
Parallel Computations and the
Finite Element Method

Joachim B Haga
Sintef
March 13, 2008

Overview of parallel computing, and
why we should care

Parallelisation of the finite element
method

Algebraic multigrid as a
parallel preconditioner

Single-processor performance has stalled
since ~2002 ...

(Hennessy and Patterson, 2006)

... so the future is parallel

➔ Power wall
➔ ILP wall
➔ Memory wall
➔ VLSI wall

Lower clock speeds
Simpler modules
Multiple cores

(Olokotun and Sutter)

A number of alternatives exist for parallel
computations

GPU programming (CUDA, CTM)

Distributed memory (MPI)

Shared memory (OpenMP)

Cell (PS3)

SIMD vector engines (Cray etc.)

➔ There is no consensus on the paradigm
for the parallel future

➔ so stick with established standards

OpenMP vs MPI example: inner product

double inner(vec a, vec b)
{

double sum = 0;

for (int i=0; i<a.size(); i++)
sum += a[i]*b[i];

return sum;
}

OpenMP vs MPI example: OpenMP version
(transparent to caller)

double inner(vec a, vec b)
{

double sum = 0;

pragma omp parallel for \
private(i) \
reduction(+:sum)

for (int i=0; i<a.size(); i++)
sum += a[i]*b[i];

return sum;
}

OpenMP vs MPI example: MPI version
(requires caller knowledge)

double inner(vec a, vec b)
{

double sum = 0, glob_sum;

for (int i=0; i<n_local_rows; i++)
sum += a[i]*b[i];

MPI_Allreduce(&sum, &glob_sum, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

return glob_sum;
}

OpenMP, MPI, hybrid: pros and cons

OpenMP
➔ shared memory
➔ allows gradual parallelisation
➔ does little for the “memory wall”

MPI
➔ distributed memory
➔ allows clusters
➔ not transparent

Hybrid
➔ OpenMP + MPI
➔ scales better than either alone

Parallelising the Finite Element Method

➔ Grid partitioning

➔ Parallel assembly

➔ Parallel linear algebra

➔ Parallel I/O

Nodal grid partitioning

➔ Construct a graph
from the mesh

Nodal grid partitioning

➔ Construct a graph
from the mesh

➔ Partition the graph
➔ METIS, ParMETIS
➔ Scotch, PScotch

Nodal grid partitioning

➔ Construct a graph
from the mesh

➔ Partition the graph
➔ METIS, ParMETIS
➔ Scotch, PScotch

➔ An element is on a cpu
if any of its nodes are
➔ Result: A shared band
of border elements

Nodal grid partitioning

The advantage of nodal grid partitioning is that
each matrix row is complete on one processor

Dual grid partitioning (of the elements) creates a
shared band of nodes instead of elements
➔ fewer nodes overall
➔ slightly smaller communication cost
➔ the shared nodes have no canonical placement

But with nodal partitioning, every node is the
responsibility of exactly one processor
➔ the matrix row associated with a node is in one place
➔ makes e.g. algebraic multigrid much easier

The major components of a finite element
solver

Parallel assembly
➔ trivial, just assemble locally

Parallel I/O
➔ commonly to local disk
➔ gather result post-process

Parallel linear algebra
➔ requires care
➔ preconditioning remains a problem

Distributed memory parallel linear algebra

Vector addition
➔ no communication

Vector inner products, norms
➔ exclude ghost-nodes from local norm
➔ reduction (sum) operation after local norm

Matrix-vector product
➔ update ghost-node values before multiplication
➔ (optionally) update again after multiplication

Preconditioning
➔ hard...

Parallel preconditioning

➔ A few preconditioners are easy to
parallelise (Jacobi, for example, is trivial)

➔ But many popular ones are not (e.g. ILU)

➔ Geometric multigrid is possible, but that is
not an option on unstructured grids

➔ So what about algebraic multigrid?

Algebraic multigrid phases

Coarsening
➔ problem with coarsening across processor
boundaries
➔ can operate decoupled (sub-optimal)
➔ various coupling strategies
➔ limits coarse grid size (to #cpus)

Projection / interpolation
➔ requires no communication

Smoothing
➔ Jacobi smoothing is decoupled
➔ Gauss-Seidel most popular?

Changes needed to support parallel operations
for Trilinos/ML are minor (with nodal partitioning)

In addition to the sequential interface code,
we need to pass in
➔ the number of local rows
➔ a function which updates ghost-nodes in a vector

Also, the “matvec” and “apply” functions must of
course be parallel-aware
➔ “matvec” updates ghost-nodes before
multiplication
➔ “apply” updates ghost-nodes after V cycle

Algebraic multigrid shows great promise as
parallell preconditioner for the coupled system

Parallel efficiency of the AMG-preconditioned
BiCGStab solver (ML/Trilinos+Diffpack)

Some key questions

What is the target?

Multicore, < 8 cpus
Cluster, or > 16 cpus
> 100 cpus
> 1000 cpus

➔ OpenMP
➔ MPI
➔ Hybrid
➔ ???

Can existing libraries be used?
➔ Trilinos (MPI)
➔ Hypre (hybrid)

~

The geomechanical model:
Equation for the fluid pressure

S
@p

@t
= r ¢ (¤rp)¡r ¢ (¤½f(1¡ ¯f(T ¡ T0))g)

storage coefficient

mobility of flow

density

thermal expansion coefficient

S

¤

½

¯

The geomechanical model:
Equation for the temperature

C
@T

@t
+ ½fCfvD ¢ rT = r ¢ (·rT)

Darcy velocity (in porous media)

porosity

bulk heat capacity

specific heat

thermal conductivity

vD

Á

C

Cf

·

= Ávf= ¡¤(rp¡ ½f(1¡ ¯f(T ¡ T0)g)

= Á½fCf+ (1¡ Á)½sCs

The geomechanical model:
Equation for the deformation (elastic)

¾ = (¸r ¢ u ¡ ®p¡ ¯s(3¸+ 2¹)(T ¡ T0))I+ 2¹²

Lamé material constants

Biot factor

displacement field

deformation tensor

0 = r ¢ ¾ + ½g

¹;¸

®
¼ 1

u

²

= (ru + (ru)T)=2

