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ABSTRACT Ca21 signaling in the dyadic cleft in ventricular myocytes is fundamentally discrete and stochastic. We study the
stochastic binding of single Ca21 ions to receptors in the cleft using two different models of diffusion: a stochastic and discrete
Random Walk (RW) model, and a deterministic continuous model. We investigate whether the latter model, together with a
stochastic receptor model, can reproduce binding events registered in fully stochastic RW simulations. By evaluating the con-
tinuous model goodness-of-fit for a large range of parameters, we present evidence that it can. Further, we show that the large
fluctuations in binding rate observed at the level of single time-steps are integrated and smoothed at the larger timescale of binding
events, which explains the continuous model goodness-of-fit. With these results we demonstrate that the stochasticity and
discreteness of the Ca21 signaling in the dyadic cleft, determined by single binding events, can be described using a deterministic
model of Ca21 diffusion together with a stochastic model of the binding events, for a specific range of physiological relevant
parameters. Time-consuming RW simulations can thus be avoided. We also present a new analytical model of bimolecular binding
probabilities, which we use in the RW simulations and the statistical analysis.

INTRODUCTION

It is an important and contentious issue whether diffusion in

signaling micro domains can be modeled deterministically

and continuously, or if stochastic and discrete Random Walk

(RW) methods should be employed (1–6). Signaling micro

domains are used by the cell to convey information and it is

important to use accurate and reliable simulation methods

when these processes are studied. Traditionally, they have

been studied using Fick’s second law of diffusion together

with macroscopic rate laws, where the latter are used to

model chemical reactions. These laws provide a deterministic

prediction of the changes of the average number of molecules

in a process over time. The solutions are continuous functions

of both space and time. Reaction diffusion processes in

macroscopic environments, where fluctuations from the pre-

dicted average number of particles in a solution are small, are

modeled successfully by these laws. The laws were originally

empirical but they are also well founded in statistical physics

(7). In recent years, as smaller and smaller subcellular do-

mains have been studied, researchers have focused on the

discreteness and stochasticity of the physiological processes.

This has raised issues for the deterministic models (4,8). In

subcellular micro domains, the number of involved mole-

cules is small and the fluctuations from the predicted average

number of molecules involved become dominant. Three-

dimensional RW simulators have been developed to incor-

porate the discreteness and stochasticity of the signaling in

intracellular micro domains. One well-established simulator

is MCell (9,10), which has been used in some recent studies

of subcellular signaling. The results of these studies illustrate

clearly the fundamental discreteness and stochasticity of the

studied processes (1,11,12). Another approach to modeling

the discreteness and stochasticity of a subcellular process is to

model the diffusion and possible buffer dynamic with a de-

terministic and continuous model together with a stochastic

model of receptors that switch states randomly according to

the concentration at the receptor site, i.e., modeling the

binding of single molecules to a receptor stochastically. Dif-

ferent versions of this method have recently been used to

study the functionality of the well-studied signaling micro

domain of the dyadic cleft, in ventricular myocytes (13–15),

and also in a whole cell study of the Ca21 dynamics in the

endoplasmic reticulum (16). Although this method is already

in use, the fundamental problem of using a continuous and

deterministic representation of a small number of diffusing

molecules has not been addressed. This issue is of great

concern when signaling in the dyadic cleft is studied, because

the volume of this domain is in the magnitude of atto liters.

This concern is illustrated by the fact that during diastole,

when the myocyte is relaxing, the cytosolic [Ca21] is as low

as 0.1 mM, leaving, on average, 0.02 Ca21 ions present in the

cleft. Hereafter, we will relate to this model, i.e., the con-

tinuous and deterministic description of Ca21 diffusion to-

gether with a stochastic and discrete description of single

receptors, as ‘‘the continuous model.’’

The dyadic cleft is a signaling micro domain in which the

Ca21-induced Ca21 release mechanism is controlled tightly

(17,18). A traveling action potential triggers the influx of
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external Ca21 through the L-type Ca21 channels (LCCs).

From the mouth of a LCC, which are located at the membrane

of a T-tubule (TT), Ca21 diffuses into the cleft. The cleft is

narrow, ;15 nm wide (19,20), and a unitary LCC current

creates a very high Ca21 concentration in the cleft,¼ 10–200

mM (21), compared to the value at rest,¼ 0.1 mM. This Ca21

signal triggers both the inactivation of the LCC current and

further Ca21 release from the opposing Ryanodine receptors

(RyRs) (22,23), which are attached to the sarcoplasmic re-

ticulum (SR), an intracellular Ca21 store. What causes the

reliable termination of Ca21 release from the RyR is still a

debated issue (24). However, among the proposed explana-

tory hypotheses, inactivation due to binding of single Ca21

ions to receptors in the dyadic cleft, is well established

(25,26). For a recent review of the Ca21 dynamics in the cleft,

see Bers and Guo (27), and the references therein.

For a long time, continuous and deterministic models have

been used to study Ca21 dynamics in the dyadic cleft (21,28–

31), and its role in the release of Ca21. Two recent studies of

Ca21 dynamics use a discrete RW model to describe the

Ca21 diffusion in the cleft (12,32). Koh et al. (12) uses MCell

and argues that few Ca21 ions in a small volume cannot

properly be simulated with a continuous model of diffusion.

However, they do not present any results that support this

claim. Tanskanen et al. (32) present an impressive study that

includes physiological details on a microscale level, such as

the electrostatic force from the sarcolemmal and the geo-

metrical structures of the large membrane proteins in the

cleft, while integrating the Ca21 release from many clefts,

and thus obtaining a measure of the Ca21 release from the

whole cell. In contrast to Koh et al. (12), they explicitly ad-

dress the difference between their model and an equivalent

model that uses a deterministic description of Ca21 diffusion.

They do this by measuring the effect on the excitation-con-

traction coupling (ECC) gain when they vary the diffusion

constant of Ca21, together with the parameters that determine

the influx of Ca21 ions to the cleft. They show that the ECC

gain varies with the parameters (see Fig. 12 in (32)). This

result points to a ‘‘subtle but potentially significant difference

in predicted macroscopic behavior arising from the under-

lying stochastic simulation of Ca21 motion in the dyad’’ (32).

The rationale for this statement is that if they had changed the

same parameters in an equivalent model using a deterministic

description of Ca21 diffusion, they would not have registered

any differences in ECC gain because the receptors situated in

the cleft would have experienced the same level of Ca21

concentration. In our study we examine the discrete events in

the cleft that are actually modeled differently in a continuous

versus a RW model of diffusion in the dyadic cleft; namely,

the binding of single Ca21 ions to single receptors. By doing

this, we strip the model of Ca21 dynamics in the dyadic cleft

of many important physiological details that affect the gen-

eration and termination of a spark (12,21,32), but the com-

parison between the actual differences between the two

diffusion models become clearer.

