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The reduced basis method

Parameter dependent problems: F (u; µ) = 0
Given µ ∈ D ⊂ R

p , find u ∈ XN such that

a(u, v ;µ) = ℓ(v) ∀ v ∈ XN , N ≫ 1

Reduced basis procedure
Offline:

Basis functions defined on XN span the reduced basis approximation
space

XN = span{ui}
N
i=1, N ≪ N

Online:
Find the reduced basis approximation:

uN(µ) =

N
∑

i=1

αi(µ)ui ,

such that
a(uN , v ;µ) = ℓ(v) ∀ v ∈ XN



The reduced basis method

Offline/online decoupling

◮ GOAL: Avoid online computations on the underlying FEM basis.

◮ All basis functions in XN are stored in the FEM basis, so both
a(uN , v ;µ) and ℓ(v) involve computations on the FEM basis.

◮ ℓ(v) is independent of the parameter, so this can be done offline.
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If the problem has affine parameter dependence, we may decouple the
bilinear form such that
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σq(µ)aq(u, v).
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The reduced basis method

Offline/online decoupling
If the problem has affine parameter dependence, we may decouple the
bilinear form such that

a(u, v ;µ) =

Q
∑

q=1

σq(µ)aq(u, v).

Offline we compute A
q
ij = aq(uj , ui), i , j = 1, ...,N , q = 1, ...,Q, and

ℓi = ℓ(ui), i = 1, ...,N using O(QN2N ) operations.

Online we then solve the algebraic equations

(

Q
∑

q=1

σq(µ)Aq)α = ℓ,

using O(QN2) operations on assembly, and O(N3) operations to find α.
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The reduced basis method

Output of interest
The reduced basis approximation uN(µ) =

∑N
i=1 αi(µ)ui needs O(NN )

operations for assembly.
A derived quantity (or output of interest) s(u) = f (u(µ)) (e.g., drag
force, volume flow rate,) may be computed as

s(uN) = f (uN(µ)) = f (
N

∑

i=1

αi (µ)ui ) =
N

∑

i=1

αi(µ)fi ,

where fi = f (ui ) may be computed offline. We thus only need N

operations to find s(uN) once α is found.
Recall N ≪ N .
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A posteriori error estimation
For a given output of interest s(u), Prud’homme et al. (2002) present
upper and lower bounds, such that

s−(uN) ≤ s(u) ≤ s+(uN)

For affine parameter dependence they also show that through
offline/online decoupling of the computations, the online work needed to
find the output bounds only depends on N .
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A posteriori error estimation
For a given output of interest s(u), Prud’homme et al. (2002) present
upper and lower bounds, such that

s−(uN) ≤ s(u) ≤ s+(uN)

For affine parameter dependence they also show that through
offline/online decoupling of the computations, the online work needed to
find the output bounds only depends on N .

Adaptive reduced basis method
Based on the bound gap

∆s(uN) = s+(uN) − s−(uN),

Veroy et al. (2003) present an adaptive method to control the number of
basis functions N used in the reduced basis approximation.



The reduced basis method

A greedy approach
Recall that µ ∈ D ⊂ R

p , and let Ξn ≡ {µ∗
1 , ..., µ

∗
n} be a finite dimensional

substitute for D.
For an initial subset SN0

= {µ1, ..., µN0
} ⊂ Ξn, and

XN0
= span {u(µ1), ..., u(µN0

}

for N = N0 + 1 : Nmax

µN = arg maxµ∈Ξn
∆s(uN−1(µ))

if ∆s(uN−1(µN)) ≤ tol
exit

end
SN = SN−1 ∪ µN

XN = XN−1 + span {u(µN)}
end
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The reduced basis element method

Main idea
Combine the reduced basis method with domain decomposition to solve
PDEs in complex geometries

Applications

◮ Repetitive geometry: Thermal fin and Hierarchical systems

◮ Repetitive solves: Optimization and Control



The reduced basis element method
Marc Thiriet et al,
INRIA

Building blocks

Ω =
⋃K

k=1 Ω
k

=
⋃K

k=1 Φk(Λ̂)

Pipes {Ωk = Φk(Ω̂)}KP

k=1, Bifurcations {Ωk = Φk(B̂)}KP+KB

k=KP+1.
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Building blocks: pipes
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Building blocks: bifurcations
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, J(Φ) = det(J (Φ)),
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The reduced basis element method

The geometry as a parameter

a(v,w; Φ) = ν

∫

Ω

∇v · ∇wdΩ, Ω = Φ(Λ̂)

∇ = J −T (Φ)∇̂

a(v,w; Φ) = ν

∫

Λ̂

J−T (Φ)∇̂(v ◦ Φ) · J −T (Φ)∇̂(w ◦ Φ)|J(Φ)| d Λ̂.



