Parallel Computations and the
Finite Element Method
Joachim B Haga

Sintef
March 13, 2008

gL

[simula.research laboratory |

Overview of parallel computing, and
why we should care

o3)

= // \)1/0\/ Parallelisation of the finite element
/T 4 method
\/\/\/
</ \/\

Algebraic multigrid as a
parallel preconditioner

[simula.research laboratory |

Single-processor performance has stalled
since ~2002 ...

20%/year

1 ——T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

(Hennessy and Patterson, 2006)

.research laboratory |

... SO the future is parallel

10,000,000

1,000,000

B R A e A e > Power wall
R > |LP wall

PRSI ey TN > Memory wall
> VLSI wall

al

. |
fra !
| |
g
:F.'ll !
| i

& AL

S i Lower clock speeds
ﬁ KRk R I o Simpler modules

1970 1975 1980 1985 1990 1995 2000 2005 2010 MU|t|p|e cores
(Olokotun and Sutter)

[simula.research laboratory |

A number of alternatives exist for parallel
computations

Distributed memory (MPI)

Shared memory (OpenMP)
GPU programming (CUDA, CTM)
Cell (PS3)

SIMD vector engines (Cray etc.)

> There is no consensus on the paradigm
for the parallel future
> 50 stick with established standards

[simula.research laboratory |

OpenMP vs MPl example: inner product

double inner(vec a, vec b)

{

double sum = 0O;

for (int i=0; i<a.size(); i++)
sum += a[i]*bli];

return sum;

}

[simula.research laboratory |

OpenMP vs MPI example: OpenMP version
(transparent to caller)

double inner(vec a, vec b)

{

double sum = 0O;

pragma omp parallel for\
private(i) \
reduction(+:sum)

for (int i=0; i<a.size(); i++)
sum += ali]*b[i];

return sum;

}

[simula.research laboratory |

OpenMP vs MPI example: MPI version
(requires caller knowledge)

double inner(vec a, vec b)

{

double sum = 0, glob _sum;

for (int i=0; i<n_local rows; i++)
sum += al[i]*bl[i];

MPI_Allreduce(&sum, &glob sum, 1, MPI_DOUBLE,

MPI_SUM, MPI_ COMM_WORLD);
return glob sum;

[simula.research laboratory |

OpenMP, MPI, hybrid: pros and cons

OpenMP MPI

> shared memory > distributed memory

> allows gradual parallelisation > allows clusters

> does little for the “memory wall” > not transparent
Hybrid

> OpenMP + MPI
> scales better than either alone

[simula.research laboratory |

Parallelising the Finite Element Method

/N)
/?j/ v,

v
> Parallel assembly \

> Grid partitioning

> Parallel linear algebra

> Parallel 1/0O

[simula.research laboratory |

Nodal grid partitioning

> Construct a graph
from the mesh

[simula.research laboratory |

Nodal grid partitioning

> Construct a graph
from the mesh

> Partition the graph
> METIS, ParMETIS
> Scotch, PScotch

[simula.research laboratory |

Nodal grid partitioning

> Construct a graph
from the mesh

> Partition the graph
> METIS, ParMETIS
> Scotch, PScotch

> An element is on a cpu
If any of its nodes are

> Result: A shared band
of border elements

[simula.research laboratory |

Nodal grid partitioning

The advantage of nodal grid partitioning is that
each matrix row is complete on one processor

Dual grid partitioning (of the elements) creates a
shared band of nodes instead of elements

> fewer nodes overall
> slightly smaller communication cost
> the shared nodes have no canonical placement

But with nodal partitioning, every node is the
responsibility of exactly one processor

> the matrix row associated with a node is in one place
> makes e.q. algebraic multigrid much easier

[simula.research laboratory |

The major components of a finite element
solver

Parallel assembly
> trivial, just assemble locally

Parallel linear algebra

> requires care
> preconditioning remains a problem

Parallel 1/0

> commonly to local disk
> gather result post-process

[simula.research laboratory |

Distributed memory parallel linear algebra

Vector addition
> N0 communication

Vector inner products, norms

> exclude ghost-nodes from local norm
> reduction (sum) operation after local norm

Matrix-vector product

> update ghost-node values before multiplication
> (optionally) update again after multiplication

Preconditioning
> hard...

[simula.research laboratory |

Parallel preconditioning

> A few preconditioners are easy to
parallelise (Jacobi, for example, is trivial)

> But many popular ones are not (e.qg. ILU)

> Geometric multigrid is possible, but that is
not an option on unstructured grids

> So what about algebraic multigrid?

[simula.research laboratory |

Algebraic multigrid phases

Coarsening

> problem with coarsening across processor
boundaries

> can operate decoupled (sub-optimal)

> various coupling strategies

> limits coarse grid size (to #cpus)

Projection / interpolation
> requires no communication

Smoothing
> Jacobi smoothing is decoupled
> Gauss-Seidel most popular?

[simula.research laboratory |

Changes needed to support parallel operations
for Trilinos/ML are minor (with nodal partitioning)

In addition to the sequential interface code,
we need to pass in

> the number of local rows
> a function which updates ghost-nodes in a vector

Also, the “matvec” and “apply” functions must of
course be parallel-aware

> “matvec” updates ghost-nodes before

multiplication
> “apply” updates ghost-nodes after V cycle

[simula.research laboratory |

Algebraic multigrid shows great promise as
parallell preconditioner for the coupled system

~— 1 7
-
= L J
e
-
T 05 | -
o
o=
a

0 1 L1 11l 1 [| 1 L1 11111

1 10 100 1000

Parallel efficiency of the AMG-preconditioned
BiCGStab solver (ML/Trilinos+ Diffpack)

[simula.research laboratory |

Some key questions

What is the target?

Multicore, < 8 cpus » OpenMP
Cluster, or > 16 cpus > MPI

> 100 cpus > Hybrid
> 1000 cpus > 777

Can existing libraries be used?

> Trilinos (MPI)
> Hypre (hybrid)

[simula.research laboratory |

The geomechanical model:
Equation for the fluid pressure

% — V- (AVp) — V- (Aps(1 — B+(T — Tp))Q)

S storage coefficient
A mobility of flow
density
3 thermal expansion coefficient

[simula.research laboratory |

The geomechanical model:
Equation for the temperature

T
C%—t + p:CVp - VT =V - (kVT)

Vp Darcy velocity (in porous media)
= ¢V = —A(Vp — p(1 — B+(T — Tp)9)

® porosity

C' bulk heat capacity
= ¢ptCs+ (1 — ¢)psCs

('t specific heat

x thermal conductivity

[simula.research laboratory |

The geomechanical model:
Equation for the deformation (elastic)

0=V-0+pg
o= (AV-U—ap— Bs(3\ +2u)(T —To)) I+ 2ue

w, A Lamé material constants

Qv Biot factor

~ 1
u displacement field
€ deformation tensor

= (Vu + (Vu)")/2

[simula.research laboratory |

