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Abstract. The PDE part of the bidomain equations is discretized in time with fully implicit
Runge–Kutta methods, and the resulting block systems are preconditioned with a block diagonal
preconditioner. By studying the time stepping operator in the proper Sobolev spaces we show that
the preconditioned systems have bounded condition numbers given that the Runge–Kutta scheme is
A–stable and irreducible with an invertible coefficient matrix. A new proof of order–optimality of the
preconditioners for the one–leg discretization in time of the bidomain equations is also presented. The
theoretical results are verified by numerical experiments. Additionally, the concept weakly positive
definite matrices is introduced and analyzed.

1. Introduction. The electrical activity of the heart can be modelled using the
bidomain equations [24]. Applications of the model include studies of arrhythmia,
defibrillation and drug development. The bidomain model can be written as:

∂s

∂t
= F (t, s, v), in Ω, (1.1)

∂v

∂t
= ∇ · (σin∇v) + ∇ · (σin∇u) − I(s, v), in Ω, (1.2)

0 = ∇ · (σin∇v) + ∇ · ((σtot)∇u) , in Ω, (1.3)

where the unknowns are the trans–membrane potential v, the extracellular potential
u and the vector of state variables s. The length of this vector varies from 1 in
the simplest models and up to about 40 in the Winslow model, see e.g. [25]. The
intra– and extracellular conductivity tensors are denoted σin and σex, respectively, and
σtot = σin + σex. For notational convenience, the tensors are scaled by the membrane
capacitance and the membrane surface area, see [21] for details. Depending on the
membrane model, the rate function F might describe ionic fluxes, enzyme kinetics and
possibly other entities. The function I is current density per membrane capacity. The
computational domain denoted by Ω ⊂ R

d, d ≤ 3 is a bounded connected polygonal
domain approximating the geometry of the heart.

Usually these equations are solved by applying an operator splitting method,
where the system is split into a non–linear system of ODEs and a linear system of
PDEs, cf. [21]. Using complicated ion models like the Winslow model and with realistic
3D geometry, the CPU time for the PDE part is similar to the CPU time for the ODE
part, cf. [22, 20] for simpler models the PDE part dominates. Realistic simulations
of the electrical activity of the heart are time consuming; one heart beat typically
requires thousands of time steps and millions of spatial degrees of freedom [17, 22, 20].
In this paper we will consider preconditioners for advanced time stepping schemes for
the PDE part of the bidomain model, since this part is the bottleneck that prevent
the use of more advanced and possibly efficient time stepping schemes for the fully
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coupled system. The PDE part has the following form:

∂v

∂t
= ∇ · (σin∇v) + ∇ · (σin∇u) + f, (1.4)

0 = ∇ · (σin∇v) + ∇ · (σtot∇u) , (1.5)

where σtot = σin + σex. This is often referred to as an index 1 partial differential
algebraic equation (PDAE1). Index 1 problems should be solved with stiffly accurate
time stepping schemes suited for adaptive time step selection, cf. [10, Chapter 7].
Therefore, the RadauIIA and the LobattoIIIC schemes are desirable for solving (1.4)–
(1.5).

A spatial semi–discretized version of these equations may be written as

Ih
dvh

dt
= −Minvh − Minuh + fh(t, x), (1.6)

0 = −Minvh − Mtotuh, (1.7)

where Ih is the mass matrix, Min ∈ R
n×n is the spatial discretization matrix of

−∇ · (σin∇·) (a stiffness matrix), Mtot ∈ R
n×n is the discretization of −∇ · (σtot∇·)

(a stiffness matrix) and fh is the L2 projection of f onto the discretization space.
The variables vh and uh are the discrete approximations of v and u. The spatial
discretization method will in our numerical experiments be a finite element method
with Lagrange elements of order one to four. However, the theoretical results are valid
for all conforming spatial discretizations.

In the PDE literature, efficient and accurate spatial discretization methods are
well studied, while temporal discretization methods have been given less attention.
In this paper we study the numerical solution of the index 1 DAE described in (1.6)–
(1.7), which is the semi–discretized version of (1.4)–(1.5). We apply Runge–Kutta
schemes on (1.6)–(1.7) and end up with block systems to be solved for each time
step. The important point in this paper is that we are able to construct efficient
preconditioners for these systems.

The method suggested in this paper is similar to the method the authors in-
troduced in [14], where an order–optimal preconditioner for Runge–Kutta schemes
applied to the linear parabolic equation

ut = ∆u + f

is presented. The preconditioner in [14] is block diagonal, and standard precondition-
ers are used for the diagonal blocks. Here, we extend this analysis to an index 1 DAE,
namely the PDE part of the bidomain equations.

We use the common definition of an order–optimal preconditioner, which is that
the preconditioner Bk is an order–optimal preconditioner for Ak with respect to the
parameter k, given that the condition number κ(BkAk) ≤ c0, where c0 is a constant
independent of the parameter k. Additionally we also require that the evaluation and
storage of Bk is similar to that of Ak. In this paper the preconditioner will be order–
optimal with respect to both the spatial and temporal discretization parameters h

1Strictly speaking PDAE is not a describing term for (1.4)–(1.5), since there is no algebraic
equation involved in the equation system. The system is rather a time dependent PDE coupled with
a stationary PDE. Still, (1.4)–(1.5) is often refereed to as an index 1 PDAE, since the semi–discretized
version of it, (1.6)–(1.7), is an index 1 DAE (differential algebraic equation).
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and δt . It will however depend on the Runge–Kutta scheme and its number of stages
s.

