An important issue debated in the literature is whether diffusion in
signaling micro domains can be modelled deterministically and
continuously, or if stochastic and discrete Random walk (RW)
methods should be employed(1-6). Signalling micro domains are
used by the cell to convey information, and it is important to have
accurate and reliable simulation methods when these processes are
studied. Traditionally this has been done using Fick’'s second law of
diffusion. This law predict the time evolution of the average number of
molecules in a process deterministically, and reaction diffusion
processes in macroscopic environments, where fluctuations from the
predicted average number of particles in a solution are small, are
successfully modelled by these laws.

During the last years, as smaller and smaller sub-cellular domains
have been studied, the discreteness and stochasticity of the
physiological processes have been in focus. This has raised issues
with the deterministic models (4-8). In sub-cellular micro domains the
number of involved molecules is small and the fluctuations from the
predicted average number of molecules involved become dominant.
Three dimensional (3D) RW simulators have been developed to
incorporate the discreteness and stochasticity of the signaling in
intracellular micro domains. Unfortunately simulations with these can
be time consuming.

In this study we compare the use of a continuous model with the use
of a RW model with respect to the Ca*" ions that bind to single
receptors in the cleft. These are important discrete events that can be
modelled stochastically using both descriptions of diffusion. They are
also direct related to the physiological functions of the cleft, such as
the Ca*" induced Ca*" release, and the generation of a spark.

Figure 1: The figure present the disk geometry of the dyadic cleft we use in both
the continuous model and in the RW model.

@ Buffers included as reactants in the domain
@ Solved as a 1D problem

® 9QN1 : Ca?" inflow
2 0QN2 : Reflecting boundaries

» 9Qp : Cytosole, [Ca“} =0

In both descriptions, i.e., continuous and discrete, we model the
dyadic cleft as a flat disk, with h = 15 nm and R = 100 nm, See Fig. 1.
The diffusion constant of Ca®", was set to D, = 10° nm2ms~'. Single
LCC current amplitude was chosen to be j,.c = 0.3 pA, and was
released in the center of the disk along the dashed line. Binding rate
for the RyRs was setto 5 uM~'s~', which corresponds to binding
rates previously used in models for both RyR and LCC. The TT and
SR membranes were modeled as reflective, no-flux, boundaries,
JQn2 in Fig. 1. The cytosole was included in the model either as a
zero concentration boundary, when a LCC Ca®" source was used, or

as a constant level corresponding to diastolic [Ca”] of 0.1 uM
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Figure 2: The figure presents simulation results from the continuous model, black
lines and from the Random walk (RW) model, colored lines. The results represent
the concentrations from the whole cleft.

To confirm that the solution from the continuous model coincided with
the mean concentrations from the RW model, we did one run with the
continuous model and 40 runs of the RW model. The result is
presented in Fig. 2.

We tested how well the continuous model fit the equivalent binding
events registered from the RW model. We used four tentative RyRs,
positioned from the center of the cleft to the rim. Two different set of
simulations were done correspondning to different physiological

conditions, /) uniform [Ca”] due to passive diffusion from cytosole,
using very low diastolic [Cazﬂ = 0.1 M, and ii) transient [Ca‘z*},

from three different LCCs. The statistical results from the simulations
are presented in Fig. 3-4.
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Figure 3: The figures present statistical data of binding events registered from
Random walk simulations. The Ca®" source was passive diffusion from cytosole

during diastolic [Ca“}, i.e., 0.1 uM. No significant difference between the
continuous model and the RW model were detected.
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Figure 4: The figures present statistical data of binding events registered from
Random walk simulations and the Ca®" source is zero to three open LCCs, situated
in the center of the cleft, see inset of A. No significant difference between the
continuous model and the RW model were detected.

Our goodness-of-fit tests revealed that there are no significant
differences between the registration of stochastic binding events from
the two models. This is a result that holds on the level of single runs
and at the level of single IEI. To get a better understanding of how this
could be true we examined the binding rate, registered by a single
RyR positioned 10 nm from the center during a run with one
constantly open LCC. The result is presented in Fig. 5. A

480 : : : : 0.06 32 4x107°
£ 240 003a £ 16 20
< <
0 0
0 5 10 15 20 29 0 ‘ 0.01
19 Time [ms] Time [ms] ax1 0_4
2 8
O | | | |
0 5 10 15 20 29

Time [ms]

Figure 5: The A and B figures present the lumped binding rates for each time step,
registered from one RyR during a single Random walk simulation. In the C figure a
filtered version of the binding rate is presented together with the one predicted from
the continuous model, dashed line.

The mean averaged rate from 100 runs was [1.904 4+ 0.019] ms—7,
and this value was not significantly different from the rate the
continuous model, A\; = 1.91 ms~'. On a smaller time scale, we
expected that the averaged rate would fluctuate more. For example
the mean rate for the interval shown in Fig. 5 B, i.e., t = [0, 0.01], is
2.70 ms~'. We filtered the registered rate with a Gaussian filter,
which act as a weighted mean over a certain time window, with a
width corresponding to the mean intervall between the binding
events. The filtered rate is a continuous function of time and does not
vary by far as much as the unfiltered rate in Fig. 5 A.

.

To check the dependency of some of the parameters we have used,
we made five runs where we altered the diffusion constant, D,
together with the maximal input current from one open LCC, j,cc. We
scaled the parameters with a factor of [0.1,0.5,1,2,5] and made 100
runs, where one LCC was constantly open. The spatial resolution for
the registration of binding events was set to « = 5 nm for every run.
Fig. 6 A. shows a box-plot of the number of binding events registered
in the RW simulations versus the predicted number from the
continuous model. We recognize a significant difference for scale =
0.1.

To further investigate the dependency of parameters we also altered
the spatial resolution, o. We used [5,2, 1, 0.5] for the o and here we
also did 100 runs for each different value. The result is presented in a
similar box plot in Fig. 6 B. From the figure we see that the number of
registered binding events steadily falls. This illustrates that the
binding event registration is not only dependent on physical
parameters, but also on the spatial resolution of the RW method.

When a one single ion contributes enough to the binding rate a
difference between the two model emerges. When we simulate the
RW model without registereing any binding events, i.e., not removing
them from the solution, but registering the binding rate from the ions,
we see that the binding rate do not differ from the continuous model,

see Fig 6 C.
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Figure 6: The A and B figures present the number of registered binding events
from 100 runs each, where we altered different parameters. The data were
collected from the receptor 30 nm from the center and are represented by the box
plots together with a 95 % confidence interval for the true means, i.e., the red
horizontal lines. In C we did 100 runs where we collected the mean binding rates
the receptor at 30 nm from the cleft were exposed to. The blue horizontal lines
represents the binding rates collected from runs where we did register binding
events, i.e., as in B, and the red horizontal lines represent binding rates collected
from runs where we did not register binding events.

The binding rate registered from the Ca*" ions can be expressed by a
dimensionless on rate,

kt* = k*/ (4rDoNa) . (1)

We recognized a difference between the two models when this value
exceeded 0.02. This is probably a conservative measure, as we in
our simulations do not close a receptors for registration after an ion is
bound. This makes the effect of removing an ion from the vicinity of
an unbound receptor larger than it would have been if the receptor
was in a bound state.

For a certain range of parameters we show that one can use a
continuous model of diffusion to register discrete binding events in the
dyadic cleft.
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