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Abstract. In this paper we discuss some new finite element methods
for flows which are governed by the linear stationary Stokes system on
one part of the domain and by a second order elliptic equation derived
from Darcy’s law in the rest of the domain, and where the solutions
in the two domains are coupled by proper interface conditions. All the
methods proposed here utilize the same finite element spaces on the
entire domain. In particular, we show how the coupled problem can
be solved by using standard Stokes elements like the MINI element or
the Taylor–Hood element in the entire domain. Furthermore, for all the
methods the handling of the interface conditions are straightforward.

1. Introduction

The purpose of this paper is to discuss some new finite element discretiza-
tions of coupled Darcy–Stokes flow. The term “coupled Darcy–Stokes flow”
refers to a flow which is governed by the Stokes equations in one part of
the domain, while the flow is described by a standard second order elliptic
equation, derived from Darcy’s law and conservation of mass, on the rest of
the domain. Furthermore, proper interface conditions have to be prescribed
at the interface between the two regions.

Early numerical studies of the coupling of Darcy flow and Stokes flow
can for example be found in [12, 22], while the more theoretical studies of
such computations were initiated by the independent papers [15] and [16].
Actually, the approaches taken in these two papers are rather different. The
method discussed in [16] is based on a standard finite element method for
second order elliptic problems in the Darcy domain, and a standard mixed
velocity–pressure formulation in the Stokes domain, while the methods dis-
cussed in [15] employ mixed finite element discretizations for both parts of
the domain.

The development in [15] is based on a rigorous treatment of the weak
saddle–point formulation of the corresponding continuous system. In par-
ticular, it is discussed how proper interface conditions lead to well posedness
of the weak system. Since the stable families of finite elements for the Darcy
problem and the Stokes problem usually are not the same, this approach eas-
ily leads to finite element discretizations with different choice of spaces for
the two regions. In [15] such discretizations are proposed based on standard
mixed elements for second order elliptic equations like the Raviart–Thomas
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spaces or the Brezzi–Douglas–Marini spaces for the Darcy region, and stan-
dard Stokes elements like the Taylor–Hood element or the MINI element for
the Stokes region. A similar approach is basically taken in [13], but with the
difference that the Bernardi–Raugel element is used for the Stokes region,
while in [19, 20] variants of the discontinuous Galerkin method are proposed.

In [1] it is argued that finite element discretizations based on the same fi-
nite element spaces for both regions will have some advantages with respect
to implementation. However, the difficulty with this approach is that most
stable Stokes elements will not be stable in the Darcy region, and that most
stable Darcy elements will not be convergent for the Stokes problem. In [1] it
is suggested to use a C0–element of Fortin [11], cf. also [2], to overcome this
problem. This finite element space is defined with respect to a rectangular
grid. On each rectangle the velocity belongs to a twelve dimensional space
of reduced quadratics, while the pressure is approximated by piecewise con-
stants. The properties of this method are carefully analyzed and studied by
numerical experiments in [1]. A possible disadvantage of this discretization
is that the method has to be properly modified near the interface between
the two domains. In particular, the presence of vertex degrees of freedom
leads to extra difficulties near the interface, cf. [1, Section 3]. The finite
element discretizations proposed in this paper are similar to the method
discussed in [1] in the sense that the same finite element spaces will be used
throughout the entire domain Ω. We therefore refer to the discretizations
as unified finite element discretizations. However, for the methods discussed
here the treatment of the interface conditions is straightforward.

Throughout the paper we will consider the approximation of a flow in a
region Ω ⊂ R2, consisting of a porous region Ωd, where the flow is a Darcy
flow, and an open region Ωs = Ω\Ωd, where the flow is governed by the
linear stationary Stokes system. Hence, in Ωd the Darcy velocity u = ud

and the pressure p = pd satisfy

µK−1ud − grad pd = f , in Ωd,

div ud = g, in Ωd,(1.1)
ud · ν = 0, on ∂Ω ∩ ∂Ωd,

where ν is the outward unit normal vector on ∂Ω ∩ ∂Ωd, while in Ωs the
velocity/pressure (u, p) = (us, ps) is a solution of the system

− 2µ div(ε(us))− grad ps = f , in Ωs,

div us = g, in Ωs,(1.2)
us = 0, on ∂Ω ∩ ∂Ωs, .

Here ε(u) = 1
2

(
gradu + graduT

)
is the symmetric gradient operator, K

is a uniformly positive definite permeability tensor, f is representing body
forces, g represents sink or source terms, and µ > 0 denotes the viscosity of
the fluid.