We also present what is, to our knowledge, a novel model

of bimolecular binding probabilities between single diffusive

ligands and single stationary or mobile receptors that are used

in our RW simulator. The model is analytical. It depends only

on the diffusion constant of the ligand, the macroscopic

binding rate, the time-step of the RW algorithm, and the

distance between the two molecules at the beginning of the

time-step. The first three parameters are all known before a

simulation starts and the binding probabilities are pre-

computed with respect to distance for the reactions that are

included in the simulation. During a simulation, lookup tables

are used. The error introduced by the model is studied thor-

oughly for a large set of parameters. We find that for a given

time-step, the error introduced by the bimolecular interaction

model is much smaller than the error introduced by the

RW simulation, due to an absorbing boundary in our model.

Hence, we can use larger time-steps for the time-consuming

reaction process.

The results of the statistical goodness-of-fit tests reveal

that the continuous model, for a specific parameter range,

can reproduce the registered binding events from the RW

simulations. This is somewhat unexpected, because the

binding probability in the continuous model is linear with

respect to the [Ca21] at a single receptor and is also constant

during steady-state simulations. This is in contrast to the

binding probabilities in the RW model, which depend di-

rectly on the distance between a RyR and any nearby Ca21

ions. We find that the large variations in binding rates at the

timescale of a single time-step, equal to 1.25 3 10�4 ms, are

integrated and smoothed at the timescale of binding events,

equal to 0.5 ms. These results refine the statements made in a

number of recent studies (2,6,10,12), which claim that when

the number of participating particles in a volumes falls, a

deterministic description of concentration is invalid or does

not make sense, and fully stochastic methods have to be

employed. Our study reveals that the extra discreteness

and stochasticity that a full RW model introduces are inte-

grated at the timescale of binding events, to the same value

given by the continuous model. This also explains why the

average description of the [Ca21] in the cleft, given by the

continuous model, is sufficient when the registration of

single binding events is studied. The result is parameter-

dependent. For small values of the diffusion constant, we find

a difference between the two models similar to that which

Tanskanen et al. (32) find. We further investigate the cause

of this difference and the quantitative dependency of the

parameters.

This article is divided into five main sections. The Intro-

duction is followed by Theory, in which we describe the

models and how we solve them. Also in that section, we

derive and analyze the model of bimolecular binding prob-

abilities. In Methods, we explain how we performed our

simulations and which statistical tests we used. Our simula-

tions and tests are presented in the Results and then revisited

in the Discussion.
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THEORY

Continuous model

Ca21 diffusion in the continuous model is described by a

well-known reaction-diffusion model, which consists of a set

of coupled partial differential equations (33,34). Symmetry in

the angular and z directions was assumed, thus reducing the

full three-dimensional model to a one-dimensional model in

the radial direction. If c, Bm, and Bs denote, respectively, the

concentration of Ca21, mobile buffer, and stationary buffer,

the full system is given by

@c

@t
¼ Dc=

2

r c1Rmðc;BmÞ1Rsðc;BsÞ;

@Bm

@t
¼ Dm=

2

r Bm 1Rmðc;BmÞ;

)
r 2 ð0;RÞ �R; t.0;

(1)

@Bs

@t
¼ Rsðc;BsÞ; r 2 ½0;R� � R; t . 0: (2)

The reaction terms are given by

Rmðc;BmÞ ¼ �k 1

m Bmc 1 k�ðBT

m � BmÞ; (3)

Rsðc;BsÞ ¼ �k
1

s Bsc 1 k
�ðBT

s � BsÞ; (4)

where BT
m and BT

s are the total concentration of the two buffer

types. The values Dc and Db are the diffusion constants of

Ca21 and the mobile buffer, respectively, and =2
r is the radial

diffusion operator

=
2

r ¼
@

2

@r
2 1

1

r

@

@r
: (5)

The initial conditions are given by

cðr; 0Þ ¼ 0;
Bmðr; 0Þ ¼ B

T

m;

Bsðr; 0Þ ¼ B
T

s ;

)
r 2 ½0;R� � R; t ¼ 0; (6)

and the boundary conditions are given by

�Dc

@c

@r
¼ Jin; �Dm

@Bm

@r
¼ 0; r ¼ 0; t . 0; (7)

cðr; tÞ ¼ Cc; Bmðr; tÞ ¼ B
T

m; r ¼ R; t . 0; (8)

where Jin is the LCC line source, Cc is the Ca21 concentration

in cytosol, and R is the radius of the cleft.

The actual values of the parameters we used in the simu-

lations are given in Methods, below. The full system was

solved using explicit finite different schemes (35).

The binding of single Ca21 ions could not be modeled

literally in the continuous model, because single Ca21 ions

do not exist in the model. However, in a Markov chain model

of an RyR, the Ca21-dependent transition from one state to

another is an indirect model of the physiological event of a

Ca21 ion binding to a receptor at a channel (36,37). Given

that we did not want to simulate the dynamics of the whole

RyR, but only the transition between two [Ca21]-dependent

states, we reduced the channel model to only include two

states: one with Ca21 bound, cR, and one with Ca21 un-

bound, R,

R�
ck

1

k
� cR: (9)

The total binding rate depends on the Ca21 concentration, c,

at the position of the receptor together with the on-rate, k1.

The unbinding rate depends only on the off-rate k� and is

thus Ca21-independent. The independency of [Ca21] in the

off-rate makes the transition from the bound state to the

unbound state model-independent, and we could therefore

exclude it from our study because we were only interested in

the differences. Effectively, this meant that we removed the

bound state, cR, from the receptor model, thus reducing the

receptor model to a one-state model that serves as an

indicator of Ca21 binding events.

With this reduction of the channel model, we were able to

represent the registration of single Ca21 binding events at a

RyR, in the continuous model, with a Poisson processes,

determined only by the rate or intensity function l(t)¼ c(t)k1

(38). The probability that one Ca21 ion would bind to a RyR

was modeled as 1 minus the probability of zero bindings:

PBðtÞ ¼ 1� e
�lðtÞDt

: (10)

We had to retain the quantity l(t)Dt, which represents the

expected number of binding events during a time-step, much

smaller than 1; this was obtained by minimizing the proba-

bility of getting more than one binding event during a time-

step. When the [Ca21] was fixed at each receptor, i.e., during

the steady state, we had a homogeneous Poisson process with

constant rate l ¼ c k1. In the transient simulation, where the

[Ca21] varied at each receptor, the Poisson process was

inhomogeneous with rate l(t)¼ c(t)k1. The model reduction,

together with the observation that the registration of binding

events could be represented by a Poisson process, were used

in the goodness-of-fit tests, as shown in Methods, below.