The proof of order–optimality is done by showing that the continuous counterpart
of the time stepping operator is an isomorphism in properly chosen Sobolev spaces.
Then an ”exact” preconditioner is defined as the Riesz identity mapping between
the dual space and the chosen space2. Finally, we create an operator spectrally
equivalent, in the meaning of independent of h and δt , to the Riesz identity mapping
for creating an implementationally efficient algorithm. Other works that use this
approach are [4, 11, 14, 15]. We also need the main result of [13], namely that
an implicit Euler approximation of the bidomain equations can be preconditioned
by order–optimal preconditioners based on the diagonal blocks of the time stepping
operator. By Lemma 3.3 we get a new, more compact, and instructive proof of this
result. We remark that this block preconditioner facilitate that the preconditioner
for the higher–order schemes may reuse the preconditioner implemented for one–leg
discretizations.

Implicit Runge–Kutta temporal discretizations will typically neither result in pos-
itive nor symmetric time stepping operators, even if the spatial operators are both
positive and symmetric. Therefore, we introduce a family of matrices which we re-
fer to as weakly positive definite matrices. These matrices are designed to make the
operators ”weakly positive” such that the general existence theorem of Babuska can
be applied. This approach was also taken when proving the order–optimality of the
preconditioners presented in [14]. The papers [18, 19] discuss various ways to improve
the preconditioners presented here. These preconditioners are often better in practice,
but more technical to analyze.

A matrix is referred to as weakly positive definite if there exists a positive definite
matrix such that the product of these two matrices also is positive definite [16]. We
prove that a square matrix is weakly positive definite if and only if its real eigenval-
ues are positive. Implicit Runge–Kutta schemes which are A–stable, irreducible and
have an invertible coefficient matrix have weakly positive coefficient matrices, as we
will demonstrate. Weakly positive matrices can be seen as a generalization of the
diagonally stable matrices discussed in e.g. [12].

The rest of this paper is organized as follows: In Section 2 we present the dis-
cretization of the bidomain model. Then in Section 3, we prove that the continuous
version of the time stepping operator for the Runge–Kutta methods is an isomorphism
bounded independently of δt . Then we present the order–optimal block precondi-
tioners in Section 4. In Section 5 the weakly positive definite matrices are analyzed.
Finally, we present some numerical results in Section 6.

2. Preliminaries and notation. In this paper the Kronecker product, ⊗, will
be frequently used. For square matrices A ∈ R

s×s and B ∈ R
n×n the Kronecker

product of A ⊗ B ∈ R
sn×sn is the block matrix

A ⊗ B =







a11B . . . a1sB
...

. . .
...

as1B . . . assB






.

In the following B can also be a continuous operator.
The continuous weak form of (1.4)–(1.5) in the case of homogeneous Dirichlet

boundary conditions can be expressed as:

2The Riesz identity mapping implied by the Riesz representation theorem.
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Find v, u ∈ L2(0, T ;H1
0 ) with ∂v

∂t ∈ L2(0, T ;H−1) such that

(

∂v

∂t
, l

)

+ (σin∇v,∇l) + (σin∇u,∇l) = (f, l), ∀l ∈ H1
0 , a.e. t ∈ [0, T ],

(σin∇v,∇m) + (σtot∇u,∇m) = 0, ∀m ∈ H1
0 , a.e. t ∈ [0, T ],

where (·, ·) denotes the L2 inner product, but also the duality pairing between H1
0

and H−1. Furthermore, H−1 is the dual space of H1
0 , and we assume that f ∈

L2(0, T ;H−1).
Similarly, the finite element formulation is defined by seeking an approximation

(vh(t), uh(t)) ∈ Vh × Uh ⊂ H1
0 × H1

0 by:
Find (vh, uh) ∈ L2(0, T ;Vh) × L2(0, T ;Uh) with ∂vh

∂t ∈ L2(0, T ;Vh) such that

(

∂vh

∂t
, l

)

+ (σin∇vh,∇l) + (σin∇uh,∇l) = (f, l), ∀l ∈ Vh,

(σin∇vh,∇m) + (σtot∇uh,∇m) = 0, ∀m ∈ Uh.

This is the variational form of (1.6)–(1.7).
The Runge–Kutta approximation of the bidomain equations (1.6)–(1.7) can be

written as

Ihvi = Ihvn−1
h + δt

s
∑

j=1

aij(−Minvj − Minuj + fh(tn−1 + cjδt )), i = 1, . . . , s, (2.1)

0 = −Minvi − Mtotui, i = 1. . . . , s, (2.2)

where vi and ui are the stage values for vh and uh, respectively, δt is the temporal
discretization parameter, s is the number of quadrature nodes, aij are the Runge–
Kutta coefficients, bi are the quadrature weights and ci are the quadrature points.
The value of uh and vh at the next time step is then found by

vn+1
h = vs,

un+1
h = us,

assuming that the chosen Runge–Kutta scheme is stiffly accurate (asi = bi, i =
1, . . . , s).

We remark that the “simplified” equation (2.2) requires that the Runge–Kutta
matrix A is invertible. If A is singular, or we for some reason do not want to use the
simplified formulation (2.2), the full formulation is

0 = δt
s

∑

j=1

aij(−Minvj − Mtotuj), i = 1, . . . , s. (2.2b)

The focus of this paper is to solve the coupled system (2.1)–(2.2)/(2.2b).