The reduced basis element method

The steady Stokes equations: weak form
Let Ω = Φ(Λ̂). Find u ∈ X (Ω) and p ∈ M(Ω), such that

a(u, v; Φ) + b(v, p; Φ) = ℓ(v; Φ) ∀ v ∈ X (Ω)
b(u, q; Φ) = 0 ∀ q ∈ M(Ω)

X (Ω) = {v ∈ (H1(Ω))2, vw = 0, v in
t = vout

t = 0}
M(Ω) = L2(Ω)

a(v,w) = ν

∫

Ω

∇v · ∇wdΩ

b(v, q) = −

∫

Ω

q∇ · vdΩ

Neumann type boundary conditions by specifying σn = ∂un

∂n
− p to be

σin
n = −1 along Γin, and σout

n = 0 along Γout .
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The reduced basis element method

Preselected geometries

The reduced basis spaces
The parameter space SN = {Φi}N

i=1.

The velocity space X̂ 0
N = span{ûi = Ψi(ui ) = J−1

i (ui ◦ Φi )|Ji |}N
i=1.

The pressure space M̂N = span{p̂i = pi ◦ Φi}N
i=1.
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Reduced basis steady Stokes approximation
Find uN ∈ XN(Ω) and pN ∈ MN(Ω), such that
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b(uN , q; Φ) = 0 ∀ q ∈ MN(Ω)
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N(Ω)
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The reduced basis element method

Reduced basis steady Stokes approximation
Find uN ∈ XN(Ω) and pN ∈ MN(Ω), such that

a(uN , v; Φ) + b(v, pN ; Φ) = ℓ(v; Φ) ∀ v ∈ XN(Ω)
b(uN , q; Φ) = 0 ∀ q ∈ MN(Ω)

Enriched reduced basis velocity space
For each p̂i ∈ M̂N we find v̂i ∈ X̂N = XN (Λ̂) such that

v̂i = arg max
û∈X̂N

∫

Λ̂
p̂i∇̂ · û d Λ̂

|û|H1

.

The enriched reduced basis velocity space on Ω is then

XN(Ω) = {v ∈ X 0
N(Ω) ⊕ X e

N(Ω)},

where X 0
N(Ω) = {Ψ−1(ûi )}

N
i=1, and X e

N(Ω) = {Ψ−1(v̂i)}
N
i=1.



The reduced basis element method

Compliant output of interest
Volume flow rate: s(u) = ℓ(u; Φ)

Compute output bounds: s−(uN) ≤ s(u) ≤ s+(uN)

The output bounds for steady Stokes flow

s−(uN) = ℓ(uN ; Φ)
s+(uN) = ℓ(uN ; Φ) + â(e, e; Φ)

â(v,w; Φ) =

∫

Λ̂

q(Φ)∇̂(v ◦ Φ) · ∇̂(w ◦ Φ)d Λ̂

The reconstructed error e satisfies the residual equation

â(e, v; Φ) = ℓ(v; Φ) − a(uN , v; Φ) −b(v, pN ; Φ) ∀ v ∈ X̃N (Ω)



The reduced basis element method
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The reduced basis steady Stokes error on a pipe

N |uN − uN |H1 ||pN − pN ||L2 s(uN ) − s−(uN) s+(uN) − s(uN )
3 1.2 · 10−2 1.6 · 10−1 1.4 · 10−4 9.7 · 10−2

6 8.6 · 10−3 5.2 · 10−2 7.4 · 10−5 6.9 · 10−3

9 2.6 · 10−3 1.4 · 10−2 7.0 · 10−6 1.6 · 10−3

12 1.8 · 10−3 9.5 · 10−3 3.2 · 10−6 6.2 · 10−4

15 1.4 · 10−3 8.6 · 10−3 1.9 · 10−6 3.8 · 10−4



The reduced basis element method

θ1

θ0

Ll

Lu

The reduced basis steady Stokes error on a bifurcation

N |uN − uN |H1 ||pN − pN ||L2 s(uN ) − s−(uN) s+(uN) − s(uN )
1 1.4 · 10−2 8.8 · 10−2 2.1 · 10−4 1.9 · 10−3

5 5.0 · 10−4 4.8 · 10−3 2.5 · 10−7 1.1 · 10−5

10 9.9 · 10−6 7.2 · 10−5 9.8 · 10−11 7.3 · 10−9

15 4.0 · 10−6 7.3 · 10−6 1.6 · 10−11 1.5 · 10−11
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Offline/online decoupling: Empirical interpolation

Affine parameter dependence

a(v,w;µ) =

Q
∑

q=1

σq(µ)aq(v,w)

Offline: Compute A
q
ij = aq(ui ,uj) for q = 1, ...,Q and i , j = 1, ...,N .

Online: Assemble A in O(QN2) operations, and solve the reduced
problem in O(N3) operations.
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Offline/online decoupling: Empirical interpolation

Non-affine parameter dependence

a(v,w; Φ) = ν

∫

Λ̂

J−T (Φ)∇̂(v ◦ Φ) · J −T (Φ)∇̂(w ◦ Φ)|J(Φ)| d Λ̂.

a(v,w; Φ) = ν

Q
∑

q=1

∫

Λ̂

gq(Φ)aq(v̂, ŵ) d Λ̂

a(v,w; Φ) ≈ ν

Q
∑

q=1

M
∑

m=1

βq
m(Φ)

∫

Λ̂

g̃q(Φm)aq(v̂, ŵ) d Λ̂

Offline: compute A
qm
ij = g̃q(Φm)aq(ui ,uj) for q = 1, ...,Q, m = 1, ...,M ,

and i , j = 1, ...,N .
Online: Find βq

m(Φ), assemble A in O(QMN2) operations, and solve the
reduced problem in O(N3) operations



Offline/online decoupling: Empirical interpolation

Empirical interpolation
Find the constants βq

m(Φ), m = 1, ...,M such that.