Random Walk model

Our discrete model of diffusion is based on an RW descrip-

tion of Brownian motion (39). The model is a simple, but

powerful stochastic model of diffusion. In a simulation, the

position of each diffusive ligand in the cleft is tracked. For

each ligand and time-step, a random displacement, Dr ¼
(Dx Dy, Dz), is sampled from a trivariate probability density

and added to the position of the ligand. The distribution is a

solution to Fick’s second law of diffusion for a point source

(33). With homogeneous diffusion constant, D, and a fixed

time-step, Dt, the trivariate probability density is given by

f ðDr;Dt;DÞ ¼ 1

ð4pDDtÞ
3
2

e�
Dx

2
1Dy

2
1Dz

2

4DDt : (11)

The expected radial displacement of a single RW step is r
E
¼ffiffiffiffiffiffiffiffiffiffiffi

6DDt
p

: The spatial scale of the simulation is hence set by D
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and Dt. Three different types of diffusive ligands were

simulated in the RW model: Ca21, and a diffusive buffer

with and without bound Ca21. We used the same diffusion

constant for the two buffer molecules, Db. Two different

types of boundary were used: one reflective and one absorb-

ing, @VN2 and @VD (see Fig. 6). If a particle, Ca21 or mobile

buffer, crossed one of the reflective boundaries, it was mir-

rored into the volume again. If a Ca21 ion crossed the

absorbing boundary, it was removed from the simulation, to

allow the modeling of a Ca21 concentration in cytosol that

was assumed to be zero. During a simulation, we kept the

total concentration of the mobile buffer constant in the cleft.

This was achieved by not allowing a buffer molecule cross to

the @VD boundary, i.e., if a buffer molecule ended outside the

boundary, a new displacement was sampled until it was

inside. In addition, if the buffer molecule had a Ca21 ion

attached to it when it ended outside the boundary, the Ca21

was removed, due to the assumed zero [Ca21] in the cytosol.

We implemented two different possible sources of Ca21

ions in the cleft: 1), one or more LCCs; or 2), passive influx

from the cytosol. The Ca21 ions that entered through an LCC

were introduced into the center of the cleft at a random height,

to mimic the line source used in the continuous model (see

above). The number of Ca21 ions entering the cleft through

the current per ms is given by JLCC ¼ NO
�iLCC=ðz eÞ; where

NO is the number of open channels, e the elementary charge,

and z the valence of the Ca21 ion. The number of Ca21 ions

entering the cleft from the cytosol is given by Jcyt ¼
Ccyt Na V=�t: These ions were placed at a random position at

the boundary @VD. Here, Ccyt is the Ca21 concentration in

cytosol, Na Avogadro’s number, and V the volume of the

cleft. The value�t is the average time each Ca21 ion spent in the

cleft, given that it entered at the boundary @VD. When there

were no buffers in the cleft, this value was found to be �t ’
3:6310�4 ms.

Stochastic modeling of single receptors

In addition to handling the RW of single Ca21 ions in a

continuous three-dimensional space, we wanted to let these

ions bind to single receptors and study the resulting binding

statistics. We did not find any software that was able to do

this when we started our study, e.g., MCell 2 only supported

single binding events to a density of receptors at the mem-

brane. Therefore, we decided to develop our own model of

bimolecular interactions.

Not only RyRs were treated as single receptors in the

discrete RW model, but also all buffer molecules, so we had

to deal with Ca21 unbinding from receptors too. This was in

contrast to the continuous case, in which only the event of

Ca21 binding to single RyR receptors was treated stochas-

tically. The probability that a Ca21 ion will unbind from a

receptor during a time-step depends solely on the unbinding

rate k� for the receptor and the size of the time-step and is

given by

PUB ¼ 1� e
�k
�

Dt
: (12)

The probability that a Ca21 ion and a receptor will bind

was calculated using the same macroscopic rate law that was

used in the continuous case (see Eq. 9). It is counterintuitive

to use a macroscopic law between single discrete molecules,

because these do not have the macroscopic property of

concentration. However, because the position of a diffusive

ligand is given by a probability distribution between the time-

steps, we used this distribution to calculate the average

number density of a single diffusive particle at a certain

distance and time (7). This quantity is deterministic and

predicts the expected density or concentration of a particle.

Despite the fact that the concept of average number density

has been used before (7), we argue that a single diffusive

particle is described more appropriately in terms of its ex-

pected concentration, which is given in Molar and can thus be

used in the macroscopic rate law, as intended. The word

‘‘expected’’ also reflects the deterministic, a priori knowl-

edge of the contribution to the average concentration that a

particle would make if the position were sampled many

times.

We derived the concept of expected concentration by di-

viding the entire spatial domain that surrounds the diffusive

ligand into N equally spaced shells. Each shell had a volume

of DVi ¼ 4pDS2
i ds; where DSi ¼ i ds, ds } 1/N, and i ¼

1. . .N. Fixing the time to t , Dt, we sampled the position of

the diffusive ligand K times. Let Ni be the number of times the

ligand occurred in the shell at DSi. Dividing this by K, we

obtained the averaged number of times the ligand occurred in

the ith shell. Then, the average number density of the particle

in the same shell is given by

�ni ¼
Ni

K DVi

: (13)

Dividing this by Avogadro’s number, Na, we arrived at the

average concentration given in Molar. Given that we were

sampling a deterministic probability distribution K times, we

used this information to express the expected number of

times a particle occurred in the ith shell, after time t:

N
Ei ¼ K 3 PðDSi; tÞ ¼ K 3 f ðDS; tÞ3 DVi: (14)

Substituting Ni in Eq. 13 with this value, and letting N / N,

we obtain the expected concentration that this ligand exerts

after t ms at distance DS,

c
E
ðDS; t;DÞ ¼ 1

Na
f ðDS; tÞ ¼ 1

Nað4pDtÞ
3
2

e
�DS

2

4 Dt : (15)

Here we have divided by Avogadro’s constant to obtain the

concentration in Molar. We see that the cE is directly

proportional to the probability distribution in Eq. 11, which

makes sense. The expected concentration of a single Ca21

ion after t ¼ 45 ns, with D ¼ Dc ¼ 105 nm2 ms�1, is plotted

against DS in Fig. 1 (left panel, solid line).
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The expected concentration, cE, that a Ca21 ion exerts

upon a nearby receptor, DS nm away after t ms, was used to

calculate the probability of not binding during a tiny time

interval Dt� Dt. For this, we used the macroscopic rate law

from Eq. 9 together with the Poisson probability distribution

for zero events,

PnbðDS; t;D;DtÞ ¼ e
�k

1
c

E
ðDS;t;DÞDt

: (16)

