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Abstract

Remodelling is defined as an evolution of microstructure or variations
in the configuration of the underlying manifold. The manner in which a
biological tissue and its subsystems remodel their structure is treated in
a continuum mechanical setting. While some examples of remodelling are
conveniently modelled as evolution of the reference configuration (Case
I), others are more suited to an internal variable description (Case II).
In this paper we explore the applicability of stationary energy states to
remodelled systems. A variational treatment is introduced by assuming
that stationary energy states are attained by changes in microstructure
via one of the two mechanisms—Cases I and II. An example is presented
to illustrate each case. The example illustrating Case II is further studied
in the context of the thermodynamic dissipation inequality.

1 Introduction and background

The development of a biological tissue and its subsystems consists of the distinct
processes of morphogenesis, growth and remodelling, a classification suggested by
Taber (1995). For preciseness of mathematical formulation we have previously
defined and treated growth as consisting of only addition or depletion of mass
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through processes of transport and reaction, possibly coupled with mechanics
(Garikipati et al., 2004). We define remodelling as microstructural changes

within the biological structure at constant mass. While remodelling and growth
occur simultaneously and in a coupled fashion in biological tissues, they can be
treated as separate processes for modelling purposes. Furthermore, in certain
situations, addition and depletion remain in balance, maintaining constant mass.
This is referred to as homeostasis, during which remodelling can occur.

There is, in fact, experimental evidence for a strict separation between re-
modelling and growth in soft tissue: (i) Stopak and Harris (1982) described the
orientation of collagen fibrils due to the forces exerted on them by the fibroblasts
(tendon cells) in a collagen gel. Growth processes of resorption of existing fibrils
and production of new ones with the preferred orientation were not reported
in their paper, suggesting that it was the mechanical action of fibroblasts alone
that resulted in fibril orientation. In this example the fibril orientation can be
viewed as the microstructural quantity undergoing an evolution in the absence
of growth. Fibril reorientation driven by stress and occurring independently of
growth was attained in our laboratory: A collagen gel was formed in a dish with
polyethylene supports fixed to the base. When fibroblasts were added to the gel
they exerted traction, thereby aligning the collagen fibrils. The orientation that
was obtained corresponded to the axis defined by the supports. (ii) Another
instance of microstructural change in collagen fibrils is their longitudinal and
lateral fusion. Birk et al. (1995, 1997) reported an abrupt change in the length
of embryonic chicken tendons from ≈ 40 µm to ≈ 120 µm, on the 17th day
after fertilization. In this case, while growth obviously was taking place in the
embryonic tendon, micrographs verified the abrupt change to be due to longi-
tudinal (end-to-end) fusion of smaller fibrils. This time scale, over which fusion
took place, is much smaller than the time scale of growth. We therefore propose
that, in a mathematical treatment, it is appropriate to view this remodelling
process as taking place in the absence of growth.

In contrast to these examples in soft tissue stands the case of bone, wherein
the macroscopic process that is usually labelled “remodelling” takes place by
resorption of existing collagen fibrils and production of new fibrils with a pre-
ferred orientation. In this case, therefore, the finer scale processes do fit our
definition of growth. For the sake of conceptual and mathematical clarity we
will ignore all processes that require growth at any scales in this paper, and
focus upon a continuum mechanical treatment of remodelling.

The literature in biomechanics and mathematical biology has a number of
papers concerning “remodelling” (Cowin and Hegedus, 1976; Taber, 1995; Har-
rigan and Hamilton, 1993; Seliktar et al., 2000; Taber and Humphrey, 2001;
Ambrosi and Mollica, 2002). Almost universally, however, these papers treat
mass and density changes and the mechanics—characterized by internal stress—
that is associated with them. Therefore, by our definition, they describe growth.
An exception is Humphrey and Rajagopal (2002), in which the notion of a nat-
ural configuration is introduced. It bears some similarities with the treatment
in Section 2 of this paper.

Another treatment, by Driessen et al. (2003), is specific to the evolution of
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fiber orientation within a tissue. However, there are at least two fundamental
shortcomings in their model: (i) It is unable to distinguish between cubic or-
thotropy and isotropy, and (ii) it predicts that in a tissue that is undeformed
from its reference state, the fiber orientations evolve until a tensorial variable
representing their distribution reaches a particular value. We discuss their model
and present a critique of both these features in Section 4.4.

The following is the organization of this paper: The mathematical treat-
ment for cases that are best described by smooth configurational changes on
the underlying manifold (Case I remodelling) is presented in Section 2. A one-
dimensional example is presented in Section 3 to illustrate this formulation.
The local reorientation of collagen fibrils, including our experiments and the
treatment via internal variables is discussed in Section 4. Thermodynamic dis-
sipation is discussed in Section 5. The paper concludes with a brief discussion
in Section 6.

2 Case I remodelling: Microstructural changes

that alter the reference configuration

Figure 1 depicts the kinematics associated with Case I remodelling. Material
particles are labelled by X ∈ R

3 in the reference configuration, which is de-
noted by Ω0 ⊂ R

3. The material microstructure undergoes changes that can
be described by a point-to-point vector map, χ : Ω0 × [0, T ] 7→ R

3, defined as
χ(X , t) ≡ X + κ(X, t). It carries the microstructure from the reference con-
figuration to a remodelled configuration, Ω∗, in which material points will also
be labelled as X∗ = χ. Assuming χ(X, t) to be smooth in X, its tangent map
is K(X, t) = ∂χ/∂X, leading to K = 1 + ∂κ/∂X. In Case I remodelling,
therefore, K denotes a compatible change in configuration.1

Distinct from χ is the point-to-point vector map ϕ∗ : Ω∗ × [0, T ] 7→ R
3.

It carries material points from Ω∗ to the spatial configuration Ω, and is the
deformation relative to Ω∗. The placement of material points in Ω is therefore
x = ϕ∗(X∗, t). The displacement, u∗, satisfies ϕ∗(X∗, t) = X∗ + u∗(X∗, t).
The classical deformation gradient is F ∗ := ∂ϕ∗/∂X∗ = 1 + ∂u∗/∂X∗. In
this initial treatment we do not consider any further decompositions of F ∗.
The overall motion of a point is ϕ(X, t) = κ(X, t) + u∗(X∗, t) ◦ χ(X , t), and
the corresponding tangent map is F = ∂ϕ/∂X. It admits the multiplicative
decomposition F = F ∗K.
Remark 1: In applications, the microstructural motion, χ, will be distin-
guished from the deformation, ϕ∗, by either physical or mathematical consid-
erations. For instance, in the example of Section 3, χ denotes the uncoiling
of a long-chain molecule, while ϕ∗ is the stretching of bonds. A mathematical
decomposition can be motivated in other applications such as χ denoting fine
scale motion of material particles, while ϕ∗ denotes motion on coarser scales.