The systems (1.1) and (1.2) are coupled at the interface between porous
and open regions, i.e. at Γ = ∂Ωs ∩ ∂Ωd. We will assume throughout the
paper that Γ is a Lipschitz curve. The following interface conditions will be
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assumed:

us · ν = ud · ν on Γ,(1.3)
2µν · ε(us) · ν = ps − pd on Γ,(1.4)

2ν · ε(us) · τ = αK− 1
2 us · τ on Γ.(1.5)

Here (1.3) represents mass conservation, (1.4) represents continuity of nor-
mal stress, and (1.5), with α > 0, is the Beavers–Joseph–Saffmann condition
[4, 21]. Moreover, τ denotes the unit tangential vector at Γ and ν the unit
normal vector exterior to Ωd.

The complete system given by (1.1)–(1.5) is the coupled Darcy–Stokes
we will study below. In the weak formulation discussed in [15] the solution
ud ∈ H(div), us ∈ H1, and p ∈ L2. Based on this formulation we will in
Section 3 below introduce a new finite element discretization for the cou-
pled system (1.1)–(1.5) by using the triangular non–conforming H1–space
introduced in [17] for velocity and piecewise constants for pressure. Com-
pared to the discretization proposed in [1], this method has the advantage
that the velocity space, which is a conforming H(div)–space, has no vertex
degrees of freedom. As a consequence, there are no particular difficulties in
modifying the method near the interface. The analysis given in this paper
is restricted to two space dimension. However, a three dimensional analog
of the non–conforming finite element space of [17] is discussed in [23].

Note that if the first equation of (1.1) holds then ud can be eliminated
and the second equation of (1.1) takes the form of a second order elliptic
equation

(1.6) div µ−1K grad pd = g′, in Ωd,

where g′ = g − div µ−1Kf . This is in fact the approach taken in [16],
where the scalar equation (1.6) is approximated by a standard finite ele-
ment method in the Darcy domain Ωd, and a mixed finite element method
for the Stokes equation is used in Ωs. The second class of methods we
will analyze below is closely related to this approach in the sense that
the alternative weak formulation of the system (1.1)–(1.5) requires that
the solution restricted to the Darcy domain, (ud, pd), is in L2 × H1, while
(us, ps) ∈ H1×L2. However, in Section 4 we propose a discretization strat-
egy where the variables ud and pd both are kept as unknowns in the discrete
system, and where Darcy’s law are only satisfied up to a given accuracy. In
fact, by this approach we will propose a discretization of the full coupled
system (1.1)–(1.5) where standard Stokes elements, like the MINI element
or the Taylor–Hood element, can be used for the entire domain Ω. Finally,
in Section 5 we present a some numerical examples.

2. Preliminaries

We will use Hm = Hm(Ω), with norm ‖·‖m, to denote the Sobolev space of
scalar functions on Ω with m derivatives belonging to the space L2(Ω). The
space Hm

0 = Hm
0 (Ω) denotes the closure of C∞

0 (Ω) in Hm and is equipped
with the semi–norm | · |m derived from all derivatives of order m. Vector
valued functions and spaces are written in boldface. By the notation L2

0 we
mean the functions in L2 with mean value zero. We use 〈·, ·〉 to denote the
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L2 inner product on scalar, vector and matrix valued functions as well as the
duality pairing between Hm

0 and its dual space. An extra subscript in inner
products or norms, e.g., ‖ · ‖m,T , means that the integration is performed
over a domain T different from Ω. If T is Ωs or Ωd we simplify the notation
further by only using the subscripts s or d, i.e., ‖ · ‖m,d. For simplicity, the
restrictions of a function v to the Darcy and Stokes regions, v|Ωd

and v|Ωs

are denoted by vd and vs, respectively.
If q is a scalar function, then grad q denotes the gradient of q, while

div v = tracegradv denotes the divergence of the vector field v. If we
define the differential operators

curl q =

−∂q/∂x2

∂q/∂x1

 and rotv =
∂v1

∂x2
− ∂v2

∂x1
,

then, by Green’s theorem

(2.1)
∫

Ω
curl q · v dx =

∫
Ω

q rotv dx−
∫

∂Ω
q(v · τ ) ds,

where s denote arc length. By direct calculation one may verify the identity

(2.2) div ε = graddiv−1
2

curl rot,

where the divergence of a matrix is defined as the divergence taken row–wise.
Therefore,

(2.3) 〈ε(u), ε(v)〉 = 〈div u,div v〉+
1
2
〈rotu, rotv〉, u ∈ H1

0 ,v ∈ H1.