2.1. Notation in the discrete case. We define two projection operators

P1 =

(

I 0
0 0

)

, P2 =

(

0 0
0 I

)

, (2.3)

where I is the identity operator. However, in this subsection only, we let I denote the
identity matrix in R

n×n, for notational convenience.
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Equations (2.1) and (2.2)/(2.2b) can be written on the form

Ahwh = bh, (2.4)

where Ah is defined as

Ah = Is ⊗ P1,h + δtA ⊗ Mh (2.5)

for (2.2b), and

Ah = Is ⊗ P1,h + δt (A ⊗ P1Mh + Is ⊗ P2Mh) , (2.6)

for (2.2), where Is is the identity matrix in R
s×s and

P1,h =

(

Ih 0
0 0

)

∈ R
2n×2n, Mh =

(

Min Min

Min Mtot

)

∈ R
2n×2n,

P1Mh =

(

Min Min

0 0

)

∈ R
2n×2n, P2Mh =

(

0 0
Min Mtot

)

∈ R
2n×2n,

bh = 1⊗
(

vn−1
h

0

)

+ δt (A ⊗ I2n) · fh ∈ R
2sn×1, 1 =







1
...
1






∈ R

s×1,

fh =















fh(tn−1 + δt c1)
0
...

fh(tn−1 + δt cs)
0















∈ R
2sn×1, wh =















v1

u1

...
vs

us















∈ R
2sn×1.

Note that (2.2) has been multiplied with δt to get (2.5). There is also a third option,
where (2.2) is multiplied with δt aii, leading to

Ah = Is ⊗ P1,h + δt (A ⊗ P1Mh + diag A ⊗ P2Mh) (2.7)

where diag A is a matrix containing the diagonal elements from A. This is the operator
used in the numerical experiments, since it gives slightly better results than the other
formulations. In the following, we will refer to Ah either on the form (2.5), (2.6), or
(2.7) as the discrete time stepping operator.

2.2. Notation in the continuous case. The spatial continuous counterparts
of variables defined in the previous subsection is analogous to the discrete operator
above, but without the subscript h. The continuous time stepping operator related
to (2.5) is defined as

A = Is ⊗ P1 + δtA ⊗ M, (2.8)

where

M = −
(

∇ · (σin∇) ∇ · (σin∇)
∇ · (σin∇) ∇ · (σtot∇)

)

.

Similarly, the continuous operator for (2.6) and (2.7) is defined as

A = Is ⊗ P1 + δt (A ⊗ P1M + Is ⊗ P2M) , (2.9)

A = Is ⊗ P1 + δt (A ⊗ P1M + diag A ⊗ P2M) . (2.10)
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A generic way of writing these different formulations is

A = Is ⊗ P1 + δt
(

A ⊗ P1M + Ã ⊗ P2M

)

. (2.11)

If Ã = A, we have (2.8), if Ã = I we have (2.9) and if Ã = diag A we have (2.10).
We remark that in exact arithmetic the solutions of (2.4) are identical for the three
variants.

In this paper v is used for the transmembrane potential, u is used for the extracel-
lular potential and w is used for vectors containing both v and u. Boldface notation
is used for vectors including all stage variables and non-boldface for vectors including
only one stage variable in the following way:

w =

(

v
u

)

, w =















v1

u1

...
vs

us















.

In the proof of order–optimality we sometimes need two vectors of the same kind as
w, and we then write

w1 =















v1
1

u1
1
...

v1
s

u1
s















, w2 =















v2
1

u2
1
...

v2
s

u2
s















,

where v1
i , u1

i , v2
i , u2

i are the stage values for stage i. We will also use

vk =







vk
1
...

vk
s






, uk =







uk
1
...

uk
s






, wk

i =

(

vk
i

uk
i

)

k = 1, 2.

The block conductivity tensor is

Σ =

(

σin σin

σin σtot

)

∈ R
2d×2d, (2.12)

where σin and σex are the positive definite conductivity tensors and σtot = σin + σex.
Then, with the above defined notation, the operator M can be written as

Mw = −∇ · (Σ∇w), (2.13)

where the ∇ operator is applied to a vector it should be understood as it is applied
to each component, e.g.,

∇w =

(

∂v

∂x1
, . . . ,

∂v

∂xd
,

∂u

∂x1
, . . . ,

∂u

∂xd

)T

∈ (L2(Ω))2d,

and similar for larger vectors, e.g., ∇w ∈ (L2(Ω))2sd. We define the divergence
operator ∇· weakly through the relation to the gradient operator

−(∇ · (∇w1),w2) = (∇w1,∇w2), ∀w1,w2.
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Further, we will need the intersection and the sum of two Hilbert spaces, cf. [6,
Chapter 2]. If X and Y are Hilbert spaces, both continuously contained in some larger
Hilbert space, then the sum X + Y and the intersection X ∩ Y are Hilbert spaces,
and the norms are defined as

‖z‖X∩Y = (‖z‖2
X + ‖z‖2

Y )1/2,

‖z‖X+Y = inf
z = x + y

x ∈ X, y ∈ Y

(‖x‖2
X + ‖y‖2

Y )1/2.

The natural Sobolev space for the bidomain operator is

H = (L2 ∩
√

δtH1
0 ) ×

√
δtH1

0 ,

where the norms are

‖u‖2
L2∩

√
δt H1

0

=

∫

Ω

u2 + δt |∇u|2 dx and ‖u‖2√
δt H1

0

=

∫

Ω

δt |∇u|2 dx.

and

‖w‖2
H = ‖v‖2

L2 + ‖w‖2
(
√

δt H1

0
)2

= ‖v‖2
L2 + ‖v‖2√

δt H1

0

+ ‖u‖2√
δt H1

0

.

The corresponding dual space is

H∗ = (L2 +
1√
δt

H−1) × 1√
δt

H−1.

The Sobolev space for w is

H = Hs

and the corresponding norm is defined by

‖w‖2
H

= ‖v‖2
(L2)s + ‖w‖2

(
√

δt H1

0
)2s

.

and the dual space H
∗ of H is

H
∗ = (H∗)s.

Throughout the paper ‖ · ‖ denotes the L2 norm and (·, ·) denotes both the L2 inner
product and the duality paring between a Hilbert space and its dual with respect to
the L2 inner product.

3. Theoretical study of the continuous time stepping operator. We will
in the following show that A ∈ L(H,H∗) is an isomorphism, where H

∗ is the dual
space of H.

