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Modelling approach

Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– diffuses relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– undergo transport relative to fluid
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Brief subset of related literature:

◦ Cowin and Hegedus [1976]

◦ Kuhl and Steinmann [2002]

◦ Sengers, Oomens and Baaijens [2004]

◦ Garikipati et al. – Journal of the Mechanics and Physics of Solids (52) 1595-1625 [2004]
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The balance of momentum
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Constitutive relations for fluxes

• Combine first and second laws to get dissipation inequality

• Constitutive hypothesis eι = êι(F eι

, ρι, ηι)
⇒ consistent constitutive relations

• Fluid flux relative to collagen
M f = Df

(
ρfF T g + F T

∇ · P f − ∇(ef − θηf )
)

• Solute flux (proteins, sugars, nutrients, . . . ) relative to fluid

Ṽ
s

= V s − V f

M̃
s

= Ds (−∇(es − θηs))

• Df and Ds – Positive semi-definite mobility tensors
Magnitudes from literature, e.g. Mauck et al. [2003]
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Worm-like chain model for collagen
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• Embed in multi chain model [Bischoff et al.]
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Example of coupled computation
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• Simulating a tendon immersed in a bath

• Constrict it to force fluid and dissolved
nutrient flow ⇒ Guided tendon growth

• Biphasic model
• worm-like chain model for collagen
• ideal nearly incompressible fluid

ρf êf = 1
2κ(det(F ef

) − 1)2

• Fluid mobility Df
ij = 1 × 10−8δij ,

Han et al. [2000]

• First order rate law:
Πf = −kf(ρf − ρf

0ini
), Πc = −Πf
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Results and inferences

• Total flux in the vertical direction

• Stress driven diffusion



Results and inferences

• Regions of high fluid concentration
⇒ faster growth

• Relaxation after constriction concludes



Summary and further work

• Physiologically relevant continuum formulation describing
growth in an open system – consistent with mixture theory

• Relevant driving forces arise from thermodynamics
– coupling with mechanics

• Gained insights into the problem
• Issues of saturation and growth
• Saturation and Fickian diffusion
• Configurations and physical boundary conditions

• More careful treatment of biochemistry – nature of sources

• Formulated a theoretical framework for remodelling

• Engineering and characterization of growing, functional
biological tissue to drive and validate modelling
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