Below we will also use the spaces

H(div; Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}

and
H0(div; Ω) = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}.

We will next state the two weak formulations which we will use below
to construct the new finite element methods for the coupled problem (1.1)–
(1.5). The weak formulation which has the velocity ud in H(div) is referred
to as the H(div)–formulation. This is exactly the formulation considered in
[15]. More precisely, the velocity u will be required to belong to the space

V 1 = V 1(Ω) = {v ∈ H0(div; Ω) : vs ∈ H1(Ωs),v = 0 on ∂Ωs ∩ ∂Ω}.

Note that a piecewise smooth vector field v ∈ V 1(Ω) has to have a continu-
ous normal component on the interface Γ. The corresponding norm is given
by

‖v‖2
V 1 = ‖v‖2

0 + ‖div v‖2
0 + ‖gradv‖2

0,s.

Define a bilinear form a : V 1 × V 1 → R by

a(u,v) = µ〈K−1u,v〉d + 2µ〈ε(u), ε(v)〉s + µα〈K− 1
2 us · τ ,vs · τ 〉Γ.

The weak formulation of the coupled problem (1.1)–(1.5) discussed in [15]
can be written:
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Weak Formulation 2.1 (H(div)–formulation). Find functions (u, p) ∈ V 1×
L2

0 such that, for all (v, q) ∈ V 1 × L2

a(u,v) + 〈p, div v〉 = 〈f ,v〉,
〈q, div u〉 = 〈g, q〉.

Note that in this formulation the boundary conditions on ∂Ω and the
interface condition (1.3) are treated as essential conditions, while the inter-
face conditions (1.4) and (1.5) are posed weakly. In Section 3 below we will
propose a finite element method for the coupled problem (1.1)–(1.5) based
on this formulation.

An alternative formulation of the coupled problem is posed using the
velocity space

(2.4) V 2 = V 2(Ω) = {v ∈ L2(Ω) : vs ∈ H1(Ωs),v = 0 on ∂Ωs ∩ ∂Ω},
with the corresponding norm

‖v‖2
V 2 = ‖v‖2

0 + ‖gradv‖2
0,s.

The pressure space is

(2.5) Q2 = {q ∈ L2
0(Ω) : qd ∈ H1(Ωd)},

with the norm
‖q‖2

Q2 = ‖q‖2
0 + ‖grad q‖2

0,d.

In this formulation the divergence constraint will be posed weakly in the
form

〈div us, qs〉s − 〈ud,grad qd〉d + 〈us · ν, qd〉Γ = 〈g, q〉
for all q ∈ Q2. In fact, this relation also include a weak formulation of the
interface condition (1.3), i.e. ud · ν = us · ν on Γ. We therefore obtain the
following weak formulation of the system (1.1)–(1.5):

Weak Formulation 2.2 (L2–formulation). Find functions (u, p) ∈ V 2 ×Q2

such that for all (v, q) ∈ V 2 ×Q2

a(u,v) + b(p, v) = 〈f ,v〉,
b(q, u) = 〈g, q〉.

Here the bilinear form a is exactly as above, and b : Q2 × V 2 → R is given
by

b(p, v) = 〈ps,div vs〉s − 〈grad pd,vd〉d + 〈pd,vs · ν〉Γ.

Note that in this alternative formulation all the three interface conditions
(1.3)–(1.5) are expressed weakly. We will establish the existence and unique-
ness of a weak solution by verifying the so–called Brezzi conditions [8]. From
Korn’s inequality, cf. [1] or [6], it follows that there is a positive constant C
such that

(2.6) ‖vs‖1,s ≤ C (‖ε(vs)‖0,s + ‖vs · τ‖0,Γ) , v ∈ V 2.

Hence, the coercivity of the bilinear form a,

(2.7) a(v,v) ≥ α2‖v‖2
V 2 , v ∈ V 2,

follows. Here α2 is a positive constant. The second Brezzi condition that
we need to verify is the inf–sup condition.
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Lemma 2.1. There is a constant β2 > 0 such that for all q ∈ Q2

(2.8) sup
v∈V 2

b(q, v)
‖v‖V 2

≥ β2‖q‖Q2 , ∀q ∈ Q2.

Proof. Let q ∈ Q2 be arbitrary. By the standard inf–sup condition for the
Stokes problem, cf. [14, Chapter I.2.2], there is a w ∈ H1

0 (Ω) ⊂ V 2 such
that

div w = q, in Ω.

Furthermore, w satisfies a bound of the form

(2.9) ‖w‖V 2 ≤ ‖w‖1 ≤ C1‖q‖0.

