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Constitutive Relations – Worm-like Chain Model for Collagen
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Coupled Computations – Examples

◮ Biphasic model
◮ worm-like chain model for collagen
◮ ideal, nearly incompressible interstitial fluid with

bulk compressibility of water
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Coupled Computations – Examples – Constants

Parameter Symbol Value Units

Chain density N 7 × 1021 m−3

Temperature θ 310.0 K
Persistence length A 1.3775 –
Fully-stretched length L 25.277 –
Unit cell axes a, b, c 9.3, 12.4, 6.2 –
Bulk compressibility factors γ, β 1000, 4.5 –
Fluid bulk modulus κ 1 GPa
Fluid mobility tensor Dij = Dδij 1 × 10−8 m−2sec

Fluid conversion reac. rate k f −1. × 10−7 sec−1

Gravitational acceleration g 9.81 m.sec−2

Fluid mol. wt. M
f 2.9885 × 10−23 kg



Coupled Computations – Examples – Swelling
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Coupled Computations – Examples – Swelling
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Coupled Computations – Examples – Swelling

Stress vs Extension Curves
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Coupled Computations – Examples – Pinching
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Summary and Further Work

◮ Physiologically consistent continuum formulation describing
growth in an open system

◮ Relevant driving forces arise from thermodynamics – coupling
with mechanics

◮ Consistent with mixture theory

◮ Lattice Boltzmann studies to determine effective transport
properties

◮ Coarse-grained molecular dynamics simulations to investigate
the elasticity of collagen fibrils

◮ Formulated a theoretical framework for the remodelling
problem

◮ Engineering and characterization of growing, functional
biological tissue
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Computational Formulation – Some Details

◮ Implementation in FEAP

◮ Coupled implementation; staggered scheme (Armero [1999],
Garikipati et al. [2001])

◮ Nonlinear projection methods to treat incompressibility (Simo
et al. [1985])

◮ Energy-momentum conserving algorithm for dynamics (Simo
& Tarnow [1992a,b])

◮ Backward Euler for time-dependent mass balance

◮ Mixed method for stress/strain gradient-driven fluxes
(Garikipati et al. [2001])

◮ Large advective terms require stabilization