Theorem 3.1. A ∈ L(H,H∗) is an isomorphism from H to its dual space H
∗.

Proof. Using the Theorem from Babuska and Aziz (cf. [5]), the theorem can be
proved by showing the following three properties:
There exists a c1 independent of δt such that (boundedness)

|(Aw1,w2)| ≤ c1‖w1‖H‖w2‖H , ∀w1,w2 ∈ H. (3.1)
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There exists a c2 independent of δt such that (inf–sup)

sup
w

2∈H

(Aw1,w2)

‖w2‖H

≥ 1

c2
‖w1‖H , ∀w1 ∈ H. (3.2)

For any w2 ∈ H there exists a w1 ∈ H such that

(Aw1,w2) 6= 0. (3.3)

Before we start to prove Theorem 3.1, we will prove two preliminary results. The
first result is that the operator M is elliptic, and the next is that the Runge–Kutta
coefficient matrices have a property which we refer to as weakly positive definite.

Lemma 3.2. The operator M is strictly elliptic.
Proof. The main step of this proof is the observation that Σ ∈ R

2d×2d is a
pointwise symmetric positive definite (SPD) matrix, whenever the block matrices σin

and σex are so. To see this, let x, y ∈ R
d

(

xT , yT
)

(

σin σin

σin σtot

)(

x
y

)

= xT σinx + xT σiny + yT σinx + yT σiny + yT σexy

= ‖σin

1/2(x + y)‖2 + ‖σex

1/2y‖2 (3.4)

> 0,

(

x
y

)

6= 0, (3.5)

where σtot = σin +σex. To see that (3.4) leads to (3.5) we observe that the last term in
(3.4) is positive if y 6= 0 and the first term is positive if y = 0. Since Σ is symmetric
we can therefore conclude that it is SPD.

We further have that any positive definite and bounded matrix is pointwise spec-
trally equivalent with the identity matrix, i.e. Σ ∼ I (this follows from the fact that
all finite dimensional norms are equivalent). Thus we can conclude that the operator
M is strictly elliptic and there exist two constants γ1 and γ2 such that

γ1(∇w,∇w) ≤ (Σ∇w,∇w) ≤ γ2(∇w,∇w), ∀w ∈ H. (3.6)

Note that γ1 is bounded from below by the smallest eigenvalue of Σ pointwise in Ω.
Similarly γ2 is bounded from above by the largest eigenvalue of Σ pointwise in Ω.

Remark 3.1. Notice that typical variations in the conductivity tensors are mild.
The ratio γ2/γ1 is typically around 10 for a human heart.

As a small digression, we shall now see how Lemma 3.2 can help us to analyze
the implicit Euler discretization of (1.6)–(1.7). The time stepping operator for the
implicit Euler scheme can be written (when Ã = A): AE = P1 + δt M.

Lemma 3.3. The operator AE = P1 +δt M is an isomorphism mapping H to H∗

Proof.

cE
0 ‖w‖H ≤ (AEw,w) ≤ cE

1 ‖w‖H , ∀w ∈ H,

where cE
0 = min(1, δt γ1) and cE

1 = max(1, δt γ2).
Remark 3.2. Lemma 3.3 gives a simple alternative proof of the main result in

[13], namely that block diagonal preconditioners for the one–leg temporal discretiza-
tions of the bidomain equations (1.4)–(1.5) are order optimal given that the precondi-
tioner is an isomorphism mapping H∗ to H. Further discussions on the construction
of such preconditioners are postponed to Section 4.
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To prove the inf–sup condition in Theorem 3.1 we will use a family of matrices
which we refer to as weakly positive definite c.f. [16]. These matrices are defined as
follows.

Definition 3.4. A matrix A ∈ R
s×s is weakly positive definite if there exists a

positive definite C ∈ R
s×s such that the product CA is positive definite, i.e.

xT Cx > 0, ∀x ∈ R
s, x 6= 0 (3.7)

xT CAx > 0, ∀x ∈ R
s, x 6= 0. (3.8)

Note that the neither A, C nor CA needs to be symmetric in Definition 3.4.

Lemma 3.5. A real square matrix is weakly positive definite if and only if the real
eigenvalues are positive.

Note that the eigenvalues of a weakly positive definite matrix can lie anywhere in
the complex plane, except for at zero and along the negative real axis. The proof of
Lemma 3.5 is postponed to Section 5.

The important observation now is that an A–stable irreducible Runge–Kutta
scheme with an invertible A–matrix3 will have a weakly positive definite A–matrix.
In fact a stronger result is known, namely that the real part of the eigenvalues are
positive. To see this we study the stability function of a general Runge–Kutta scheme
applied to the Dahlquist test–equation y′ = λy,

R(z) =
det(I − zA + z1bT )

det(I − zA)
, z = δt λ.

Assume now that there exists an eigenvalue µ of A with Re(µ) < 0. Consequently the
stability function would have a pole in z = 1/µ, which lies in the left half plane. But
then A–stability is impossible since it requires that |R(z)| ≤ 1 ∀z ∈ C

−. Since we have
assumed that the Runge–Kutta scheme is irreducible, this leads to a contradiction.
Additionally, since we have claimed that the A–matrix is invertible, a zero–eigenvalue
is not possible. Therefore we conclude that the eigenvalues of the A–matrix have
positive real part, under the given assumptions.

We have now established that M is elliptic and that the A–matrix is weakly
positive definite, and are now ready to prove Theorem 3.1. It remains to prove (3.1)–
(3.3), which is proved in three lemmas. Lemma 3.6 proves (3.1), Lemma 3.8 proves
(3.2) and Lemma 3.9 proves (3.3).