1This configurational change can be further decomposed, multiplicatively, into incompati-
ble components: K = K

1
K

2 as in Garikipati et al. (2005).
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Figure 1: The kinematics of Case I remodelling and deformation.

2.1 A variational formulation

We wish to explore the relevance of stationary energy states to remodelled
biological systems. For this purpose the microstructural changes of the type
outlined with examples from biology in Section 1 and discussed more math-
ematically in this section, are assumed to occur when the Gibbs free energy
of the system attains a stationary state. Importantly, the stationary state of
the biological system is not one of equilibrium. The latter class of states is
dictated by thermodynamic dissipation (see de Groot and Mazur, 1984). The
stationary energy states, on the other hand, can be identified via standard vari-
ational arguments. For this purpose we consider the following Gibbs free energy
functional:

ΠI [u
∗,κ] =

∫

Ω∗

ψ̂∗(F ∗,K,X∗)dV ∗

−

∫

Ω∗

f∗
·(u∗ + κ)dV ∗ −

∫

∂Ω∗

t

t̄
∗
·(u∗ + κ)dA∗, (1)

where ψ∗ = ψ̂∗(F ∗,K,X∗) is the Helmholtz free energy density function, de-
fined per unit volume in the remodelled configuration. Observe that ψ∗ is
assumed to depend upon K in addition to the usual dependence on F ∗. Ma-
terial heterogeneity is allowed, and is represented by the dependence of ψ̂∗ on
X∗. The body force per unit volume in Ω∗ is f∗, and the applied traction per
unit area of the surface subset, ∂Ω∗

t ⊂ ∂Ω∗, is t̄
∗
. We allow for displacement

boundary conditions, u∗ = g∗, and vanishing microstructural change, κ = 0

on ∂Ω∗
u = ∂Ω∗\∂Ω∗

t . Since the total motion of a material point is κ + u∗, the
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potential energy of the external loads is as expressed by the second and third
terms in (1).

2.1.1 Euler-Lagrange equation: Quasistatic balance of linear mo-

mentum

The functional (1) yields one set of Euler-Lagrange equations when stationarity
of ΠI is imposed with respect to variations in u∗. We first define u∗

ε := u∗+εδu∗,
at fixed κ, with δu∗ ∈ R

3 and δu∗ = 0 on ∂Ω∗
u. Then,

d

dε
ΠI [u

∗
ε,κ] =

d

dε





∫

Ω∗

ψ̂∗(F ∗
ε,K,X∗)dV ∗ −

∫

Ω∗

f∗
·(u∗

ε + κ)dV ∗





−
d

dε

∫

∂Ω∗

t

t̄
∗
·(u∗

ε + κ)dA∗.

Differentiating under the integrals, applying the chain rule, integrating by parts,
and imposing stationarity via (dΠI/dε)ε=0 = 0 gives

−

∫

Ω∗

Div∗[
∂ψ∗

∂F ∗ ]·δu∗dV ∗ −

∫

Ω∗

f∗
·δu∗dV ∗

+

∫

∂Ω∗

t

(
∂ψ∗

∂F ∗N∗

)

·δu∗dA∗ −

∫

∂Ω∗

t

t̄
∗
·δu∗dA∗ = 0. (2)

Introducing P ∗ = ∂ψ∗/∂F ∗, the arbitrariness of δu∗ ∈ R
3 and the standard

localization argument yield the Euler-Lagrange equation

Div∗P ∗ + f∗ = 0 in Ω∗, (3)

the following boundary condition and constitutive relation

P ∗N∗ = t̄
∗

on ∂Ω∗
t , P ∗ ≡

∂ψ∗

∂F ∗ . (4)

Of these equations, (3) is recognized as the quasistatic balance of linear momen-
tum in Ω∗, and (4)1 as the corresponding traction boundary condition. Observe
that, as defined in (4)2, P ∗ is the first Piola-Kirchhoff stress, which is conjugate
to F ∗ with ψ∗ as the relevant strain energy density function.

2.1.2 Euler-Lagrange equation: Stationarity with respect to microstruc-

tural change

The class of variations now considered is given by

κε := κ + εδκ, at fixed u∗, with δκ = 0 on∂Ω∗
u. (5)
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Proceeding as in Section 2.1.1:

d

dε
ΠI [u

∗,κε] =
d

dε





∫

Ω∗

ψ̂∗(F ∗
ε ,Kε,X

∗
ε)dV

∗ −

∫

Ω∗

f∗
·(u∗ + κε)dV

∗





−
d

dε

∫

∂Ω∗

t

t̄
∗
·(u∗ + κε)dA

∗,

where the following relations hold:

F ∗
ε = F εK

−1

ε , X∗
ε = X + κε, Kε = 1 + ∂κ/∂X + ε

∂δκ

∂X
. (6)

Standard, if lengthy, manipulations (see Appendix A) then lead to the fol-
lowing set of equations governing the stationary energy state in which the con-
figurational variables take on the values κ = κs and K = Ks.

−Div∗
(

ψ∗1− F ∗T

P ∗ + Σ∗
)

+
∂ψ∗

∂X∗ = 0 in Ω∗ (7)
(

ψ∗1− F ∗T

P ∗ + Σ∗
)

N∗ = 0 on ∂Ω∗
t , (8)

where Σ∗ ≡
∂ψ∗

∂K
KT in Ω∗ (9)

Observe that the Eshelby stress ψ∗1−F ∗T

P ∗ makes its appearance. Hereafter,
it will be denoted by E. The quantity Σ∗ is a thermodynamic driving force
defined in (9) as the change in Helmholtz free energy density corresponding to a
change in the tangent map of the microstructural configuration. It is stress-like
in its physical dimensions and is a second-order tensor. For this reason we refer
to it as a non-Eshelbian configurational stress. The boundary condition in (8)
is simply a restriction on the normal component of this thermodynamic driving
term.