The probability of not binding during the whole time-step Dt,
equals the product of this quantity evaluated for ti ¼ Dt(i 1

1/2), where i¼ 0, . . . , N, and N¼ Dt/Dt. Keeping D, Dt, k1,

and DS constant, this probability is

P
NB
¼
YN

i¼0

e
�k

1
c

E
ðtiÞDt ¼ e

�k
1 +

N

i¼0

c
E
ðtiÞDt

¼ e
�k

1�c
E

Dt
; (17)

where �c
E

equals the average value of cE, the receptor

experience during a time-step. In the limit where Dt / 0

and N / N, �c
E

becomes

�c
E
¼ lim

N/N

1

Dt
+
N

i¼0

c
E
ðtiÞDt ¼ 1

Dt

Z Dt

0

c
E
ðtÞdt: (18)

Using the function for cE from Eq. 15, in this equation we get

�c
E
¼ 1

ð4pDÞ
3
2NaDt

Z Dt

0

t
�3

2e
�DS

2

4Dt dt: (19)

With change of variables, the integral on the right-hand side

can be represented by the upper incomplete g-function (40).

The lower part of such a function is defined as

Gincðx;aÞ ¼
1

GðaÞ

Z x

0

t
a�1

e
�t

dt; (20)

and the upper part is defined from Eq. 20 by

G
upper

inc ðx;aÞ ¼
1

GðaÞ

Z N

x

t
a�1

e
�t

dt ¼ 1� Gincðx;aÞ: (21)

After the change of variables, the integral in Eq. 19 becomesZ Dt

0

t
�3

2e
�DS

2

4Dt dt ¼
ffiffiffiffiffiffi
4D
p

DS

Z N

DS
2

4DDt

t
�1

2e
�t

dt ¼
ffiffiffiffiffiffiffiffiffiffi
4pD
p

DS

3 1� Ginc

DS
2

4DDt
;
1

2

� �� �
; (22)

where the identity of Gð1=2Þ ¼ ffiffiffiffi
p
p

has been used. Using this

in Eq. 19, we obtained an analytical expression of the average

expected concentration that a receptor experiences during a

time-step from a nearby ligand:

�cE ¼
1

4 p D Ds Na Dt
1� Ginc

DS
2

4DDt
;
1

2

� �� �
: (23)

Assuming that the quantity k1�c
E
Dt� 1; we can write the

probability of registering only one binding event as

PB ¼ 1� PNB ¼ 1� e
�lDt
; (24)

where �l ¼ k1�c
E
: This equation is analogous to Eq. 10,

applied only to a single ligand. The expected number of

binding events during a time-step is ÆNBæ ¼ �lDt: For the

continuous case, we had to keep this value much smaller than

one, to minimize the probability of getting two or more

binding events during a time-step. See also the validity study

below.

The binding probability for a Ca21 ion near to a mobile

receptor, i.e., a mobile buffer, was modeled in the same way

as for the stationary receptor, with one exception. A mobile

buffer moves during a time-step, which leads to a difference

in the expected concentration experienced by the buffer from

a nearby Ca21 ion. Instead of evaluating cE at a single point,

as for the stationary receptor, we evaluated it for all possible

positions, cE(r,t), and weighted these with the probability,

pm(r, t), that the buffer was present. For an arbitrary spatial

point r, this quantity is

c
p

Em
ðr; tÞ ¼ c

E
ðr; tÞ3 pmðr; tÞ ¼

fcðr; tÞ
Na

fmðr; tÞDVðrÞ; (25)

where fc and fm are the values of the probability density for

the Ca21 and the mobile buffer molecule, respectively. The

superscript, p, denotes the concentration at a single spatial

position. Using angular symmetry, a cylindrical coordinate

system was chosen to integrate cp
Em over all spatial points.

The Cartesian coordinate line, z, was placed in line with the

two particles (Fig. 2), and the position of the Ca21 ion defines

the origin. The distance between the two particles is DS. The

result of the integration was the expected Ca21 concentration

experienced by a nearby mobile receptor, at time t, separated

by a distance DS,

FIGURE 1 (Left panel) Expected [Ca21], as given by

Eq. 15, experienced by a receptor situated a distance DS

from it, at t¼ 45 ns. The diffusion constant of Ca21 is Dc¼
105nm2 ms�1. The solid line represents the [Ca21] experi-

enced by a stationary receptor and the dashed line repre-

sents the [Ca21] experienced by a mobile receptor, with

Db ¼ Dc/2, as given by Eq. 26. The right panel shows the

corresponding probabilities that a Ca21 ion will bind to a

stationary receptor (solid line) and to a mobile receptor

(dashed line), as given by Eq. 24, where Dt ¼ 45 ns and

k1 ¼ 30 mM�1 s�1. The probabilities are plotted against the

distance between the Ca21 ion and the receptor. Note the

logarithmic scale used for DS in the right panel.
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c
Em
ðDS; tÞ ¼ 1

4p
2
Nað4 Dc Db t

2Þ
3
2

3

Z N

�N

Z N

0

re
�e

2
1z

2

4Dct e
�r

2
1ðDS�zÞ2

4Dbt dr dz;

¼ 1

Nað4pðDc 1 DbÞtÞ
3
2

e
� DS

2

4ðDc1DbÞt: (26)

Here, Dc and Db are the diffusion constants of the Ca21 ion

and the mobile buffer. Notice that this expression is identical

to the expected concentration experienced by a stationary

receptor, i.e., Eq. 15, with D ¼ Dc 1 Db. This result made it

possible to use Eq. 24 to calculate the binding probability of a

Ca21 ion to a nearby mobile receptor, merely by setting the

diffusion constant, D, to the sum of the diffusion constants of

the two particles. In Fig. 1 (left panel, dashed line), the

expected concentration of a Ca21 ion experienced by a

nearby tentative mobile buffer is plotted. Also in Fig. 1 (right
panel, dashed line), the calculated probability of a nearby

Ca21 ion to bind to the same mobile buffer, during a time-

step of Dt¼ 45 ns, with Dc¼ 105 nm2 ms�1, Db¼ Dc/2, and

k1 ¼ 30 mM s�1, is plotted.