Lemma 3.6. There exists a c1 > 0 such that

(

Aw1,w2
)

≤ c1‖w1‖H‖w2‖H . (3.9)

That is,

‖A‖L(H,H∗) ≤ c1. (3.10)

3A-stable schemes produce stable numerical solutions of linear problems of the form y′ = λy, λ <

0, independent of δt (the exact solution is also asymptotically stable). This is an advantage for stiff
problems, characterized by |λ| ≫ 1, which would otherwise get very strict requirements on δt . All
Runge–Kutta schemes discussed in this paper and all the standard implicit Runge–Kutta schemes
are A–stable, irreducible and has invertible A–matrix (see [9]).
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Proof. We have

(

Aw1,w2
)

=
(

(Is ⊗ P1 + δt (A ⊗ P1M + Ã ⊗ P2M))w1,w2
)

=
(

(Is ⊗ P1)w
1,w2

)

+ δt
(

(A ⊗ P1M + Ã ⊗ P2M)w1,w2
)

=
(

v1,v2
)

+ δt
(

((A ⊗ σin)∇v1,∇v2) + ((A ⊗ σin)∇u1,∇v2)

+ ((Ã ⊗ σin)∇v1,∇u2) + ((Ã ⊗ σtot)∇u1,∇u2)
)

≤ γ2amax



‖v1‖‖v2‖ + δt
∑

ij

‖∇w1
i ‖‖∇w2

j‖



 (3.11)

≤ c1

(

‖v1‖‖v2‖ + δt ‖∇w1‖‖∇w2‖
)

(3.12)

≤ c1

(

‖v1‖2 + δt ‖∇w1‖2
)

1

2
(

‖v2‖2 + δt ‖∇w2‖2
)

1

2

= c1‖w1‖H‖w2‖H ,

where σtot = σin + σex, (3.11) comes from

(

Mw1
i , w2

j

)

≤ γ2‖∇w1
i ‖‖∇w2

j‖, (3.13)

the Cauchy–Schwarz inequality, and the definition

amax = max

(

max
ij

|aij |,max
ij

|ãij |, 1
)

.

Furthermore, (3.12) comes from the fact that

∑

ij

‖∇w1
i ‖‖∇w2

j‖ =
∑

i

‖∇w1
i ‖

∑

j

‖∇w2
j‖

≤ s‖∇w1‖‖∇w2‖. (3.14)

Finally, (3.14) follows from the equivalence of the two finite dimensional spaces ℓ1 and
ℓ2.

In order to prove (3.2), we need the following intermediate result. Notice that
the following lemma can be seen as a weaker form of the Lax–Milgram theorem.
The Runge–Kutta coefficient matrix A is typically nonsymmetric and indefinite and
therefore A ⊗ M is typically not elliptic. In our analysis, we employ an extra matrix
C to make the operator CA ⊗ M elliptic,

Lemma 3.7. There exists a constant α, such that

((CA ⊗ M)w,w) ≥ αγ1‖∇w‖, ∀w ∈ H, (3.15)

where γ1 comes from Lemma 3.2, and C comes from Definition 3.4.
Proof. From Definition 3.4 and Lemma 3.5 and since ‖x‖ = 1 gives us a compact

set, we know that there exists a positive α such that

α = min

(

min
‖x‖=1

xT Cx, min
‖x‖=1

xT CAx

)

> 0. (3.16)

We will also need the symmetric part of CA, which will be denoted S(CA) = 1
2 ((CA)T + CA).

10



By simple linear algebra calculation we know that

((CA ⊗ M)w,w) =
s

∑

ij

(CA)ij(∇ · (Σ∇wj), wi)

=

s
∑

ij

(CA)ij(Σ∇wj ,∇wi)

=

s
∑

ij

(S(CA))ij(Σ∇wj ,∇wi) (3.17)

= ((S(CA) ⊗ Σ)∇w,∇w) (3.18)

≥ αγ1‖∇w‖2. (3.19)

We know that (Σ∇·,∇·) is symmetric, and therefore we can substitute CA with the
symmetric part S(CA), which justifies (3.17). In (3.18), S(CA) is SPD since CA
is positive definite. This is also true for Σ, and consequently true for S(CA) ⊗ Σ.
The last line (3.19) is given by (3.16), the lower bound of (3.6) and the fact that
the eigenvalues of the tensor product of two SPD matrices equals the product of the
eigenvalues of the same matrices (see e.g. [8]).

Lemma 3.8. There exists a constant c2 > 0 such that

sup
w

2∈H

(Aw1,w2)

‖w1‖H‖w2‖H

>
1

c2
, ∀w1 ∈ H. (3.20)

Proof. Given w1 ∈ H, let w2 = (CT ⊗ P1 + DT ⊗ P2)w
1, where D = CAÃ−1.

The matrix D is constructed such that CA⊗M = CA⊗P1M + DÃ⊗P2M, where Ã
is the matrix from the generic form (2.11). We can further calculate:

sup
w

2∈H

(Aw1,w2)

‖w1‖H‖w2‖H

≥ (Aw1, (CT ⊗ P1 + DT ⊗ P2)w
1)

‖w1‖H‖(CT ⊗ P1 + DT ⊗ P2)w1‖H

=
((C ⊗ P1 + D ⊗ P2)Aw1,w1)

‖w1‖H‖(CT ⊗ P1 + DT ⊗ P2)w1‖H

≥ 1

β

1

‖w1‖2
H

(

((C ⊗ P1 + D ⊗ P2)(I
s ⊗ P1)w

1,w1)

+ δt ((C ⊗ P1 + D ⊗ P2)(A ⊗ P1M + Ã ⊗ P2M)w1,w1)
)

=
1

β

((C ⊗ P1)w
1,w1) + δt ((CA ⊗ M)w1,w1)

‖w1‖2
H

(3.21)

≥ γ1α

β

‖v1‖2 + δt ‖∇w1‖2

‖w1‖2
H

(3.22)

=
γ1α

β
> 0,

where β = max(‖C‖, ‖D‖). The step (3.21) is just insertion of D = CAÃ−1, while
(3.22) is justified by Lemma 3.7.