2.1.3 Stationarity with simultaneous variation of u∗ and κ

The procedure followed above is formal in the sense that the independent im-
position of variations has been assumed: u∗

ε = u∗ + εδu∗ for δκ = 0, and
κε = κ + εδκ for δu∗ = 0. Physically, this may not be possible due to the in-
teraction of deformation and configurational changes. Stationarity of the Gibbs
free energy under simultaneous variation of its arguments is obtained by requir-
ing

d

dε
ΠI [u

∗
ε ,κε]

∣
∣
ε=0

= 0.

On carrying out this calculation as in Sections 2.1.1, 2.1.2 and Appendix A
it can be shown that stationarity requires the following condition:
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∫

Ω∗

(

(Div∗P ∗ + f∗) ·δu∗ +

(

Div∗ (E + Σ∗) +
∂ψ∗

∂X∗

)

·δκ

)

dV ∗

−

∫

∂Ω∗

t

((
P ∗N∗ − t̄

∗)
·δu∗ + ((E + Σ)N∗) ·δκ

)
dA∗ = 0, (10)

where the notation introduced above for the Eshelby stress and the non-Eshelbian
configurational stress has been used. Clearly (3–4) and (7–9) ensure satisfaction
of (10), and are therefore sufficient conditions for stationarity.

3 An example of Case I remodelling: Configu-

rational change of a long chain molecule

In this section we employ an established statistical mechanical example of con-
figurational changes of long chain molecules in order to illuminate the math-
ematical formulation of Section 2. In addition to the interest in this example
from the standpoint of this paper we point out that configurational changes are
of central importance to the chemical activity of long chain molecules.

Consider a long-chain molecule, say a protein, that can exist in a highly
coiled state. Let its contour length be L. In the reference state, Ω0, the end-
to-end lengths of the coiled and the relatively straight domains are in the ratio
ξ : 1 − ξ, and the end-to-end length of the molecule is r0 (Figure 2). An
entropic elasticity is associated with uncoiling of the molecule. Let κ be the
change in end-to-end length from the reference state due to uncoiling; it is a
measure of changes in the number of configurations available (entropy). The
corresponding contribution to the Gibbs free energy function is specified by the
worm-like chain (WLC) model (Kratky and Porod, 1949). A stiffness, µ, with
physical dimensions of energy is associated with bond stretching. The increase
in length due to bond stretching is u∗. The square of the ratio of this quantity
and the length of the molecule, κ+ r0, determines the energy stored in bonds.
The enthalpic elasticity is due to this mechanism. The molecule is subjected to
an externally-applied axial tensile force, T .

The one-dimensional tangent map of the local configurational change, av-
eraged over the entire molecule, is K = 1 + κ/r0. It carries the molecule to
its remodelled configuration, Ω∗. The one-dimensional deformation gradient
relative to Ω∗ is F ∗ = 1 + u∗/(κ + r0), also averaged over the molecule. It
carries the molecule to its current configuration, Ω, in which it has undergone
a configurational change and bond stretching.

We will examine the response of the molecule to the axial force. In this case,
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T T

r0
2

(1 − ξ)r0
2

(1 − ξ) r0ξ κ

u∗

κ + r0

Figure 2: A long chain molecule that can undergo configurational changes and
bond stretching due to an external axial load. For ease of visualization the
figure depicts bond stretching only in the uncoiled, straight regions.

the Gibbs free energy is

ΠI [u
∗, κ] =

1

2
µ

(
u∗

κ+ r0

)2

+
kBθ

A

(
(κ+ r0)

2

2L
+

L

4(1 − (κ+ r0)/L)
−
κ+ r0

4

)

−T (u∗ + κ), (11)

where the first term on the right hand-side is the Helmholtz free energy from
elastic stretching. The second term is the entropic contribution from the WLC
model, after Marko and Siggia (1995), with kB being the Boltzmann constant
and θ being the temperature. The persistence length is A and is defined as the
ratio of bending stiffness to the thermal energy. It is also the distance along the
molecule’s contour over which the correlation between tangent vectors falls to
e−1. See Landau and Lifshitz (1951) for the statistical mechanics behind these
aspects of the model. The third term in (11) is the potential of the external
force.

Proceeding as in Section 2 we first seek stationarity with respect to variations
in u∗:

d

dε
ΠI [u

∗
ε, κ]

∣
∣
∣
ε=0

= µ
u∗

(κ+ r0)2
− T = 0. (12)

For this example, in the absence of a body force (3) reduces to the trivial
requirement that the axial force be constant along the molecule. Equation (12)
is the traction boundary condition (4)1 for the present case. Solving, we get

u∗s =
T

µ
(κ+ r0)

2, (13)

where superscript (•)s denotes a quantity with respect to which the system is
in a stationary state.
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Next, considering variations with respect to κ and imposing stationarity
gives

d

dε
ΠI [u

∗, κε]
∣
∣
∣
ε=0

= −µ
u∗2

(κ+ r0)3
− T

+
kBθ

A

(

κ+ r0
L

+
1

4 (1 − (κ+ r0)/L)
2
−

1

4

)

= 0. (14)

In this case the differential equation (7) is trivially satisfied since the forces
corresponding to the stresses E and Σ∗ are constant along the molecule.

The first term in the second member of (14) arises due to the variation of F ∗

with κ. It represents the effect of variation in the underlying manifold, Ω∗, due
to configurational changes. On comparison with (38) and (39), and following
the derivation in Appendix A it is clear that this term is the reduced version
of the Eshelby stress for the present one-dimensional setting. The third term of
the second member of (14) arises due to the variation of the WLC term with κ.
It represents the non-Eshelbian stress reduced to this setting as is confirmed by
comparison with the development in Appendix A.

The reduced version of the boundary condition (8) is obtained on substitut-
ing the stationary solution (13) for u∗ in Equation (14). (In effect, this is the
substitution referred to at the end of Appendix A.):

−
T 2

µ
(κ+ r0) +

kBθ

A

(

κ+ r0
L

+
1

4 (1 − (κ+ r0)/L)
2
−

1

4

)

− T = 0. (15)

Solutions to (15), denoted by κs, can be obtained in closed-form since it is a
cubic equation. In order to illustrate the nature of the solution we have plotted
the left hand-side of (15) against κ in Figure 3 with the numerical values of
parameters in Table 1. The plot is restricted to the interval 0 ≤ κ < L − r0,
since uncoiling is of interest, and (11) is non-physical for κ ≥ L− r0.