Validity study of bimolecular binding probability

The model of the bimolecular binding probability requires

that a single receptor registers only one binding event per

time-step. In the continuous model, this could be controlled

by keeping the expected number of binding events during a

time-step, ÆNEæ ¼ c(t)k1Dt, much smaller than one. The cor-

responding probability of getting two or more binding events

per time-step is then small. Using the Poisson probability

distribution, this equals 1 minus the sum of the probabilities

of 0 and one binding per time-step:

P.1 ¼ 1� e
�ÆN

B
æ
1 ÆN

B
æe�ÆN

B
æ� �
: (27)

Using typical large values for the physical parameters,

[Ca21] ’ 1 mM and k1 – 100 mM�1 s�1 and a small value

for the time-step Dt ¼ 1.25 3 10�4 ms, we obtained a small

expected number of bindings per time-step ÆNEæ ¼ 1.25 3

10�2 and a very small value for the probability of two or more

binding events, P.1 ’ 8 3 10�5.

A similar analysis for the bimolecular binding model was

not straightforward. The expected number of binding events

during a time-step for a single ligand, ÆN
B
æ ¼ �c

E
k1Dt; de-

pends on the stochastic DS-variable, and we must ensure that

the probability for more than one nearby ligand to bind to the

receptor is small. The latter probability depends on the local

density of ligands nearby the receptor and is also a stochastic

entity.

Depending on the parameters, ÆNEæ can well exceed 1,

which increases the probability of registering two or more

binding events from a single diffusive ligand. To study this

probability with arbitrary parameters, we expressed the ex-

pected number of binding events per time-step, ÆNEæ, using

dimensionless units. We let the expected displacement of a

single ligand in one spatial direction, s ¼
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

; define the

length scale DS ¼ sDS*. The expected number of binding

events per time-step in dimensionless units is then

ÆN
B
æ ¼ k

1
�

1� Ginc

DS
�2

2
;
1

2

� �� �
=DS

�
; (28)

where

k
1
�
¼ k

1
=ð4pDsNaÞ (29)

and represents the dimensionless version of k1. Note that Dt
is redundant because it follows D and s. Using this in Eq. 27,

we obtained the probability of getting two or more binding

events from a single diffusive ligand nearby a receptor. This

quantity is plotted for different values of k1* and DS* in the

left panel of Fig. 3. The probability is sensitive to ligands that

are very close to the receptor and to large values of k1*.

In an infinite medium with a constant concentration, the

probability that a ligand will be r dimensionless units away

from a receptor is P(r) ¼ 2ps3 c Na r2Dr, where c is the

concentration and Dr a small distance chosen to ensure that

P(r)� 1. The probability of not getting a binding event from

a distance r equals the probability that a ligand will not be

at that distance plus the probability that a ligand will be

there, times the probability of not binding from that dis-

tance. Keeping k1* and c constant we get P0
r ¼ 1� PðrÞ1

PNBðrÞPðrÞ; where PNB ¼ e�ÆN
B

æ; and ÆNEæ is distance-

dependent (see Eq. 28). We chose a cutoff distance of r ¼ 5

that defines our domain and computed the probability of not

registering any binding events from this volume, P0 ¼Q
i P0

ri
;where ri¼ iDr. The probability of getting one binding

from a distance r is P1
r ¼ P1ðrÞPðrÞ; where P1

r ¼ ÆN
B
æe�ÆN

B
æ:

The probability of registering only one binding event from

the distance r and not from any other distances equals

P03P1
r =P0

r : Finally, the probability of registering only one

FIGURE 2 Coordinate used to integrate the [Ca21] experienced by the

buffer molecules, b. The position of the Ca21 ion defines the origin, and the

distance between the two particles is DS.
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binding event from the whole domain is the sum of all these

probabilities:

P
1 ¼ P

0 +
i

P
1

ri
=P

0

ri
: (30)

The probability of registering two or more binding events

from the whole domain is then P.1 ¼ 1 – (P0 1 P1). This

quantity is plotted for different values of c and k1* in the

center panel of Fig. 3. Because it is not straightforward to

interpret a dimensionless [Ca21], we chose to plot this

variable with physical values. To do this we had to choose

physical values for D and s for the figure. These parameters

were set to s ¼ 5 nm and D¼ 105 nm2 ms�1 and yielded the

result shown in the plot. A smaller s, i.e., a smaller time-step,

will result in the curves shifting downwards. We see that the

probability of registering more than one binding event per

time-step is quite large for high concentrations; .1 mM for

the largest values of k1*. In this particular case, the solid and

dashed lines represent an on-rate of, respectively, 3800 and

380 mM�1 s�1, i.e., quite large values.

We were able to define the probability of registering a

binding event from our test domain during a time-step as

PRW
B ¼ 1� P0 and compare this with the continuous equiv-

alence from Eq. 10, for convenience here named PC
B: Using

the same values for the parameters as above, we computed the

absolute value of the relative difference between these two

models,
		PRW

B � PC
B

		=PC
B: The result is shown in the right

panel of Fig. 3. We see that the difference is very small and is

more or less constant for different values of c. The downward

bend seen for the largest values of k1* represents the differ-

ence between the two models in a parameter range in which

both models produce erroneous probabilities and should,

therefore, be ignored. These results indicate clearly the sim-

ilarities in registered binding events between the two models

for a large parameter range.

Reflecting boundaries

The reflecting property of a membrane increases the expected

concentration of a nearby Ca21 ion. A receptor at or close to

the membrane will therefore experience a higher concentra-

tion from a single Ca21 ion and hence a larger probability of

binding. The increase was included by mirroring the location

of a receptor close to a membrane, to the opposite side, as

illustrated in Fig. 4. The probability of binding was then

calculated for this mirrored position and added to the initial

probability,

P9B ¼ 1� ½1� PBðDSÞ�½1� PBðDS9Þ� ’ PBðDSÞ1 PBðDS9Þ:
(31)

Here, DS is the distance between the Ca21 ion and the actual

position of the receptor and DS9 is the distance between the

ion and the mirrored receptor. The approximation in Eq. 31

holds for probabilities �1. If the receptor is situated at the

FIGURE 3 Results of our study of the validity of the model of the bimolecular binding probability in Eq. 24. (Left and middle panels) Probability of registering two

or more binding events at a receptor. (Left panel) Probability generated by a single ligand, with respect to the dimensionless quantities, DS* and k1*, whereas the center

panel shows the overall probability of registering two or more binding events at a receptor in an infinite medium with constant concentration, c, for different values of

k1*. (Right panel) Absolute value of the relative difference between the probability of registering a binding event from the continuous model and the RW model.

(Center and right panels) Curves were computed using s ¼ 5 nm and D ¼ 105 nm2 ms�1. These curves would be shifted downwards if a smaller s were chosen.

FIGURE 4 How the reflection of a receptor near a membrane is modeled.