We remark that the proof of Lemma 3.8 is similar to the proof of the inf–sup
condition in [14]. The main differences are the following. The laplace operator ∆
in [14] is switched to the elliptic operator M in this paper. The equation in [14] is
not a PDAE and therefore the projection operators P1 and P2 are unnecessary, which
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simplifies the proof. Furthermore, the corresponding construction of w1 is simpler in
the parabolic case because we do not have to handle the Ã–matrix. Finally, Lemma
3.7 is trivially true in [14].

Lemma 3.9. For any w1 ∈ H there exists a w2 ∈ H such that

(Aw1,w2) 6= 0. (3.3)

Proof. First we notice that A and AT share the same set of eigenvalues, and
therefore AT is also weakly positive definite. By Lemma 3.5, we know that there exist
a C2 such that C2 and C2A

T are positive definite. Further, let w2 be given, and let
w1 = (CT

2 ⊗ P1 + DT
2 ⊗ P2)w

2, where DT
2 = Ã−1ACT

2 . Then we have

(Aw1,w2) = (A(CT
2 ⊗ P1 + DT

2 P2)w
2,w2)

=
(

(Is ⊗ P1 + δt (A ⊗ P1M + Ã ⊗ P2M)(CT
2 ⊗ P1 + DT

2 ⊗ P2)w
2,w2

)

= (v2, C2v
2) + ((ACT

2 ⊗ P1M + ÃDT
2 ⊗ P2M)w2,w2)

≥ (v2, C2v
2) + (∇w2, (C2A

T ⊗ I2d)∇w2) > 0.

4. The preconditioner. In the following we construct the preconditioner for
the continuous operator A based on the proper Sobolev spaces. The discrete precon-
ditioner can be viewed as an operator acting on the discrete subspaces. This approach
was also taken in [4, 11, 14, 15].

4.1. Block preconditioner for the Runge–Kutta discretization. In previ-
ous works on block preconditioners for Runge–Kutta discretizations of the parabolic
PDEs [14, 19], a block Jacobi and a block Gauss–Seidel preconditioner are presented.
Here, we have extended this work to the Runge–Kutta discretization of the bido-
main equations. We prove that the block Jacobi preconditioner is order–optimal and
demonstrate this with numerical experiments. Additional numerical experiments for
both the block Jacobi and the block Gauss–Seidel preconditioner for Runge–Kutta
discretizations of the bidomain equations can be found in [18].

Above, we showed that the continuous operator A was an isomorphism mapping
H to H

∗. Therefore, let B ∈ L(H∗,H) be an isomorphism i.e.,

‖B‖L(H∗,H) ≤ d1, and ‖B−1‖L(H,H∗) ≤ d2, (4.1)

where d1 and d2 are independent of δt . Then, by applying the preconditioner to the
continuous operator, we have that

BA : H → H

and

‖BA‖L(H,H) ≤ c1d1, and ‖(BA)−1‖L(H,H) ≤ c2d2.

Consequently the condition number of the continuous preconditioned system is bounded
by

κ(BA) = ‖BA‖L(H,H)‖(BA)−1‖L(H,H) ≤ c1d1c2d2. (4.2)

12



We now suggest a preconditioner for (2.11), which is a block Jacobi preconditioner,
given by

B−1 = Is ⊗ P1 + δt
(

diag A ⊗ P1M + diag Ã ⊗ P2M

)

. (4.3)

The block Jacobi preconditioner (4.3) is basically a Riesz identity mapping from the
dual space H

∗ to H. However, B is the exact preconditioner which will not be used
in practice. Instead we use an approximation of these operators which is fast to
evaluate. We use an algebraic multigrid preconditioner. Another choice could have
been a domain decomposition approximation of the exact operator. Or if higher–
order elements are used in space, the preconditioner could be approximated using
lower–order elements, yielding an efficient preconditioner.

We will now relate these results to the discrete case. Let Ωh be the discretized
and meshed counterpart of Ω. We choose the discrete spaces as above, Vh ×Uh ⊂ H.
Since the discrete space Vh × Uh is a subset of H, we get that

κ(BhAh) ≤ κ(BA).

Finally we need to incorporate the effects from the approximation B̃h of the exact
preconditioner Bh. By using a simple Cauchy–Schwarz like argument, we can estimate
the preconditioning effect of the approximated preconditioner by

κ(B̃hAh) ≤ κ(B̃hB−1
h )κ(BhAh). (4.4)

We need to estimate the deterioration of the preconditioner due to the approxi-
mation of the exact preconditioner, κ(B̃hB−1

h ). This can be done easily for the block

Jacobi preconditioner (4.3). Let B̃h,i be a cheap approximation of the block Jacobi
preconditioner Bh,i for the bidomain equations cf. [13],

B−1
h,i = P1,h + δt aiiMh.

Bh =













Bh,1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 Bh,s













.

Assume that B̃h,i is constructed such that it is symmetric and spectrally equivalent
to Bh,i, i.e.

c3(B̃h,iwh,i, wh,i) ≤ (Bh,iwh,i, wh,i) ≤ c4(B̃h,iwh,i, wh,i), wh,i ∈ Vh ×Uh ⊂ H, (4.5)

where c3 and c4 is chosen such that (4.5) valid for i = 1, . . . , s.
We remark that the diagonal blocks Bh,i of the Jacobi preconditioner is similar

to a block diagonal preconditioner for the Euler or Crank–Nicolson schemes (see [13]
and Lemma 3.3). This is an implementational advantage, since the preconditioner can
be developed for the lower–order temporal discretizations, and later be reused in the
same form on the diagonal blocks for the higher–order Runge–Kutta preconditioner.