Table 1: Parameters used in the Gibbs free energy of the long chain molecule
P arameter Value Units Notes
ξ 1 - -
θ 300 K -
A 14.5 nm Collagen monomer molecule (Sun et al., 2002)
r0 120 nm -
L 309 nm Collagen monomer molecule (Sun et al., 2002)
µ 2.951× 10−7 J Stiff bonds
T 10 pN Force applied in Sun et al. (2002)

The variation in free energy DΠI = (dΠI/dε)ε=0 is negative over most of
the κ-interval and passes through zero at κs = 162.642 nm. This is the length
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2.5´10-8 5´10-8 7.5´10-8 1´10-7 1.25´10-7 1.5´10-7 1.75´10-7

-1´10-10

-5´10-11

5´10-11

1´10-10

κ (nm)

DΠI (N)

Figure 3: Variation of DΠI = (dΠI/dε)ε=0 with respect to κ.

increase due to uncoiling when the molecule is in the stationary energy state.
Corresponding to this value is the bond stretch, u∗s = 3 × 10−9 nm. The
molecule is very stiff—almost rigid—to bond stretching. Also observe that the
stress-stretch response determined by the WLC model locks as κs → L − r0
from below (κs → 189 nm); i.e., as the uncoiled length approaches the contour
length.
Remark 2: The uncoiling, represented by κ, takes place under an axial force
and its effect on the free energy is treated via a model of entropic elasticity.
It therefore follows that the entropy of the molecule is reversibly changed by
application and removal of a force.

4 Case II remodelling: Microstructural changes

represented by internal variables

While microstructural changes always imply an evolution of the reference con-
figuration, a simpler description may be possible than the general one developed
in Section 2. Such an instance is illustrated by the example of collagen fibril re-
orientation under mechanical load: The reorientation of a fibril does modify the
reference configuration since the underlying microstructure changes, and hence
the general formulation of Section 2 remains applicable. However, the physics
of the process admits a simpler model that requires only the introduction of a
rotation tensor as an internal variable and is discussed below. We begin with
the biological basis and include a description of our experiments.

4.1 Collagen fibril alignment in gels by cell traction

Collagen is the most widely-present protein in the human body. It exists in many
forms of which, to fix ideas, we will consider type I collagen. It has a fibrillar
structure and is the main form of collagen in tendons. The fundamental unit
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is the triple helical collagen molecule that is assembled from three single chain
molecular strands. The triple helix has been reported to be between 300 to 360
nm in length and 1.5 nm in diameter. The triple helices further assemble into
collagen fibrils of varying lengths (the range of 20–140 µm has been reported)
and 10–300 nm in diameter. The fibrils assemble into fibers that can range up
to millimeters in length. The collagen fibrils are surrounded by a dense network
of proteoglycan (PG) molecules, which, at one end, associate with the collagen
fibrils. They form a hydrated gel that contains most of the fluid phase of the
extracellular matrix. Other extracellular matrix proteins are also found in the
gel. The interested reader is directed to Alberts et al. (2002, chap. 19) and
references therein for details.

Stopak and Harris (1982) have described the reorientation of collagen fibrils
due to cell traction in gels. In their experiments, cell-bearing tissue explants
were embedded in collagen gels. Cells were found to migrate outward from
the explant, and, by applying traction, to induce a preferred alignment of the
collagen network. Specifically, collagen fibrils were found to align either between
a pair of explants, or an explant and a fixed, effectively rigid, support. In a three-
dimensional environment, such as a collagen gel, the fibroblasts themselves align
along directions of maximum principal tensile stress in the matrix (Balaban
et al., 2001). In vitro (and probably in vivo also), the stress is often imposed by
fibroblast traction on the matrix.2 In other in vitro studies an externally-applied
traction has resulted in fibroblast alignment with the maximum principal tensile
stress direction.

Fibroblasts attain alignment by attaching themselves to the matrix (usually
the collagen fibrils) by “three-dimensional adhesion points”. Complex signalling
pathways and chemical cascades are involved in the formation of these adhesion
points (Cukierman et al., 2001). The actual attachment to the matrix is me-
diated by receptors called integrins that pass through the cell membrane and
are attached to the intracellular actin network at the opposite end from the
adhesion point. See Geiger et al. (2001); Mitra et al. (2005). A tensile stress
develops in the actin network, the cell’s interinsic contractile apparatus, asso-
ciated with stretching of the fibroblast between multiple adhesion points in the
extra-cellular matrix. The stress in the actin network thus enables the fibroblast
to apply traction to the matrix in a direction now determined by the alignment
of adhesion points (Balaban et al., 2001). This traction induces a marked re-
orientation among the fibrils in a network with an initially random orientation
distribution. The fibrils align with the maximum principal tensile stress di-
rection in the matrix. There now exists general agreement that these mutual
interactions between stress in the matrix, fibroblast alignment and stress in the
actin network are responsible for the collagen fibril reorientation described in
papers such as Stopak and Harris (1982).

2The aligned fibrils stiffen the matrix in their direction, thereby providing greater resistance
to fibroblast traction. A “positive-feedback loop” is thus created between fibroblast and
collagen fibril alignment, a phenomenon that is sometimes called “contact guidance” (Barocas
and Tranquillo, 1997).
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4.2 Experimental study

In order to assess the role of fibroblasts in the alignment of collagen fibrils we
carried out a set of simple collagen gel contraction experiments (that we have
already alluded to in Section 1).

Three experimental configurations were considered. In the first, a cell-
collagen solution was delivered over porous polyethylene posts spaced 6 mm
apart (Figure 4). Over 12 hours, the cell-seeded gel contracted to form a lin-
ear structure stretched between the supporting posts. The contraction of the
cell-collagen gel was observed (at ambient temperature 22◦C) between crossed
polarizing lenses mounted on an inverted microscope for 12–15 hours under 40×
magnification using an attached digital camera. An observed increase in trans-
mitted light through the polarizing filters over the recording period indicated
a significant microstructural reorganization in addition to macroscopic changes
in gel shape. The gel became birefringent due to alignment of collagen fibrils
along the axis of the posts. In a second experiment, a nearly identical proce-
dure was followed but without the addition of the constraining posts to the dish.
While this gel contracted to half its original diameter overnight, the lack of con-
straints resulted in an isotropic contraction, no observable alignment of fibrils,
and therefore no birefringence (data not shown). Finally, a third gel plated
without cells was found to neither contract nor yield a birefringent species.
Taking these results together, one can (reasonably) conclude that the alignment
requires both traction-providing cells (i.e., fibroblasts) as well as fixed displace-
ment constraints so that the stress field applied by the cells to the matrix is
anisotropic and induces the reorientation of fibrils.