The value @VN2 is the reflecting boundary of the membrane; r and r9 are

the position of the receptor at its actual position and at its mirrored position.

The values DS and DS9 represent the distance between the Ca21 ion and the

actual position of the receptor and the position of the mirrored one.
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membrane, we have DS ¼ DS9. For simplicity, we mirrored

all buffers in the upper part of the cleft to the opposite side of

the SR membrane and all buffers in the lower part of the cleft

to the opposite side of the TT membrane.

Monte Carlo simulation of binding

To speed up the Monte Carlo simulations of the reaction, we

precomputed the probability of unbinding and binding of a

single Ca21 ion for each type of receptor included in the

simulation. The unbinding probability for each buffer type

was very small, which allowed us to assume that only one

Ca21 ion could unbind during a full time-step. With this as-

sumption, we only had to sample one uniform random number

per time-step for the unbinding reactions. This number was

compared to a lumped unbinding probability that is given by

P
l

UB ¼ 1� ð1� PUBÞN; (32)

where PUB is given by Eq. 12 and N is the number of buffer

molecules that have a Ca21 ion bound to it.

The probabilities of binding were precomputed with re-

spect to DS and a lookup table was used during the simula-

tion. To speed up this process even more, only Ca21 ions

within a certain maximal distance to the receptor were con-

sidered. This distance was chosen so that the probability of

binding at this distance equaled 10�6. The actual Monte

Carlo sampling was performed as follows: 1), traversing the

empty receptors in a random order each time-step; 2), for

each empty receptor, calculating the probability of binding

for all Ca21 ions within the maximal distance; 3), distributing

these probabilities in a cumulative distribution, 0 , Cp1 ,

Cp2. . . , CpN , 1, where N is the number of Ca21 ions

within the maximal distance and Cpi is the cumulative

binding probability of the ith Ca21 ion; and finally, 4),

drawing a uniformly distributed random number between 0

and 1. No Ca21 ion was bound if the random number was

larger than CpN. If the random number was in-between Cp(i–1)

and Cpi, the ith Ca21 ion was bound to the receptor. By

choosing a small enough time-step, Dt, we ensured that both

the single binding probability and the sum of all binding

probabilities always was much smaller than 1. This mini-

mized the error made in assuming that only one Ca21 ion

could bind to one receptor during a time-step.

Random Walk algorithm

A full step in our RW algorithm is presented schematically in

Fig. 5. First, any Ca21 that is scheduled to enter the cleft at

this time-step is added to the variable that keeps track of all

Ca21 ions. After that, we check whether any Ca21 ions were

bound to mobile or stationary buffers or to the included

RyRs, using the precomputed binding probabilities from Eq.

24. Then, we update the mobile buffers and the Ca21 ions

with new positions, using the Monte Carlo method presented

above. The first procedure (the reaction loop) operated on a

larger timescale than the second (the diffusion loop). A single

step in the reaction loop took much longer and the accuracy

was not so sensitive to the time-step, which allowed us to

simulate this procedure at a larger timescale. The sampling of

new displacement in the diffusion loop was cheap, but the

escape rate of the Ca21 ions leaving the cleft by the absorbing

boundary @VD, was underestimated (41). This error was

time-step dependent and was therefore minimized by using

smaller time-steps in this loop.

METHODS

All simulations, plots, and statistical tests were done using MATLAB (The

MathWorks, Natick, MA) on a GNU/Linux laptop, with 1 GB Ram and a

2.1 GHz Pentium M processor.

Morphology and boundaries

Following Soeller and Cannell (21), we modeled the dyadic cleft as a disk

(Fig. 6), with h¼ 15 nm and R¼ 100 nm. The diffusion constant of Ca21 was

set to Dc ¼ 105 nm2 ms�1 (28). The single LCC current amplitude was

chosen to be �iLCC ¼ 0:3 pA (43), and was released in the center of the disk

along the dashed line in Fig. 6. In one of the simulations, we included both

mobile and stationary endogenous buffers, using rates and concentration

parameters from a previous study (44) (see Table 1). The diffusion constant

of the mobile buffer, calmodulin, was set to Dm ¼ 0.1 3 Dc (21). Several

open LCCs were modeled by multiplying the source amplitude by the

number of open channels. The binding rate for the RyRs was set to 5 mM�1

s�1, which corresponds to binding rates previously used in models for both

RyR and LCC (36,45). The TT and SR membranes were modeled as re-

flective, no-flux, boundaries, @VN2 in Fig. 6. The cytosol was included in the

model either as a zero concentration boundary, when a LCC Ca21 source was

used, or as a constant level corresponding to diastolic [Ca21] of 0.1 mM (see

@VD in Fig. 6).

Simulation setups and binding
event registrations

As mentioned in the Introduction, we considered the event of a single Ca21

ion binding to a receptor to be the stochastic event that determines the

functional properties of the dyadic cleft. We tested how well the continuous

model fits the equivalent binding events registered from the RW model. We

used four tentative RyRs, positioned from the center of the cleft to the rim, to

test whether the radial position of single receptors had any effect on the event

registrations. We performed three different set of simulations, in which

binding events were registered under different physiological conditions.

These conditions were as follows: 1), steady-state [Ca21] response due to one

open LCC; 2), uniform [Ca21] due to passive diffusion from cytosol, using

very low diastolic [Ca21] ¼ 0.1 mM; and 3), transient [Ca21] response from

three different LCCs, which alternated between closed and open during the

simulations. The statistical results from these three sets of simulations are

presented in Figs. 8–10.

Each set of simulations had different deterministic Ca21 influxes, corre-

sponding to each physiological situation, and was run 100 times. Stochastic

binding events from four different RyRs were registered. The RyRs were

located along the same axis at radial distances of 10, 30, 50, and 70 nm.

One open LCC, steady-state [Ca21]

In the first set of RW simulations, we registered the binding events from the

steady-state response of a single open LCC in the cleft. The Ca21 influx in

these simulations consisted of one open LCC situated at the center of the
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cleft. Initially, the cleft had zero Ca21 ions, so registration was started after

0.2 ms, after the steady state was achieved, and the runs were stopped after 30

ms. In these runs, we were only interested in the binding events during the

steady-state [Ca21] in the cleft, so we excluded both stationary and mobile

buffers from the simulations, thereby achieving a significant gain in speed.

The mobile buffer actually lowers the steady-state [Ca21]. Therefore, it could

be argued that it should have been included in these simulations (21).

However, neither its inclusion nor exclusion would influence the results of

the comparison study, which was the main focus. The steady-state solution of

[Ca21] from the continuous model, which was used in the comparison study

(see below), is presented in the inset of Fig. 8 A.