Define v ∈ V 2 by vs = ws and vd = wd−grad qd. It is now straightforward
to check that

b(v, q) = ‖q‖2
0 + ‖grad qd‖2

0,d = ‖q‖2
Q.

Therefore the desired bound holds with β2 = 1/ max(1, C1). �

The conditions (2.7) and (2.8), together with some obvious boundedness
estimates on the bilinear forms a and b, implies that the (L2–formulation)
above is well posed. Here it is assumed that the data f and g represents
linear functionals on V 2 and Q2, respectively.

3. Discretization in the H(div) formulation

In this section we will study finite element discretizations of the cou-
pled Darcy–Stokes problem based on the H(div; Ω) formulation. The fi-
nite element space V 1

h , approximating V 1, which we shall use will be the
non–conforming H1–space used in [17] to approximate a family of singular
perturbation problems of Stokes type, degenerating to a Darcy flow. The
space V 1

h will be a subspace of H(div; Ω), but the restrictions of functions
in V 1

h to Ωs will not be in H1(Ωs). In this respect, the discretization is
non–conforming.

In order to define the finite element spaces V 1
h let {Th} be a shape regular

family of triangulations of Ω, where the mesh parameter h represents the
maximal diameter of triangles T ∈ Th. We will assume throughout the paper
that each triangulation Th has the property that the interface Γ is composed
of mesh edges, such that the interior of each triangle is either in Ωd or Ωs.
We let T d

h and T s
h be the corresponding induced triangulations of Ωd and

Ωs, respectively, while Γh denote the set of edges on Γ.
On each triangle T ∈ Th the restriction of functions in V 1

h belongs to the
polynomial space

(3.1) V 1(T ) = {v ∈ P2
3 : div v ∈ P0, (v · ν)|e ∈ P1,∀e ∈ E(T )},

where E(T ) denotes the set of edges of T . The space V 1(T ) has dimension
nine and each element v is determined by the following degrees of freedom:

•
∫
e(v · ν)tk ds, k = 0, 1 and for all e ∈ E(T ),

•
∫
e v · τ ds for all e ∈ E(T ),

cf. Figure 3.1 on the facing page. Here ν and τ are unit normal and tangent
vectors on the edges.

The finite element space V 1
h , associated with the triangulation Th, is the

set of all piecewise polynomial vector fields v such that
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Figure 3.1. Degrees of freedom for V 1(T )

• v|T ∈ V (T ), ∀T ∈ Th,
•

∫
e(v · ν)tk ds is continuous for k = 0, 1 and for all e ∈ E(Th),

•
∫
e v · τ ds is continuous for all e ∈ E(Th) \ Γh,

where E(Th) is the set of edges in Th. Hence, the elements of V 1
h has con-

tinuous normal component over each edge, weakly continuous tangential
components in the interior of each region, and completely discontinuous
tangential component over the interface Γ.

Let also Q1
h ⊂ L2

0 denote the space of piecewise constants with respect to
the triangulation Th. We then obtain the following finite element method:

Finite Element Formulation 3.1. Find functions (uh, ph) ∈ V 1
h ×Q1

h such
that for all (v, q) ∈ V 1

h ×Q1
h

a(uh,v) + 〈ph,div v〉 = 〈f ,v〉,
〈q, div uh〉 = 〈g, q〉.

Here a is the bilinear form introduced above, except that the term with
symmetric gradients has to be computed element–wise, i.e.

a(u,v) =µ〈K−1u,v〉d + µα〈K− 1
2 us · τ ,vs · τ 〉Γ

+
∑

T∈T s
h

2µ〈ε(u), ε(v)〉T .

The discretization is stable in the sense of [8] if there exists constants
α1, β1 > 0, independent of h, such that:

(3.2) a(v,v) ≥ α1‖v‖2
V 1

h
, v ∈ Z1

h,

and

(3.3) sup
v∈V 1

h

〈q, div〉v
‖v‖V 1

h

≥ β1‖q‖0, q ∈ Q1
h,

where Z1
h = {z ∈ V 1

h : 〈q, div z〉 = 0, ∀q ∈ Q1
h} is the space of weakly

divergence free elements of V 1
h . Here the norm ‖ · ‖V 1

h
is the broken norm

corresponding to ‖ · ‖V 1 , i.e.