Figure 4: Schematic figure of the experimental setup for collagen gel formation
and fibril alignment by cell traction.
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4.3 Modelling assumptions leading to Case II

We make the following modelling assumptions on the alignment of fibrils by cell
traction in a collagen gel:

1. We restrict ourselves to situations in which there is a uniform distribution
of fibroblasts and fibrils in the gel. The typical linear dimension of a
fibroblast is 25 µm. Therefore, at a macroscopic scale, each point in the
gel has available the microstructural mechanisms required for collagen
fibril reorientation.

2. Since the fibroblasts and fibrils are uniformly distributed, cell traction
does not result in translation of the center of mass of the collagen fibril
network within an infinitesimal neighborhood of a point. Therefore, the
only effect of fibroblast traction on the fibrils is to change their alignment
at a continuum point.

3. A consequence of Assumption 2 is that the fluid surrounding the collagen
fibrils in the gel does not undergo a translation of its center of mass due
to fibroblast traction.

4. There is no loss of contact between the fibrils and the surrounding fluid
in the gel due to fibril realignment; i.e., local compatibility is maintained.

Reverting to Equation (1) we let the motion of material points induced by
fibril rotation be denoted by κ. It follows from Assumptions 2 and 3 that the
work done by forces f∗ and t̄

∗
on κ vanishes in (1) .

At the macroscopic scale, we develop an internal variable description of the
reorientation of the microscopic fibrils. In contrast to Case I remodelling (Sec-
tion 2) we do not undertake a detailed consideration of the changes in reference
configuration brought about by variation of this internal variable. The Gibbs
free energy will depend on the internal variable for fibril reorientation since it
determines pointwise anisotropy of the extracellular matrix. If the tangent to
a fibril has an initial orientation given by the unit vector field M0(X) ∈ Ω0,
then M∗(X, t) = Q(X , t)M0(X) is its remodelled orientation at time t, where
Q(X, t) ∈ SO(3), a rotation tensor, is the internal variable. We write the

Helmholtz free energy density with respect to Ω0 as ψ̂(F ,Q,X). Note that ψ̂
is defined with respect to the reference configuration, changes in which we will
ignore in Case II remodelling.

The Gibbs free energy functional is parametrized by the displacement u,
now defined on Ω0, and Q. Reflecting the assumptions made above and the
arguments following from them, Equation (1) reduces to

ΠII [u,Q] =

∫

Ω0

ψ̂(F ,Q,X)dV −

∫

Ω0

f ·udV −

∫

∂Ω0t

t̄·udA. (16)

Note that the integrals are defined on Ω0. The body force and traction
vectors are f and t̄, respectively, defined per unit volume in Ω0 and per unit
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surface area on ∂Ω0. We now consider variations on Q, recalling that SO(3) is
a Lie group whose Lie algebra consists of real, skew-symmetric matrices. This
Lie algebra is denoted by Skw(3) for the case wherein Q acts on vectors in R

3

(see any standard textbook on manifold analysis, for instance, Choquet-Bruhat
et al. (1982)). The admissible variations on Q are therefore of the form

Qε = Q + δQ, where δQ = WQ ∀W ∈ Skw(3). (17)

This leads to the following variation on ΠII :

d

dε
ΠII [u,Qε]

∣
∣
ε=0

=

d

dε





∫

Ω

ψ̂(F ,Qε,X)dV −

∫

Ω

f ·udV −

∫

∂Ωt

t̄·udA





∣
∣
∣
ε=0

. (18)

Imposing stationarity, invoking the localization argument and applying (17) this
reduces in a straightforward manner to

∂ψ

∂Q
: WQ = 0, ∀ W ∈ Skw(3), (19)

a relation also obtained by Vianello (1996), albeit without beginning from the
integral form. As a final step this result for a stationary state can be rewritten
as

∂ψ

∂Q
QT

∣
∣
∣
Q=Qs

: W = 0, ∀ W ∈ Skw(3). (20)

4.3.1 Example: Collagen fibril reorientation in a gel using a contin-

uum strain energy function

The WLC model (11) is extended to a continuum strain energy function for the
system consisting of the gel, collagen fibrils and fibroblasts. This is achieved by
introduction of the fibril number density, N , and addition of a repulsive term
to enforce a vanishing stress at unit stretch and a bulk compressibility term for
the gel:

ψ̂(F ,Q,X) =
NkBθ

4A

(
2r2

L
+

L

1 − r/L
− r

)

−
NkBθ

4A

(
1

L
+

1

4r0(1 − r0

L
)2

−
1

4r0

)

log(λ4r2
0 )

︸ ︷︷ ︸

repulsive term

+
γ

β
(J−2β − 1) + 2γ1 : E

︸ ︷︷ ︸

bulk compressibility

. (21)
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The elastic stretch in the direction of the remodelled fibril is λ, and E =
1

2
(F TF −1) is the Lagrange strain. The factors γ and β control bulk compress-

ibility. The end-to-end length is given by

r =
√

r2
0
λ2, λ =

√

M∗
·F TFM∗. (22)

Note that the end-to-end length is modified by the macroscopic deformation
through (22). This is in contrast with the explicit inclusion of the change in
molecular configuration, κ, in (11). The change in configuration considered in
the present section is at the more macroscopic scale of fibril reorientation.

Consider a cylindrically-shaped collagen gel in which the collagen fibrils are
all radially-oriented at time t = 0. Adopting a cylindrical coordinate system,
{eR, eα, eZ}, we have M 0 = eR. The gel is loaded by imposing a deformation
gradient: F = λReR⊗eR +λαeα⊗eα +λZeZ ⊗eZ , such that λZ > 1, λR = λα

and λZ > λR. We will assume that Case II remodelling occurs according to
the cell traction mechanisms discussed above, and that the fibrils undergo local
reorientation with M∗ → eZ as t → ∞. The rotation tensor corresponding to
this stationary state is Qs = −eR ⊗ eZ + eα ⊗ eα + eZ ⊗ eR. We aim to verify
that Qs satisfies (20).