Diastolic steady-state [Ca21]

In the second set of RW simulations, we tested the effect on the binding

events when [Ca21] was extremely low. Instead of Ca21 influx through a

channel, we had passive Ca21 influx from the cytosol. The value of the

FIGURE 5 Time-step in the RW algo-

rithm. The upper part, above the dashed

line, shows the reaction loop and the

lower part shows the diffusion loop.

The reaction loop is simulated with a

coarser time-step, Dt ¼ 125 ns, than the

diffusion loop, dt ¼ 5 ns.
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[Ca21] that we used corresponded to a diastolic concentration of 0.1 mM. In

these simulations, we did not include any buffers, because the Ca21 response

was stationary. Due to the small number of Ca21 ions in the cleft, ;0.02 on

average, each run had to be long (30 s) to produce reliable statistics for the

tests.

Transient [Ca21]

In the third and last set of RW simulations, we studied binding events that

were registered during a transient response in the cleft. Both stationary and

mobile buffers were included in these simulations. The Ca21 influx came

through three LCCs that alternated between open and closed; see inset of Fig.

10 A for the resulting LCC current. Each run lasted for 22 ms.

Comparison methods

Two different hypotheses about the statistical outcome of the binding events

were formed for each RyR and for each set of simulations: 1), the mean

number of events during a simulation run are the same for both models; and

2), the inter-event intervals (IEIs) of the registered binding events are the

same for both models. Each of these hypotheses was tested for each RyR and

for each set of simulations.

To perform the tests, we needed the solution of the continuous concen-

trations at each RyR. In the first set of simulations, Ca21 entered the cleft

from one single LCC and no buffers were present. Setting BT
m and BT

s to zero

in Eqs. 1–4, the steady-state solution could be solved analytically with re-

spect to r (see Fig. 8 A, inset). In the second case, in which Ca21 entered the

cleft passively through the cytosol, we fixed the concentration at the same

level as for the cytosol, 0.1 mM for all RyRs. In the third case, we needed the

[Ca21] at every time-step, c, for each RyR. We simulated the full system in

Eqs. 1–4 with the same input current as was used in the RW simulations. The

[Ca21] for the ith RyR and nth time-step, ci
n; was registered.

Test of mean number of events

Using the central limit theorem, we compared the mean number of binding

events from each RyR against the expected number of binding events from

the continuous model, with a one-sample Student’s t-test. The continuous

solution of [Ca21] was used to compute the expected number of binding

events, m, of a whole run for each RyR. We calculated a 95% confidence

interval for the expected mean from the data collected from the RW simu-

lations, together with the corresponding p-values for the Student’s t-test. The

expected number of binding events during a run of length T simulated with a

homogeneous Poisson with rate li is given by

m
i

SS ¼ l
i
T ¼ k

1
c

i
T; (33)

where c is the [Ca21] at the ith receptor and k1 is the macroscopic binding rate

(38). In the last simulation setup, where the [Ca21] varied, we had to integrate

the rate function to get the expected number of binding events, which is given by

m
i

T ¼
Z T

0

lðtÞ dt ¼ k
1

Z T

0

cðtÞi dt ’ k
1

Dt +
N

n¼1

c
i

n: (34)

Here, ci
n is the value of the [Ca21] in the nth time-step and Dt the length of

each step.

Test of same inter-event intervals

IEIs were calculated from the binding event data from each RyR in the RW

simulations. All IEIs from one RyR collected during one set of simulations

were combined to form one distribution. The equivalent expected distribu-

tions from the continuous model were computed for each RyR, for all three

simulation setups. The goodness-of-fit of the expected distributions was

tested against the registered IEI distributions collected from the RW simu-

lations, using a Kolmogorov-Smirnov (KS) test (46).

In the first two simulation setups, the [Ca21] at each RyR was fixed and

the resulting binding rates for each RyR were constant, forming homoge-

neous Poisson processes. The IEIs from an homogeneous Poisson process

are distributed exponentially with the same rate as the Poisson process itself

(38). The expected IEI distribution for the ith RyR is given by

IEI
iðtÞ ¼ l

i
expð�l

i
tÞ ¼ k

1
c

i
expð�k

1
c

i
tÞ: (35)

These were used to compute the p-values of the KS tests (see Table 2).

In the third simulation setup, the [Ca21] at each RyR was not fixed,

yielding inhomogeneous Poisson processes. The resulting IEI distribution

from such a process does not follow an exponential distribution. A useful

method for evaluating models of point processes in neural spike train data

analysis, the time-rescaling theorem, was introduced by Brown et al. (47).

They used this theorem to transform registered event times from an inhomo-

geneous Poisson process to represent realizations of a homogeneous Poisson

processes with unit rate. Given a series of time events 0 , t1 , t2 ,, . . . ,

, tn , T that realizes an inhomogeneous Poisson process with rate l(t) . 0

for all t 2 (0, T], the transformed realization of a homogeneous Poisson

process with unit rate is

L
iðtkÞ ¼

Z tk

0

l
iðtÞdt ¼ k

1

Z tk

0

c
iðtÞdt ’ k

1
Dt +

N

n¼1

c
i

n (36)

for k¼ 1, . . . , n. The IEIs of this process are tk¼L(tk) – L(tk–1) and they are

exponentially distributed with unit rate. We used the rate from the continuous

model to transform the IEIs registered from the RW model. These were then

used in a goodness-of-fit test of an exponential function with unit rate.

Bonferroni procedure

We performed three different sets of RW simulations, collected binding

events from four different RyRs, and performed two different statistical tests

for each receptor. This left us with a total of 24 statistical hypotheses. For

every test, the H0 hypothesis was that the continuous model either predicted

the mean number of binding events or fitted the IEI distributions with an

appropriate exponential function. The overall hypothesis of how well the

continuous model fitted the sampled binding event data from the full RW

model had to be determined on the basis of these tests. The number of binding

events during a run was not independent of the IEI distributions. If an IEI

distribution is known to follow an exponential distribution, the expected

number of events follows directly from the rate of this distribution, thus

reducing the number of independent tests to 12. Given that we were doing

TABLE 1 Ca21 buffer parameters

k1 k� BT

Ca21 buffer [mM�1 s�1] [s�1] [mM]

Calmodulin 100 38 24

SL membrane 115 1000 1124

FIGURE 6 Geometry of the disk that we used to model the dyadic cleft.

The LCC ion source is included in the center of the disk as a line source.
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12 independent tests, each at a¼ 5%, there was a probability P¼ 1–0.9512¼
0.46, of getting at least one false rejection. The a level for each subtest was

therefore adjusted such that our main hypothesis was tested at the 5% level

by using the conservative but simple Bonferroni procedure (46). The new

a-level for each subtest was acquired by dividing the total a-level by the

number of subtests. This gave us an a-level of 0.42% for each subtest.