‖v‖2
V 1

h
= ‖v‖2

0 + ‖div v‖2
0 +

∑
T∈T s

h

‖gradv‖2
0,T .
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By construction, div V 1
h ⊂ Q1

h. Furthermore, the space V 1
h admits a discrete

Poincaré inequality of the form

‖v‖2
0,s ≤ c

 ∑
T∈T s

h

‖gradv‖2
0,T + ‖vs · τ‖2

0,Γ

 ,

where the constant c is independent of h, cf. [7, Theorem 5.1]. Therefore,
the condition (3.2) will follow from a Korn’s inequality of the form

(3.4)
∑

T∈T s
h

‖gradv‖2
0,T ≤ C

 ∑
T∈T s

h

‖ε(v)‖2
0,T + ‖vs · τ‖2

0,Γ

 , v ∈ V 1
h .

Basically, Korn’s inequality for the non–conforming H1 space V 1
h was es-

tablished in [18] as an application of the general results of [6]. However, the
Korn inequality established in [18] was of the form

∑
T∈T s

h

‖gradus‖2
0,T ≤ C

 ∑
T∈T s

h

‖ε(us)‖2
0,T + ‖us‖2

0,s)

 .

Here we need Korn’s inequality in the slightly different form (3.4), where we
only have boundary control of the functions in the kernel of the symmetric
gradient ε, i.e. of rigid motions.

Lemma 3.1. There exists a positive constant C, independent of h, such that
the bound (3.4) holds.

Proof. We first note that the desired bound (3.4) will follow from an in-
equality of the form

(3.5)
∑

T∈T s
h

‖gradv‖2
0,T ≤ C1

 ∑
T∈T s

h

‖ε(v)‖2
0,T + |

∫
Ωs

rotv dx|2


for all v ∈ V 1
h , and by applying (2.1) with q ≡ 1.

The bound (3.5) is indeed established in [6, Theorem 3.1], but only for
non–conforming H1 spaces where all functions are weakly continuous with
respect to linear functions on the mesh edges. The space V 1

h we discuss here
does not have this property, since the tangential component is only weakly
continuous with respect to constants. However, the basic observation done
in [18] was that this weak continuity condition can be relaxed throughout
the discussion given in [6] such that the present element applies. Therefore,
all the Korn inequalities derived in [6], in particular (3.5), holds for the finite
element space V 1

h . �

As observed above (3.4) implies (3.2). The other stability condition, (3.3),
will follow from the construction of a suitable interpolation operator Πh :
H1(div; Ω) → V 1

h which satisfies the relation

(3.6) 〈div Πhv, q〉 = 〈div v, q〉, v ∈ H1(div; Ω), q ∈ Q1
h.

Here H1(div; Ω) = {v ∈ H(div; Ω) : vd ∈ H1(Ωd), vs ∈ H1(Ωs) }. The
operator Πh is defined from the degrees of freedom of the space V 1

h , i.e.
•

∫
e(Πhv · ν)tk ds =

∫
e(v · ν)tk ds, k = 0, 1 e ∈ E(Th),
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•
∫
e(Πhv · τ ) ds =

∫
e(v · τ ) ds, e ∈ E(Th),

with the obvious modification that two one sided values are used for the
tangential component if e ∈ Γh. This operator is uniformly bounded as an
operator from H1(div; Ω) to V 1

h . In fact, it follows from the analysis of the
corresponding operator in [17] that

(3.7) ‖v −Πhv‖j,T ≤ chk−j |v|k,T , 0 ≤ j ≤ 1 ≤ k ≤ 2, T ∈ Th,

where the constant c is independent of v, h, and T .

Theorem 3.1. The family of finite element spaces {V 1
h × Q1

h} satisfies the
stability conditions (3.2) and (3.3).

Proof. We have already established (3.2). Furthermore, for each q ∈ Q1
h

there is a v ∈ H1(Ω) ⊂ H1(div; Ω) such that div v = q and ‖v‖1 ≤ c‖q‖0,
cf. [14, Chapter I.2.2]. Then, Πhv ∈ V 1

h , div Πhv = q, and ‖Πhv‖0 ≤ c‖q‖0,
and this implies condition (3.3). �

Let (u, p) ∈ V 1×L2
0 be a weak solution of the coupled system (1.1)–(1.5).

For any v ∈ V 1
h define the consistency error Eh(v) = Eh(u, p;v) by

Eh(v) ≡ a(u,v) + 〈p, div v〉 − 〈f ,v〉.
For the rest of the discussion of this section we assume that us ∈ H2(Ωs)
and p ∈ H1(Ω). Then, from an integration by parts argument we derive
that Eh(v) is alternatively given as

Eh(v) ≡ µ
∑

e∈E(T s
h )

∫
e
(rotus)[v · τ ]e ds,

where [v · τ ]e denotes the jump of v · τ if e is an edge in the interior of
Ωs, while it denotes vs · τ if e ∈ Γh. Furthermore, from [17, Lemma 5.1] it
follows that

(3.8) sup
v∈V 1

h

|Eh(v)|
‖v‖a

≤ ch‖ rotu‖1,s,

where the constant c is independent of h. Here ‖v‖2
a = a(v,v).