From (21) and (22) we have, after some manipulations,

∂ψ

∂Q
QT

∣
∣
∣
Q=Qs

: W =

NkBθr0
4A

[(
4r

L
+

1

(1 − r/L)2
− 1

)

−

(
4r20
rL

+
r0

r(1 − r0/L)2
−
r0
r

)]

·F TF (QsM0 ⊗ QsM0) : W (23)

Using the tensor product expansions established above for F and Qs, and M0 =
eR, this reduces to

∂ψ

∂Q
QT

∣
∣
∣
Q=Qs

: W =

NkBθr0
4A

[(
4r

L
+

1

(1 − r/L)2
− 1

)

−

(
4r20
rL

+
r0

r(1 − r0/L)2
−
r0
r

)]

λ2

ZeZ ⊗ eZ : W . (24)

Since (24) involves the scalar product of a symmetric tensor and W ∈
Skw(3), we have

∂ψ

∂Q
QT

∣
∣
∣
Q=Qs

: W = 0, ∀W ∈ Skw(3),

Qs = −eR ⊗ eZ + eα ⊗ eα + eZ ⊗ eR. (25)

This implies that a stationary energy state is achieved when the fibrils with
initial radial orientation undergo reorientation along the direction of maximum
principal tensile stretch.
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Remark 3: Even though the discussion in Sections 4.1 and 4.2 refers to fibril
alignment with the maximum principal tensile stress direction, it is entirely
equivalent to consider alignment with the maximum principal stretch direction
in the stationary energy state. This is on account of the work of Vianello (1996)
who showed that the strain energy of an anisotropic solid is at a minimum when
the principal stress and stretch directions coincide. This result is used to justify
an evolution law for fibril orientation (32) below.

4.4 Notes on a recent model of fiber orientation

To conclude this section, we briefly discuss a recent theory of remodelling, de-
veloped by Driessen et al. (2003), for the evolution of fiber orientation within a
tissue. Their theory is quite distinct from the development in Sections 4.1–4.3,
and has at least two fundamental shortcomings:

(i) In order to represent the distribution of fiber orientation, these authors

work with a fiber orientation tensor, defined as S0 = 〈e0, e0〉 :=
∑N

i=1
ψie

i
0⊗

ei
0. There are N distinct orientations, each specified by a unit vector, ei

0,

and with a probability distribution ψi, such that
∑N

i=1
ψi = 1. The ten-

sor, S0, however fails to distinguish between cubic orthotropy (N = 3,
ψi = 1/3, ei

0·e
j
0

= δij the Kronecker-delta) and isotropy (ψi = 1/N , the
directions ei

0 being distributed uniformly over the unit sphere, in the limit
N → ∞). A straightforward calculation shows that S0 = 1

3
1 in both

cases. This fundamental failing suggests that higher-order statistics must
be included, for instance, moments of the fiber distribution.

(ii) The second limitation is related to the evolution law prescribed for the
fiber orientation tensor in the current placement, S = (1/Λ2)FS0F

T,
where Λ2 is the mean square of the stretches of the fibers:

Λ2 =

N∑

i=1

ψiei
0·F

TFei
0.

The evolution law prescribed is
∇

S +2(D : S)S = 1

τ
(A−S), where

∇

S is the
Lie derivative of S, D is the rate of deformation tensor, τ is the relaxation
time, and A is written as a function of the finger tensor: A = Bν/tr(Bν),
with ν being a real exponent. The physical implication of such a law is that
S continues to evolve, driven by the strain, until S = Bν/tr(Bν): For a
point with B = 1, i.e., unchanged from its reference placement, this means
that any initial fiber orientation tensor, S0(0) = S(0) (e.g., S0(0) =
S(0) = e0 ⊗ e0) must evolve until S0(t) = S(t) = 1. We know of no
physiological instances in which this happens. In fact, this conclusion does
not correspond with common experience. In our experiments described
in Section 4.2 we have also confirmed that the fiber orientations in a
uniaxially-aligned collagen gel remain in this state if the gel does not
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deform, and do not evolve to S(t) = 1 as Driessen and co-workers’ rule
suggests.

5 Thermodynamic dissipation associated with

reorienting fibrils

We return to our formulation of collagen fibril re-orientation via internal vari-
ables for the discussion on dissipation. Denoting the internal energy of the
system (gell, collagen fibrils and fibroblasts) by e, and the energy lost against
viscous resistance by Dv, the First Law of thermodynamics gives

ė = P : Ḟ − Dv − ∇·q, (26)

where P is the first Piola-Kirchhoff stress defined on Ω0, and q is the heat flux.
The energy lost against viscous resistance as the fibrils rotate relative to the
viscous gel is in the form of heat, therefore −Dv is heat lost from the system.
To be more precise we assume a linear viscosity and write Dv = 1

2
µ|ω|2, where

µ is the viscosity of the gel, and ω = − 1

2
ǫ : (Q̇QT) is the angular velocity of

the fibrils with ǫ being the permutation symbol.
At steady temperature (an isothermal process, such as that in our experi-

ments of Section 4.2) we have, from a Legendre transformation, ė = ψ̇ + θη̇,
where η is the entropy density of the system. In anticipation of the arguments
to follow we now write the Helmholtz free energy density as a sum of mechanical
and chemical components, ψ = ψm + ψc where ψm = ψ̂m(F ,Q,X) is given by
(21), which was written for a purely mechanical system. Therefore, the internal
energy density rate satisfies

ė = ψ̇m + ψ̇c + θη̇. (27)

The entropy density rate is governed by the Second Law of thermodynamics,
which we write first as an equality:

η̇ = −
Dv

θ
− ∇·

(q

θ

)

+ γ, (28)

where the first term on the right hand-side is the entropy loss due to the heat
sink, the second term is the entropy change due to the heat flux, and γ is an
entropy production term due to irreversible processes internal to the system.
The statement of the Second Law as an inequality is

γ ≥ 0. (29)

Multiplying (28) by θ, and combining it with (26) and (27), we have

ψ̇m + ψ̇c − P : Ḟ +
q·∇θ

θ
+ θγ = 0.
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Using ψm = ψ̂m(F ,Q,X) as justified above, this can be expanded to

∂ψm

∂F
: Ḟ +

∂ψm

∂Q
: Q̇ + ψ̇c − P : Ḟ +

q·∇θ

θ
+ θγ = 0.