By combining (4.2), (4.5) and (4.4), we find that

κ(B̃hAh) ≤ c1d1c2d2c4

c3
,

which states that the preconditioner is bounded independent of the spatial discretiza-
tion parameter h, and the time step δt .
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5. Weakly positive definite matrices. The purpose of this section is to prove
Lemma 3.5. This will be done by first proving two lemmas, Lemma 5.1 and Lemma
5.2, and then proving Lemma 3.5.

Lemma 5.1. Any A ∈ R
2×2 with nonreal eigenvalues is weakly positive definite.

Proof. In this proof we construct a positive definite C, such that CA is positive
definite. To do so, we study the angle between x and Ax, written

α(x) ≡ ∠(x,Ax) : R
2 → (−π, π].

Notice that if there exists an x such that α(x) = 0, then A will have a positive
real eigenvalue, which is against the assumption. Similarly, if there exists an x with
α(x) = π, then there will be a negative eigenvalue of A. Thus α(x) /∈ {0, π} for x 6= 0.

Notice further that α(x) is a continuous function of x 6= 0. This gives that for a
given A we will either have

α(x) ∈ (0, π) or α(x) ∈ (−π, 0) ∀x 6= 0.

Assume that

α(x) ∈ (0, π), ∀x 6= 0,

and let

θ = sup
x6=0

α(x).

In the following we show that θ < π. We have that α(x) = ∠(x,Ax) = ∠( x
‖x‖ , Ax

‖x‖ ),

because changing the length of vectors does not change the angle between them.
Therefore

sup
x6=0

α(x) = sup
‖x‖=1

α(x).

Since the set defined by ‖x‖ = 1 is a compact set, and α(x) is a continuous function
of x, we can conclude that the supremum value is attained and that it is less than π,
i.e.

θ = max
x6=0

α(x) ∈ (0, π).

Then set C = R−θ/2 where R−θ/2 is the rotation matrix with an angle − θ
2 i.e.,

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

. (5.1)

We have that

∠(x,Ax) ∈ (0, θ), ∀x 6= 0,

⇓

∠(x,CAx) ∈ (−θ

2
,
θ

2
) ⊂ (−π

2
,
π

2
), ∀x 6= 0.

And further since ∠(x,Cx) = − θ
2 ∈ (−π

2 , 0), ∀x 6= 0, we get

xT Cx > 0, ∀x 6= 0

xT CAx > 0, ∀x 6= 0,
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which means that both C and CA are positive definite.
Finally, if

α(x) ∈ (−π, 0), ∀x 6= 0,

we define θ = inf α(x) and the result can be proved similarly.
The next lemma proves that a special block matrix can be made positive definite.

This result will be used as an induction step for extending the above 2 × 2–result to
Lemma 3.5.

Lemma 5.2. Let A ∈ R
n×n and B ∈ R

m×m be positive definite. For any C ∈
R

n×m there exists an ǫ > 0 such that the block matrix

E =

(

ǫA ǫC
0 B

)

is positive definite.
Proof. Since S(A) is symmetric positive definite, S(A)γ is defined for γ ∈ R, cf.

[23]. Further let

α = min
‖x‖=1

xT Ax,

β = min
‖y‖=1

yT By.

Both α and β exist and are positive because the objective functions are continuous
and positive, plus that the admissible sets are compact.

Let zT = (xT , yT ). We have

zT Ez = ǫxT S(A)x + ǫxT Cy + yT By

= ‖(ǫS(A))
1

2 x +
ǫ

2
(ǫS(A))−

1

2 Cy‖2 − ǫ

4
yT CT (S(A))−1Cy + yT By

≥ − ǫ

4
yT CT A−1Cy + yT By

≥
(

β − ǫ

4

‖C‖2

α

)

‖y‖2 (5.2)

> 0,

when ǫ < 4αβ
‖C‖2 and y 6= 0. Here (5.2) follows by the definitions of α and β.

We are now ready to prove Lemma 3.5. In Lemma 5.2 m and n are arbitrary
positive integers, but in the following proof only n ≤ 2 is needed.

Proof. [Proof of Lemma 3.5] First, we prove that a weakly positive definite matrix
can not have negative eigenvalues. To see this, assume that C is positive definite and
that A has a negative eigenvalue, Ax = −λx, λ ∈ R

+ where x is an eigenvector. Then

xT CAx = −λxT Cx < 0,

and therefore CA is not positive definite.
Next, we show that if A has no real negative eigenvalues, then A is weakly positive

definite. This is done by constructing a positive definite matrix C, such that CA is
positive definite. The construction utilizes the Schur decomposition.

Let A = QTQT be the real Schur decomposition of A, where Q is orthogonal and
T is a block4 upper triangular matrix with 1 × 1 or 2 × 2 blocks on the diagonal, see

4The standard Schur decomposition has an upper (not block) triangular matrix T , but is in
general complex.
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[23]. The real eigenvalues of A, which are positive, can be found on the 1 × 1 blocks
on the diagonal of T , and the nonreal eigenvalues can be found as the eigenvalues of
the 2 × 2 blocks on the diagonal of T . T may be written

T =













T1 t1

0 T2 t2
...

. . .
. . .

...
0 . . . 0 Tk













where ti denote the nonzero offdiagonal (possibly nonsquare) blocks, i.e. ti is the
matrix consisting of all the entries to the right of Ti.

The diagonal blocks of T are called Ti. An important observation now is that
each Ti is weakly positive definite. This is trivially true if Ti is a positive real number,
and shown by Lemma 5.1 if Ti has truly complex eigenvalues.

We now construct

C = QDQT ,

where D is block diagonal, and where the diagonal blocks are denoted Di. Then each
Di should have the same dimension as Ti. We get that

CA = QDTQT .