Let (uh, ph) ∈ V 1
h ×Q1

h be the corresponding solution. Then

div uh = Ph div u = div Πhu,

where Ph is the L2–projection onto Q1
h. As a consequence,

(3.9) ‖div(u− uh)‖0 ≤ ch‖div u‖1,

where the constant c is independent of h.
For any v ∈ V 1

h we have that

(3.10) a(u− uh,v) + 〈p− ph,div v〉 = Eh(v).

By utilizing the fact that div(Πhu− uh) = 0 we obtain that

a(u− uh,Πhu− uh) = Eh(Πhu− uh),

and hence we obtain from Cauchy–Schwarz inequality that

(3.11) ‖Πhu− uh‖a ≤ ‖u−Πhu‖a + sup
v∈V 1

h

|Eh(v)|
‖v‖a

.

From this error bound we easily obtain the following error estimates.
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Theorem 3.2. There is a constant c, independent of h, such that

(3.12) ‖u− uh‖0 +
∑

T∈T s
h

‖grad(u− uh)‖0,T ≤ ch (‖u‖1,d + ‖u‖2,s) ,

and

(3.13) ‖p− ph‖0 ≤ ch (‖p‖1 + ‖u‖1,d + ‖u‖2,s) .

Proof. From (3.7), (3.9), and a standard trace inequality we obtain

(3.14)
‖Πhu− u‖a, ‖Πhu− u‖V 1

h
≤ ch(‖u‖1,d + ‖u‖2,s + ‖us‖1,Γ)

≤ ch(‖u‖1,d + ‖u‖2,s).

By combining this with (3.8) and (3.11) we obtain that

(3.15) ‖Πhu− uh‖a ≤ ch(‖u‖1,d + ‖u‖2,s),

while the stability condition (3.2) implies that

(3.16) ‖Πhu− uh‖V 1
h
≤ α

−1/2
1 ‖Πhu− uh‖a.

Hence, it follows by (3.14), (3.15), (3.16) and the triangle inequality that

‖u− uh‖V 1
h
≤ ‖Πhu− u‖V 1

h
+ ‖Πhu− uh‖V 1

h
≤ ch (‖u‖1,d + ‖u‖2,s) ,

and this implies (3.12).
The error estimate (3.13) follows by standard arguments, where we use

the stability condition (3.3), (3.10), and (3.12) to estimate ‖Php− ph‖0. �

4. Discretization in the L2 formulation

We now consider a discretization based on the alternative formulation
referred to as the L2 formulation above. In this case we will only consider
conforming discretizations, i.e. the finite element spaces will satisfy V 2

h ⊂
V 2 and Q2

h ⊂ Q2.

Finite Element Formulation 4.1. Find functions (uh, ph) ∈ V 2
h ×Q2

h such
that for all (v, q) ∈ V 2

h ×Q2
h

a(uh,v) + b(v, ph) = 〈f ,v〉,
b(uh, q) = 〈g, q〉.

If V 2
h ⊂ V 2 then the bound (2.7) will hold for all v ∈ V 2

h . Therefore,
in this case the discretization will be stable if the second Brezzi condition
holds, i.e. we need to establish that there exists a positive constant β′2 > 0
such that

(4.1) sup
v∈V 2

h

b(q, v)
‖v‖V 2

≥ β′2‖q‖Q2 , ∀q ∈ Q2
h.

We observe that common Stokes elements such as the MINI element or the
Taylor–Hood element will indeed produce conforming discretizations of the
coupled Darcy–Stokes problem in this formulation. Below we will discuss the
convergence properties of the discretization derived from the MINI element.
In a similar manner, it is also possible to derive convergence estimates for
the Taylor–Hood element.
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For the MINI element, introduced in [3], the velocity space consists of all
functions of the form

(4.2) v = v0 +
∑

T∈Th

cT bT ,

where v0 is a continuous piecewise linear vector field with respect to Th,
bT is the cubic bubble function on the triangle T , and cT is a constant
vector. In the present setting we will modify this space by relaxing the
continuity over the interface such that all functions in V 2

h are allowed to
be discontinuous across Γ. The corresponding pressure space Q2

h consists of
continuous piecewise linear functions on Ωd and Ωs, but with no continuity
requirement across Γ. Notice that we still have that V 2

h ⊂ V 2 and Q2
h ⊂ Qh.

