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Open system with multiple species inter-converting and interacting
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Classical balance laws enhanced via fluxes and sources

• Solid – Collagen, proteoglycans, cells

• Extra cellular fluid
– Undergoes transport relative to the solid phase

• Dissolved solutes (sugars, proteins, . . . )
– Undergo transport relative to fluid
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Brief subset of related literature:

◦ Cowin and Hegedus [1976]

◦ Kuhl and Steinmann [2002]

◦ Sengers, Oomens and Baaijens [2004]

◦ Garikipati et al. – Journal of the mechanics and physics of solids (52) 1595-1625 [2004]
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Configuration and physical boundary conditions

Boundary condition specification

dρi

dt
+ ρi

∇x · v = −∇x · mi + πi

ρι – Current species concentration
πι – Current species production
mι – Current species flux
v – Solid velocity
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Growth kinematics
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Energy balance and entropy inequality
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ẽι – Energy transfer
M ι – Species flux

ηι – Species entropy
θ – Temperature

ρι
0

∂eι

∂t
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Constitutive relations for fluxes

• Combine first and second laws to get dissipation inequality

• Constitutive hypothesis eι = êι(F eι
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⇒ Consistent constitutive relations

• Fluid flux relative to collagen

M f = Df
(
ρf
0F T g + F T

∇X · P f − ∇X(ef − θηf )
)

• Solute flux (proteins, sugars, nutrients, . . . ) relative to fluid

Ṽ
s

= V s − V f

M̃
s

= Ds (−∇X(es − θηs))

• Df and Ds – Positive semi-definite mobility tensors
Magnitudes from literature, e.g. Mauck et al. [2003]
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Saturation and Fickian diffusion

Configuration 1 Configuration 2

• Change in configurational entropy with distribution of solute
particles . . . if solvent is not saturated with solute



Saturation and Fickian diffusion

Only possible configuration

• Saturated ⇒ Single configuration ⇒ No Fickian diffusion

• Still have concentration-gradient driven transport due to
stress gradient contribution to flux



Worm-like chain model based internal energy density
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Computational formulation details

• Implementation in FEAP

• Coupled implementation; Staggered scheme
(Armero [1999], Garikipati et al. [2001])

• Nonlinear projection methods to treat incompressibility
(Simo et al. [1985])

• Energy-momentum conserving algorithm for dynamics
(Simo & Tarnow [1992a,b])

• Backward Euler for time-dependent mass balance

• Mixed method for stress/strain gradient-driven fluxes
(Garikipati et al. [2001])

• Large advective terms require stabilization



Examples of coupled computation – Constriction

N · M f
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• Simulating a tendon immersed in a bath

• Constrict it to force fluid and dissolved
nutrient flow ⇒ guided tendon growth

• Biphasic model
• Worm-like chain model for collagen
• Ideal nearly incompressible fluid

ρf êf = 1
2κ(det(F ef

) − 1)2

• Fluid mobility Df
ij = 1 × 10−8δij ,

Han et al. [2000]

• First order rate law:
Πf = −kf(ρf − ρf

0ini
), Πc = −Πf
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Results and inferences

• Total flux in the vertical direction

• Stress driven diffusion



Results and inferences

• Regions of high fluid concentration
⇒ Faster growth

• Relaxation after constriction concludes



Swelling of a tendon immersed in a bath

Collagen concentration evolution

Volume evolution curve
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Summary and further work

• Physiologically relevant continuum formulation describing
growth in an open system – consistent with mixture theory

• Relevant driving forces arise from thermodynamics
– coupling with mechanics

• Gained insights into the problem
• Issues of saturation and growth
• Saturation and Fickian diffusion
• Configurations and physical boundary conditions

• More careful treatment of biochemistry – nature of sources

• Formulated a theoretical framework for remodelling

• Engineering and characterization of growing, functional
biological tissue to drive and validate modelling
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