In the following we show that the Dis can be constructed in such a way that both
D and DT are positive definite. This is further equivalent to both C and CA being
positive definite, since positive definite matrices are invariant under orthogonal change
of basis. Note that D is positive definite if and only if all the Dis are.

By multiplying D and T , we see that

DT =













D1 0 . . . 0

0 D2
. . .

...
...

. . .
. . . 0

0 . . . 0 Dk

























T1 t1

0 T2 t2
...

. . .
. . .

...
0 . . . 0 Tk













=













D1T1 D1t1

0 D2T2 D2t2
...

. . .
. . .

...
0 . . . 0 DkTk













. (5.3)

Therefore, to finish this proof we start in the lower right corner of DT and show by
induction that positive definite Di blocks can be constructed to make the block matrix
(5.3) positive definite. Since Tk is weakly positive definite, there exists a positive
definite Dk such that the lower right block DkTk is positive definite. Similarly, there
exists a positive definite D̃k−1 such that D̃k−1Tk−1 is positive definite. Choosing
Dk−1 = ǫD̃k−1, Lemma 5.2 gives us that the extended lower right block

(

ǫD̃k−1Tk−1 ǫD̃k−1tk−1

0 DkTk

)

(5.4)

is positive definite (for any tk−1) if ǫ is small enough.
By Lemma 5.2 and induction we see that the system (5.4) can be extended to the

full block system (5.3), and the proof is complete.
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6. Numerical Results. The purpose of this section is to show numerically the
performance of the preconditioners. All implementation is done in the framework of
PyCC [2], which is a Python library interfacing compiled packages for matrix–storage,
preconditioners, element discretization, etc. It supports higher–order Lagrange ele-
ments [7], generated using SyFi [3]. We will use the ML [1] algebraic multigrid package
to approximate the exact preconditioner, using one V–cycle with symmetric Gauss–
Seidel as point smoother.

6.1. The order–optimality for the Runge–Kutta block preconditioners.

We proved above that the block Jacobi preconditioner is order–optimal with respect
to the spatial discretization parameter h and the time step δt , assuming that the
single blocks of the preconditioner are order–optimal as in (4.5). Therefore, we test
the efficiency of the preconditioner on one time step of (1.6)–(1.7) using (2.7) on a
regular 2D grid with Lagrangian finite elements of various orders. We solve the linear
problem using left preconditioned BiCGStab with a relative tolerance of 10−5 for the
residual in L2 norm. The start vector is an oscillatory random vector. The result can
be seen in Figure 6.1. It seems clear that for each s the number of iterations to reach
convergence is small and bounded. Furthermore, we demonstrate the same behavior
with third and fifth order elements in space in Figure 6.2 and Figure 6.3, respectively.
In all cases, the number of iterations is small. The number of iterations increases
slightly as the number of degrees of freedom increases. However, notice that this
increase is also present for s = 1. Hence, we attribute this behavior to the algebraic
multigrid preconditioner which is only almost order–optimal. We have confirmed this
behavior with similar experiments on the Poisson equation and one time step of a
heat equation. It is also clear that the AMG preconditioner performance deteriorates
as the order of the element increases. In fact, fifth order elements typically require
about twice as many iterations as linear elements in our experiments. We remark that
the number of iterations decreases as δt decreases. This is to be expected for low–
order time discretizations of parabolic PDEs since the matrix becomes more diagonal
dominant, but it appears to be valid also in this more complicated setting.

Here, we have only solved the discrete system for one time step. The efficiency of
higher–order methods in space and time depends on the fact that larger time steps δt
and characteristic mesh size h can be used when the solution is smooth in space and
time. Furthermore, due to a higher–order polynomial approximation, the accuracy
of the approximated solution is of higher order. Therefore, higher–order methods,
given order–optimal preconditioners, are beneficial if the solution is smooth and the
accuracy requirements are high. In [18] it is demonstrated a speed–up by a factor
≈ 104 when comparing 4th order Lagrangian elements and RadauIIA with four stage
variables and linear Lagrangian elements with RadauIIA with one stage variable in a
concrete case with a smooth solution. We do not repeat such experiments here. More
numerical examples involving the efficiency of the AMG preconditioner for higher–
order elements, the increased efficient of various block Gauss–Seidel preconditioners
can also be found here. Finally, in [19] we discussed techniques to lessen the s–
dependency considerably for parabolic PDEs. In [18], we did not manage the same
performance boost for the bidomain equations, probably because the conductivity
tensors and AMG makes the problem more complicated. We do however believe that
it is possible to improve the dependency of s considerably by taking advantage of the
structure of the Runge–Kutta coefficient matrix.

The numerical experiments in this paper concern the RadauIIA method. Similar
results have been obtained with the LobattoIIIC method, but these are not presented
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Figure 6.1. The number of iterations required for BiCGStab to reach a relative tolerance of

10−5 for the 2D problem (1.6)–(1.7) using linear finite elements in space and the RadauIIA scheme

with one to four nodes in time.

in order to limit the number of figures.

7. Final remarks. In this paper we have presented a block diagonal precondi-
tioner for the fully implicit Runge–Kutta discretization of the bidomain equations.
We have also shown that if the Runge–Kutta scheme is irreducible, A–stable and has
an invertible A–matrix, then an order–optimal block diagonal preconditioner can be
constructed based on an order–optimal preconditioner for the implicit Euler discretiza-
tion. Such order–optimal preconditioner was presented in [13]. The order–optimality
is confirmed by numerical experiments using algebraic multigrid.
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Figure 6.2. The number of iterations required for BiCGStab to reach a relative tolerance of

10−5 for the 2D problem (1.6)–(1.7) using third order finite elements in space and the RadauIIA

scheme with one to four nodes in time.
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