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Motivation and definition

Growth — An addition or loss of mass
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Open system with multiple species inter-converting and interacting
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Modelling approach

Classical balance laws enhanced via fluxes and sources




Modelling approach

Classical balance laws enhanced via fluxes and sources
e Solid — Collagen, proteoglycans, cells

e Extra cellular fluid
— diffuses relative to the solid phase

e Dissolved solutes (sugars, proteins, ...)
— undergo transport relative to fluid



Modelling approach

Classical balance laws enhanced via fluxes and sources
e Solid — Collagen, proteoglycans, cells

e Extra cellular fluid
— diffuses relative to the solid phase

e Dissolved solutes (sugars, proteins, ...)
— undergo transport relative to fluid

Brief subset of related literature:
o Cowin and Hegedus [1976]
o Kuhl and Steinmann [2002]
o Sengers, Oomens and Baaijens [2004]
o Garikipati et al. — Journal of the Mechanics and Physics of Solids (52) 1595-1625 [2004]



The balance of mass
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The balance of mass
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The balance of mass
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The balance of mass
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. M7 - Fluid flux
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o For the fluid: %1 = —v.M/

¢ No source; Concentration or flux boundary conditions — Tissue
exposed to fluid in a bath, fluid injected in at the boundary
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The balance of mass
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p® — Solute concentration

M* — Solute production
M? - Solute flux
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The balance of mass
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p® — Solute concentration

M* — Solute production
T M? - Solute flux

v
Qo v
Qi
o Forasolute: %~ =M°-V.M*

e Flux and source; Concentration boundary condition — Tissue
exposed to solute in solution in a bath
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The balance of momentum
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p¢ — Collagen concentration
V - Solid velocity
et /‘P\A g — Body for.ce
PN | ] q° — Interaction force
] R P° — Partial stress
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e For collagen: pS-=p°(g+q)+V-P
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The balance of momentum
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vy pf — Fluid concentration
V — Solid velocity
V4 — Fluid relative velocity
P
af P g — Body force
PN — q’ — Interaction force
_ R— P/ — Partial stress
v
Q¢

e For the fluid, velocity relative to the solid: V/ = (1/p/)FM/
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The balance of momentum
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vy pf — Fluid concentration
V — Solid velocity
V' — Fluid relative velocity
P
af P g — Body force
PN — q’ — Interaction force
] R— P/ — Partial stress
v
Q v
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e For the fluid, velocity relative to the solid: V/ = (1/p/)FM/
2 (Vv =pf (g+q/)+V - P (Vv v



Growth kinematics




Growth kinematics
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e Internal stress due to F'




Constitutive relations for fluxes

e Combine first and second laws to get dissipation inequality
o Constitutive hypothesis et = &'(F*', p*, ")
= consistent constitutive relations
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Constitutive relations for fluxes

Combine first and second laws to get dissipation inequality
Constitutive hypothesis ¢t = &(F*®', p*, n")
= consistent constitutive relations

Fluid flux relative to collagen
M/ =D7 (p/FTg+ F'V - P/ — Vv (ef — 0n7))
Solute flux (proteins, sugars, nutrients, ...) relative to fluid
vV =ve_v/
M’ = D* (=V(e* — 0"))
e D/ and D? - Positive semi-definite mobility tensors
Magnitudes from literature, e.g. Mauck et al. [2003]



Worm-like chain model for collagen

e (F, pf)

e _ Nk L r
 4A \2L 4(1-r/L) 4
b Nk6 2A 1 1 2 4y g2
- [ —————— — 2 ] log(AF AT XS
4 2L/A< L 41— /24/L) 4) BT 42 A5 )
+ %(Jet_2ﬁ71)+2fyl:EeC

e Embed in multi chain model [Bischoff et al.]
r=1/a2X§ + 1205 + 2xs

e )% — elastic stretches along a, b, ¢

X = /N7 -C°N;




Example of coupled computation
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nutrient flow = Guided tendon growth
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Simulating a tendon immersed in a bath

Constrict it to force fluid and dissolved
nutrient flow = Guided tendon growth
Biphasic model

e worm-like chain model for collagen
e ideal nearly incompressible fluid

plel = Li(det(Fe') — 1)2
Fluid mobility D/, =1 x 1083
Han et al. [2000]
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Example of coupled computation
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Simulating a tendon immersed in a bath

Constrict it to force fluid and dissolved
nutrient flow = Guided tendon growth
Biphasic model

e worm-like chain model for collagen
e ideal nearly incompressible fluid

plel = Li(det(Fe') — 1)2
Fluid mobility D/, =1 x 1083
Han et al. [2000]

First order rate law:
N"=—k(p" - pfy,), Ne=-10"
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Results and inferences

e Total flux in the vertical direction
e Stress driven diffusion




Results and inferences

e Regions of high fluid concentration
= faster growth

e Relaxation after constriction concludes



Summary and further work

e Physiologically relevant continuum formulation describing
growth in an open system — consistent with mixture theory
o Relevant driving forces arise from thermodynamics
— coupling with mechanics
e Gained insights into the problem
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Summary and further work

e Physiologically relevant continuum formulation describing
growth in an open system — consistent with mixture theory
o Relevant driving forces arise from thermodynamics
— coupling with mechanics
e Gained insights into the problem

e |ssues of saturation and growth
e Saturation and Fickian diffusion
o Configurations and physical boundary conditions

o More careful treatment of biochemistry — nature of sources
e Formulated a theoretical framework for remodelling

e Engineering and characterization of growing, functional
biological tissue to drive and validate modelling