The general hyperelastic constitutive law P = ∂ψm/∂F reduces this inequality
to

∂ψm

∂Q
: Q̇ + ψ̇c +

q·∇θ

θ
+ θγ = 0. (30)

Using (21) and (22) with ψ̂(F ,Q,X) replaced by ψ̂m(F ,Q,X) for the first
term in (30), we have

NkBθr0
4A

[(
4r

L
+

1

(1 − r/L)2
− 1

)

−

(
4r20
rL

+
r0

r(1 − r0/L)2
−
r0
r

)]

·F TF (QeR ⊗ Q̇eR) : 1 + ψ̇c +
q·∇θ

θ
+ θγ = 0, (31)

where M∗ = QM0 and M0 = eR have been used. In a recent paper, Kuhl
et al. (2005) have proposed the following first-order rate equation for the local
evolution of fibril orientation:

∂M∗

∂t
= −

1

τ
[(M∗

·Mmax)M∗ − Mmax] , (32)

where τ > 0 is a relaxation time, and Mmax is the eigen vector corresponding
to the maximum principal tensile stretch (see Remark 3). For the example in
Section 4.3.1 we have Mmax = eZ . Equation (32) can be written in terms of Q

by substituting M∗ = QeR:

Q̇eR = −
1

τ
[(eZ ·QeR)QeR − eZ ] . (33)

Combining (33) and (31) we obtain

−
NkBθr0

4A

[(
4r

L
+

1

(1 − r/L)2
− 1

)

−

(
4r20
rL

+
r0

r(1 − r0/L)2
−
r0
r

)]

·F TF

{

QeR ⊗
1

τ
[(eZ·QeR)QeR − eZ ]

}

: 1

+ψ̇c +
q·∇θ

θ
+ θγ = 0. (34)

Returning to the tensor product expansion for F , we use 1 = eR⊗eR+eα⊗eα+
eZ⊗eZ , and the fact that, for uniaxial tension, λR = λα to write F TF = λ2

R1+
(λ2

Z −λ2

R)eZ ⊗eZ . Using this relation in (34) we get, after some manipulations,

−
NkBθr0

4A

[(
4r

L
+

1

(1 − r/L)2
− 1

)

−

(
4r20
rL

+
r0

r(1 − r0/L)2
−
r0
r

)]

·
λ2

Z

τ
(eZ ·QeR)

[

(eZ·QeR)
2
− 1
]

+ ψ̇c +
q·∇θ

θ
+ θγ = 0. (35)
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From (33) we have

eZ ·Q̇eR = −
1

τ

[

(eZ·QeR)
2
− 1
]

≥ 0 (36)

At t = 0 the internal variable Q(t) = 1, leading to eZ·Q(0)eR = 0 . From this
and (36) it follows that eZ·Q(t)eR > 0 for all t > 0. Furthermore, for any locally
remodelled orientation M∗ = MZeZ + MReR, the unstretched and stretched
lengths of the fibrils are in the ratio r0/r ≤ 1 provided (MZλZ)2+(MRλR)2 > 1.
Using these results the first term in (35) can be shown to be greater than zero
provided the fibrils have rotated sufficiently for (MZλZ)2 + (MRλR)2 > 1 to
hold, and r < L.

This conclusion regarding the first term in (35) is not surprising. Its inter-
pretation is that, for a given state of deformation F , the strain energy density
at a point increases as Q locally rotates fibrils to align with the direction of
maximum principal tensile stretch (see Arruda et al., 2005). In fact, this para-
metric variation is a property of any fiber-reinforced material. The contributions
of the remaining terms in (35) will now be studied towards understanding the
dissipative character of biological remodelling.

From the Second Law written as an inequality (29), it follows that the en-
tropy production term is positive semi-definite. Assuming Fourier’s Law of heat
conduction, q = −Kcon∇θ, where Kcon is a positive semi-definite heat conduc-
tion tensor, ensures that heat conduction results in a non-positive dissipation.
Finally, since, as shown by our experiments (Section 4.2) re-orientation of fibrils
happens by cell traction, the cells must consume their chemical free energy in
this process: ψ̇c ≤ 0. Rewriting (35) with a reduced form for the first term on
the left hand-side,

∂ψm

∂Q
: Q̇

︸ ︷︷ ︸

≥0

+ ψ̇c
︸︷︷︸

≤0

+
q·∇θ

θ
︸ ︷︷ ︸

≤0

+ θγ
︸︷︷︸

≥0

= 0. (37)

Written in this form, the dissipation has several implications:

1. Perhaps the most significant implication from the standpoint of develop-
ment of models is that a purely mechanical theory is thermodynamically
inadmissible for remodelling processes that stiffen the material. This is
seen from (37) without the second and third terms, since the left hand-
side is necessarily greater than zero if remodelling takes place. Either
heat conduction or the chemical free energy changes must be considered
to satisfy the dissipation relation.

2. The chemical and mechanical action of cells needs to be considered in
quantitative terms. While the chemical term is represented by ψc a con-
stitutive model is still needed for it. Intra-cellular mechanical changes
are also involved in the process (Section 4.2), and must be modelled by a
separate free energy term.
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3. The changes in chemical and mechanical free energy of the cells translates
to entropy changes also. At this stage it is unclear whether the cells lower
or increase their entropy by these processes. If the answer is a decrease,
the overall positive entropy change must be sought further afield.

4. While it is common to model biological tissues as isothermal, and even to
ignore heat transport in them, (37) suggests that this is not necessarily
allowable. Indeed it now appears that some heat flux must exist in the
tissues for transport of the energetic and entropic byproducts of cellular
activity. This term is indispensable if chemcial free energy is ignored.

6 Discussion and conclusion

The hypothesis that biological systems attain stationary energy states with re-
spect to changes in their microstructure is examined in this paper. A variational
treatment can be applied to result in at least two, quite different, descriptions
of remodelling: The first involving an evolution of the underlying material con-
figuration, and the second described by internal variables. We note that the
range of phenomena that can be described span from molecular to tissue scales.