The space V 2
h can be expressed as a direct sum, V 2

h = V 0
h ⊕ V b

h , where
V 0

h is the space of piecewise linear vector fields which are continuous on Ωd

and Ωs, and where V b
h denotes the span of the cubic bubble functions. Let

P b
h : L2 → V b

h be defined by

(4.3)
∫

T
P b

hv dx =
∫

T
v dx, ∀T ∈ Th.

This operator is uniformly bounded in L(L2(Ω),L2(Ω)) with respect to the
mesh parameter h. The stability properties of the MINI element can be
derived from a projection operator Πh : L2(Ω) → V 2

h of the form

Πhv = Ihv + P b
h(v − Ihv),

where Ih is the Cléments interpolant mapping L2(Ω) onto V 0
h . The operator

Ih is uniformly bounded on both L2 and H1. In fact, it satisfies an estimate
of the form

(4.4) ‖Ihv − v‖j,T ≤ chm−j
T ‖v‖m,T ∗ , 0 ≤ j ≤ m ≤ 1, T ∈ Th,

cf [5, 10], where the constant c is independent of h. Here hT is the diameter
of the triangle T , while T ∗ is the domain of the macro–element consisting
of all the triangles intersecting T , i.e.

T ∗ = ∪{T ′ : T ′ ∈ Th, T ′ ∩ T 6= ∅ }.
It is a consequence of the shape regularity of the family {Th} that the de-
composition {T ∗}T∈Th

of Ω̄, has a uniform overlap property, i.e. there is a
N > 0, independent of h, such that no x ∈ Ω̄ belongs to more N of the sets
T ∗. It follows from the properties of the operators P b

h and Ih that Πh is
uniformly bounded in L2. In fact, for all T ∈ Th we have from (4.4) that

‖Πhv‖1,T ≤ ‖Ihv‖1,T + ‖P b
h(v − Ihv)‖1,T

≤ c
(
‖v‖1,T ∗ + h−1

T ‖P b
h(v − Ihv)‖0,T

)
≤ c‖v‖1,T ∗ ,

and hence it follows from the uniform overlap property of the decomposition
{T ∗} that Πh is also uniformly bounded in H1.

In the present setting we need to modify the operator Πh near the interface
Γ. Recall that there is no continuity requirement over the interface Γ for
functions in V 2

h . Therefore, we can define define two independent operators
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Πd
h and Πs

h, of the form above with respect to the domains Ωd and Ωs,
respectively, and then let Πh be given by

Πhv = Πd
hvd + Πs

hvs.

From the discussion above it then follows that the operator Πh : V 2 → V 2
h

is uniformly bounded, i.e. there is a constant c such that

(4.5) ‖Πhv‖V 2 ≤ c‖v‖V 2 .

Theorem 4.1. The family of elements {V 2
h × Q2

h} satisfy the stability con-
dition (4.1).

Proof. It is straightforward to check that for any v ∈ V 2 and q ∈ Q2
h we

have

b(q, Πhv) = −〈Πhv,grad qd〉d − 〈Πhv,grad qs〉s = b(q, v).

Therefore the stability condition (4.1) follows from Lemma 2.1 and (4.5). �

From the stability conditions (2.7) and (4.1) it follows that the discrete
solution (uh, ph) ∈ V 2

h ×Q2
h satisfies a quasi optimal estimate of the form

‖u− uh‖V 2 + ‖p− ph‖Q2 ≤ C inf
(v,q)∈V 2

h ×Q2
h

(
‖u− v‖V 2 + ‖p− q‖Q2

)
.

Here (u, p) ∈ V 2 × Q2 is the corresponding continuous solution, and the
mesh independent constant C depends on the stability constants α2 and
β′2, cf. [8, 9]. In particular, if (us, ps) ∈ H2(Ωs) × H1(Ωs), and (ud, pd) ∈
H1(Ωd)×H2(Ωd) we obtain a linear convergence estimate of the form

‖u− uh‖V 2 + ‖p− ph‖Q2 ≤ ch (‖ud‖1,d + ‖us‖2,s + ‖pd‖2,d + ‖ps‖1,s) .