M
∑

m=1

βq
m(Φ)gq(Φm) ≈ gq(Φ).

Projection gives
[bmn] [βn] = [gm] ,

where bmn =
∫

Λ̂
gq(Φm)gq(Φn)d Λ̂

and gm =
∫

Λ̂
gq(Φ)gq(Φm)d Λ̂.



Offline/online decoupling: Empirical interpolation

Empirical interpolation
Barrault et al. (2004) introduced magic points {tq

m ∈ Λ̂}M
m=1 and

corresponding operators {g̃q(Φm(x))}M
m=1 such that

g̃q(Φm(tq
m)) = 1, m = 1, ...,M

g̃q(Φm(tq
n )) = 0, m < n.

The matrices Bq defined by Bq
mn = g̃q(Φm(tq

n )) are lower triangular.



Offline/online decoupling: Empirical interpolation

Empirical interpolation
Online we only need to find the coefficients βq

m(Φ) to compute

a(u, v; Φ) ≈ ν

Q
∑

q1

M
∑

m=1

βq
m(Φ)

∫

Ω̂

g̃q(Φm)aq(û, v̂) dΩ̂

The coefficients are found by solving

M
∑

n=1

Bq
mnβ

q
n (Φ) = g(Φ(tq

m)), 1 ≤ m ≤ M



Multi-block domains
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New features

◮ Boundary conditions

◮ Continuity across block interfaces

◮ Nonconforming reduced basis element solution



Multi-block domains

Boundary conditions

◮ Construct one set of basis functions, and use the reflection across
the vertical axis on the reference domain to deal with symmetric
boundary conditions.

◮ Construct several sets of basis functions, each set corresponding to
different boundary conditions.



Multi-block domains

Constraints (“gluing”)
Let Γkl = B

k ⋂

B
l

∫

Γkl

(vk − vl) · nψ ds = 0, ∀ ψ ∈ W n
k,l , ∀k , l , (1)

∫

Γkl

(vk − vl) · tψ ds = 0, ∀ ψ ∈ W t
k,l , ∀k , l , (2)



Multi-block domains

Constraints (“gluing”)
Let Γkl = B

k ⋂

B
l

∫

Γkl

(vk − vl) · nψ ds = 0, ∀ ψ ∈ W n
k,l , ∀k , l , (1)

∫

Γkl

(vk − vl) · tψ ds = 0, ∀ ψ ∈ W t
k,l , ∀k , l , (2)

Reduced basis approximation (nonconforming)
Find uN ∈ XN(Ω) and pN ∈ MN(Ω), such that

a(uN , v; Φ) + b(v, pN ; Φ) = ℓ(v; Φ) ∀ v ∈ XN(Ω)
b(uN , q; Φ) = 0 ∀ q ∈ MN(Ω)

where XN(Ω) = {v ∈ X 0
N(Ω) ⊕ X e

N(Ω), s.t.(1) and (2) hold }.



Example I: Three pipe segments
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The reduced basis error

N N1 |uN − uN |H1 ||pN − pN ||L2

27 9 2.3 · 10−3 3.6 · 10−1

33 11 1.2 · 10−3 5.8 · 10−2

39 13 9.7 · 10−4 4.4 · 10−3

45 15 8.4 · 10−4 3.6 · 10−3



Example II: Hierarchical flow system
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Reduced basis error

N N1 N2 |uN − uN |H1 ||pN − pN ||L2

36 9 9 2.6 · 10−3 4.0 · 10−1

44 11 11 1.7 · 10−3 6.6 · 10−2

52 13 13 1.2 · 10−3 4.9 · 10−2

65 15 15 1.1 · 10−3 3.7 · 10−2

105 15 30 4.2 · 10−4 6.3 · 10−3



Example III: A“bypass”

−2 −1 0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2

Reduced basis error

N N1 N2 |uN − uN |H1 ||pN − pN ||L2

45 9 9 9.3 · 10−3 3.3 · 10
55 11 11 3.1 · 10−3 5.3 · 10−1

65 13 13 2.3 · 10−3 9.0 · 10−2

75 15 15 1.4 · 10−3 5.3 · 10−2

105 15 30 5.4 · 10−4 3.0 · 10−2
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Key features

◮ Geometry as a parameter

◮ Output bounds

◮ Offline/online decoupling

◮ Building blocks

◮ Lagrange multipliers



Reduced basis modeling of complex flow systems

Key features

◮ Geometry as a parameter

◮ Output bounds

◮ Offline/online decoupling

◮ Building blocks

◮ Lagrange multipliers

Future work/ongoing work

◮ A posteriori bounds on multi-block geometries

◮ Three dimensional domains

◮ Time dependent problems

◮ Fluid-structure interaction



Thank you!
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