrature we can still get performance benefits from code generation.
The limitations in compilation of quadrature based code seen in the convection
vector example is caused by flaws in our current implementation, mainly explicit
inlining of all expressions in the code generation.

We have used SFC with quadrature for isotropic hyperelasticity with a Fung type
material law, as presented in [Alnæs et al. 2007]. However, adding orthotropy or
higher order elements makes the equations too complicated for the current frame-
work.

Higher order geometries are useful for accurate description of smooth domains.
These are not feasible for analytic integration since they contain the inverse of
a geometry mapping. However, if implemented using quadrature this should not
affect the code generation. Unfortunately, our software does not support this.

Automatic linearization using symbolic differentiation does not scale well. This
is the approach taken by SFC when using analytic integration, since the element
tensor entries are represented as monolithic symbolic expressions. A better ap-
proach to differentiation of programs is called automatic differentiation (AD) [Long
2004; Griewank 1989; Tadjouddine 2008] and should be applied instead. When
using quadrature, the linearization implementation in the current SFC version is
similar to a forward mode AD algorithm but with symbolic differentiation of partial
expressions.

Work is in progress to fix the most pressing of these issues by avoiding explicit
inlining in the code generation, and improved implementations of AD, with the goal
of providing a form compiler that is robust w.r.t. more complicated equations.

6. CONCLUSION

Code generation from an abstract (user-friendly) problem definition allows domain
specific optimizations exploiting knowledge of the problem that the C++ compiler
does not have. In our case we have shown that employing a symbolic engine inside
a finite element form compiler can lead to speed-up of several orders of magnitude
in addition to a user-friendly and time saving problem solving environment. Our
efforts have resulted in the open source package SyFi which generates UFC code
that is directly importable in DOLFIN and other libraries implementing this thin
interface.
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