5. Numerical experiments

We end the paper by a few numerical experiments. For simplicity we
choose Ω = [0, 1]× [0, 1], µ = α = 1, and the permeability tensor K is taken
to be the identity. Furthermore, in all the examples we use a uniform grid.
In order to make it simpler to generate analytic solutions we generalize the
conditions (1.4)–(1.5) to allow for more general interface conditions of the
form

2µν · ε(us) · ν = ps − pd + g1 on Γ,

2ν · ε(us) · τ = αK− 1
2 us · τ + g2 on Γ,

where g1 and g2 are given functions on Γ.
In the following we mostly report estimated convergence rates in different

norms rather than the full error at each grid level. These rates are estimated
by a simple least–squares fit of the form chrate to the norms of the errors as
functions of h, where h ranges from 1/4 to 1/32. We first consider a couple
of examples where the interface Γ is a straight line. These examples were
also studied in [1]. For these examples the domain is divided into two regions
by the line x = 0.5, with Ωs to the right and Ωd to the left. For Test Case 1
we choose p = ex sin (x + y), us = (cos(xy), ex+y)t, and ud = (cos(xy), 0)t,
while for Test Case 2 we have p = cos(x2y), us = (sin(x2y), cos(x2y))t, and
ud = (sin(x2y), ex+y)t. Note that both these solutions satisfy the interface
condition (1.3). The estimated convergence rates are given in Table 1. Note
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Case ‖Ep‖0 ‖Eu‖0 ‖div Eu‖0 ‖gradEu‖0

1 1.0 2.0 1.0 1.0

2 1.1 2.0 1.0 1.1
Table 1. The estimated convergence rates in Test-Cases 1-
2. Here and below E denotes the error in the subscript vari-
able.

Figure 5.1. To the left is the domain configuration in Test-
Case 3. The figure on the right is the obtained velocity solu-
tion for this case.

Case ps pd us ud

3 1 0

0@(x− 1
2
) sin(πy)

(y − 1
2
) cos(πx)

1A 0@(x− 1
2
) cos(πy)

(y − 1
2
) sin(πx)

1A
Table 2. The analytical solution in Test-Case 3.

that the estimates (3.9)–(3.13) all predicts linear convergence. However,
this example indicates that the L2 error in velocity is actually second order
accurate.

Next, we consider an example where the interface Γ is more complex.
In this case the domain configuration has a checkerboard pattern, cf. Fig-
ure 5.1. The exact solution, satisfying the interface condition (1.3), is given
in Table 2. The obtained errors and estimated convergence rates are given in
Table 3, and, compared to what we observed above, the convergence prop-
erties do not seem to be essentially effected by the increased complexity of
Γ.
Finally, we test the alternative discretization discussed in Section 4 using

the MINI element. The estimated convergence rates for the Test–Cases 1–3
are given in Table 4. As expected we obtain linear convergence in the ap-
propriate norms. However, note that in this case we do not seem to obtain
convergence of the global L2 norm of div(u − uh). This is consistent with
the convergence results of Section 4.
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h ‖Ep‖0 ‖Eu‖0 ‖div Eu‖0 ‖gradEu‖0

1/4 6.6e-1 6.7e-2 1.8e-1 3.1e-1

1/8 2.0e-1 1.8e-2 9.0e-2 1.5e-1

1/16 6.8e-2 4.5e-3 4.5e-2 7.3e-2

1/32 2.8e-2 1.1e-3 2.2e-2 3.6e-2

Rate: 1.7 2.0 1.0 1.0

Table 3. The obtained errors and estimated convergence
rates in Test-Case 3.

Case ‖Ep‖0 ‖Ep‖Q2 ‖Eu‖0 ‖div Eu‖0 ‖Eu‖V 2

1 1.6 1.0 1.0 0.025 1.0

2 1.8 1.1 1.0 0.011 1.0

3 1.8 1.6 1.1 0.044 1.0
Table 4. The convergence rates obtained by the MINI dis-
cretization in Test-Cases 1-3.
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[7] S. Brenner. Poincaré–Friedrichs inequalities for piecewise H1 functions. SIAM Jour.
Numerical Analysis, 41:306–324, 2003.

[8] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. RAIRO Numerical Analysis, 8:129–151, 1974.

[9] F. Brezzi and M.Fortin. Mixed and Hybrid Finite Element Methods. Springer, 1991.
[10] P. Clement. Approximation by finite element functions using local regularizations.

RAIRO Numerical Analysis, 9:77–84, 1975.
[11] M. Fortin. Old and new finite elements for incompressible flows. Int. Jour. Numerical

Methods for Fluids, 1:347–364, 1981.
[12] D. K. Gartling, C. E. Hickox, and R. C. Givler. Simulation of coupled viscous and

porous flow problems. Comp. Fluid Dynamics, 7:23–48, 1996.
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