While the notion of stationary states of the free energy is examined, it is clear
that dissipation must play a central role. This is highlighted by Section 5 and its
result that stiffening of active biological materials requires both: consideration
of chemical free energy and an entropic sink. This is a conclusion that merits
deeper study. Attainment of true equilibrium states, in which all processes cease
is dictated by dissipation. For this reason, and because biological systems have
many mechanisms by which to dissipate energy, a very careful consideration of
the Second Law and its consequences is essential to studies of remodelling.

A Variational calculus for Case I remodelling

Letting J∗ denote det(F ∗), ψ denote the Helmholtz free energy density with re-
spect to the reference configuration, and f denote the body force in the reference
configuration, we rewrite the integrals in (6) over the reference configuration us-
ing J∗ψ∗ = ψ and J∗f∗ = f .

d

dε
Π[u∗,κε]

∣
∣
∣ =

∫

Ω0

(
dJ∗

ε

dε
ψ∗

ε + J∗
ε

dψ∗
ε

dε

)

dV

−

∫

Ω0

J∗f∗ ·
dκε

dε
dV −

∫

∂Ω0t

t̄ ·
dκε

dε
dA.
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Reverting to the remodelled configuration,

d

dε
Π[u∗,κε] =

∫

Ω∗

J∗−1

(
dJ∗

ε

dε
ψ∗

ε + J∗
ε

dψ∗
ε

dε

)

dV ∗

−

∫

Ω∗

f∗ ·
dκε

dε
dV ∗ −

∫

∂Ω∗

t

t̄
∗
·
dκε

dε
dA∗.

Applying the chain rule and invoking stationarity with respect to variations in
κ,

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=





∫

Ω∗

J∗−1

(
∂J∗

∂K
:

dKε

dε
ψ∗

ε + J∗
ε

∂ψ∗

∂F ∗ :
dF ∗

ε

dε

)

dV ∗





ε=0

+





∫

Ω∗

J∗−1

(

J∗
ε

∂ψ∗

∂K
:

dKε

dε
+ J∗

ε

∂ψ∗

∂X∗ :
dκε

dε

)

dV ∗





ε=0

−






∫

Ω∗

f∗ ·
dκε

dε
dV ∗ +

∫

∂Ω∗

t

t̄
∗
·
dκε

dε
dA∗






ε=0

. (38)

The derivatives with respect to ε in (38) are obtained from (6):
(

dKε

dε

)

ε=0

=
∂δκ

∂X
,

(
dF ∗

ε

dε

)

ε=0

= (1− F ∗)
∂δκ

∂X∗ ,

(
dκε

dε

)

ε=0

= δκ. (39)

Substituting (39) in (38) gives

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=

∫

Ω∗

J∗−1

(
∂J∗

∂K
:
∂δκ

∂X
ψ∗ + J∗ ∂ψ

∗

∂F ∗ : (1− F ∗)
∂δκ

∂X∗

)

dV ∗

+

∫

Ω∗

J∗−1

(

J∗ ∂ψ
∗

∂K
:
∂δκ

∂X
+ J∗ ∂ψ

∗

∂X∗ δκ

)

dV ∗

−

∫

Ω∗

f∗ · δκdV ∗ −

∫

∂Ω∗

t

t̄
∗
· δκdA∗

Using ∂J∗/∂K := ∂[det(K)]/∂K = det(K)K−T, this reduces to

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=

∫

Ω∗

(

K−T :
∂δκ

∂X
ψ∗ +

∂ψ∗

∂F ∗ : (1 − F ∗)
∂δκ

∂X∗

)

dV ∗

+

∫

Ω∗

(
∂ψ∗

∂K
:
∂δκ

∂X
+
∂ψ∗

∂X∗ δκ

)

dV ∗

−

∫

Ω∗

f∗ · δκdV ∗ −

∫

∂Ω∗

t

t̄
∗
· δκdA∗
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Using standard manipulations of the scalar product of tensors, and the chain
rule, ∂(•)/∂X∗ = (∂(•)/∂X)K−1, the preceding equation yields

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=

∫

Ω∗

(

ψ∗1 :
∂δκ

∂X∗ + (1− F ∗T

)
∂ψ∗

∂F ∗ :
∂δκ

∂X∗

)

dV ∗

+

∫

Ω∗

(
∂ψ∗

∂K
KT :

∂δκ

∂X∗ +
∂ψ∗

∂X∗ δκ

)

dV ∗

−

∫

Ω∗

f∗ · δκdV ∗ −

∫

∂Ω∗

t

t̄
∗
· δκdA∗

Defining the configurational stress, Σ∗ := (∂ψ∗/∂K)KT, and introducing
the first Piola-Kirchhoff stress, this can be written as

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=
∫

Ω∗

(

ψ∗1 :
∂δκ

∂X∗ + (1− F ∗T

)P ∗ :
∂δκ

∂X∗ + Σ∗ :
∂δκ

∂X∗

)

dV ∗

+

∫

Ω∗

∂ψ∗

∂X∗ δκdV ∗ −

∫

Ω∗

f∗ · δκdV ∗ −

∫

∂Ω∗

t

t̄
∗
· δκdA∗

The Divergence Theorem allows this equation to be rewritten as

d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

=
∫

Ω∗

[

−Div∗
((

1 − F ∗T
)

P ∗ + ψ∗1 + Σ∗
)

+
∂ψ∗

∂X∗ − f∗

]

· δκdV ∗

+

∫

∂Ω∗

t

[((

1− F ∗T
)

P ∗ + ψ∗1 + Σ∗
)

· N∗ − t̄
∗
]

· δκdA∗

Enforcing equilibrium, d

dε
Π[u∗,κε]

∣
∣
∣
ε=0

= 0, the localization principle and the

arbitrariness of δκ give the following governing equations for configurational
change:

−Div∗
((

1 − F ∗T
)

P ∗ + ψ∗1 + Σ∗
)

+
∂ψ∗

∂X∗ − f∗ = 0 in Ω∗ (40)
((

1− F ∗T
)

P ∗ + ψ∗1 + Σ∗
)

N∗ − t̄
∗

= 0 on ∂Ω∗. (41)

Using (3)1 and (3)2 these equations are reducible to (7) and (8).
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