RESULTS

Random Walk versus continuous solutions

To confirm that the solution from the continuous model co-

incided with the mean concentrations from the RW model, we

did one run with the continuous model and 40 runs of the RW

model, using the same parameters (Fig. 7 for result). The black

lines are the concentration in the cleft given by the continuous

model of, respectively, Ca21 (solid line), mobile buffer

(dashed line), and stationary buffer (dash-dotted line). The

colored lines, partly covered by the black lines, are 1), the

concentration results from a single RW simulation (green
lines); and 2), the average results from 40 RW runs (red lines).

Note that the scale for the stationary buffer traces is given

in the right y axis. One LCC was opened at t ¼ 0, to act as a

Ca21 source in the cleft. After ;1 ms, the steady state, in

which most of the stationary buffers were bound to Ca21, was

achieved. After 2 ms, a second LCC was opened. This time,

the steady state occurred more quickly, due to the fact that less

stationary buffer was available. We see that the [Ca21] in the

single RW run fluctuates a great deal in the steady-state pe-

riod, but the mean concentration does not. After 4 ms, both

LCCs were turned off and the Ca21 left the cleft quickly.

Some Ca21 remained, due to the unbinding of Ca21 from the

stationary buffer.

The result confirms what others have pointed out, that the

continuous solution coincides with the mean result from

several RW simulations (1–3). We did see a difference be-

tween the mean concentration of the stationary buffer regis-

tered from the RW runs, and the corresponding concentration

from the continuous solution. This error was introduced in

the RW model, because we did not account for the absorbing

boundary when calculating the probabilities that Ca21 ions

and the stationary buffer molecules near the rim would bind.

FIGURE 7 Simulation results from the continuous model

(black lines) and from the Random Walk (RW) model

(colored lines). The results represent the average concentra-

tions from the whole cleft. The same simulation setup was

used for the two models, including buffers from Table 1. One

LCC is open from the start. After 2 ms, one more opens.

Then, after 4 ms, both close. The black lines are the results

from one simulation of the continuous model. Each line,

solid, dashed, and dash-dotted, represents the concentration

of Ca21, mobile buffer, and stationary buffer, respectively.

The right y axis shows the scale for the stationary buffer. The

colored lines are the mean concentrations from 40 runs of the

RW model (red lines), and the concentrations from a single

RW simulation (green lines).

FIGURE 8 Statistical data for binding

events registered from Random Walk

simulations with one open LCC, which

acted as the Ca21 source, situated in the

center of the cleft. The binding events

are registered at four different RyRs,

positioned at 10, 30, 50, and 70 nm from

the center of the cleft. Binding events

are collected from 100 simulation runs.

The registration started when the [Ca21]

had reached the steady state. The total

time simulated was 30 ms. (A) Box-plot

of the number of binding events from

the runs at each receptor, together with a

95% confidence interval for the true

means (red horizontal lines). The blue

solid circles represent the expected number of binding events predicted by the continuous model. These values were computed on the basis of the fixed [Ca21]

at each receptor (see inset). In the box-plot, the green line represents the median of the data and the blue horizontal lines the limit of the upper and lower

quartiles. The whiskers, i.e., the black lines extending from the blue boxes, represent the rest of the data up to a maximum length of 1.5 times the size of the two

center quartiles. The green plus-signs are outliers. (B1–B4) Inter-event intervals (IEIs) from all runs presented in scaled histogram plots, corresponding to the

receptor at positions 10, 30, 50, and 70 nm from the center of the cleft. The heights of the bars are scaled so the total area of a whole histogram¼ 1. The red lines

show the probability distribution of the IEI from an homogeneous Poisson distribution with a rate based on the steady-state value of the [Ca21] at the receptor.

The blue asterisk indicates a significant difference, at 5% level, between the collected IEIs and the corresponding exponential function using a Kolmogorov-

Smirnov test.
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By placing the RyRs well inside the cleft, the outermost being

30 nm from the rim, we avoided this error when binding

probabilities for the receptors were calculated.

It is interesting to note that the large Ca21 flux to the buffers,

primarily to the stationary buffer, fluctuates significantly less

than the outflux of Ca21 ions from the cleft. This is an effect of

the low binding rate compared to the exit rate. The latter is

approximately equal to the influx from the LCC during the

steady state, not including the small outflux through the mobile

buffer. The influx when two channels were open, between 2

and 4 ms, was ;JLCC’ 1870 ions per ms, and the binding rate

to the stationary buffer during the same steady state was JSB¼
CSS 3 k1’ 20 ions per ms. This means that the outflux is 100-

times larger than the flux to the buffers.

Statistics of single binding events

As seen in Table 2, where the results of the Student’s t-tests

and the KS-tests are presented, the predicted distributions of

binding events from the continuous model fit the corre-

sponding distributions of registered binding events from the

RW model. The p-values and 95% CI are included for the

t-tests and the p-values are included for the KS-tests. We

found only one significant difference at the 5% level and

none at our Bonferroni adjusted 0.4% level. Statistics of the

binding event data are also presented graphically in Fig.

8–10. These figures also visually support the results from the

statistical tests presented in Table 2.

All three figures present the data in the same manner. In

Figs. 8–10, panels A, the number of binding events is pre-

sented in one box-plot for each RyR, together with a 95% CI

of the true mean (red horizontal lines) and the expected

number of binding events predicted by the continuous model

(blue solid circles). The distributions of IEI, for each RyR,

are presented in scaled histograms in Figs. 8–10, panels B1–

B4, in each of the three figures. The heights of the bars are

scaled so that the total area of the histograms equals 1. This

scaling enabled us to compare the distributions of IEIs with

FIGURE 9 Statistical data for binding

events that are registered from Random

Walk simulations. The Ca21 source was

passive diffusion from the cytosol during

diastole, i.e., the resulting [Ca21] was, on

average, 0.1 mM. The binding events are

registered at four different RyRs, posi-

tioned at 10, 30, 50, and 70 nm from the

center of the cleft. The binding events

were collected from 100 simulation runs.

The total time simulated was 20 s. (A)

Box-plot of the number of binding events

from the runs at each receptor, together

with a 95% confidence interval for the

true means (red horizontal lines). The

blue solid circles represent the expected

number of binding events predicted by the continuous model. These values were computed on the basis of the fixed [Ca21] at each receptor. (For an explanation

of the box-plot, see the legend of Fig. 8.) (B1–B4) Inter-event intervals from all runs presented in scaled histogram plots, corresponding to the receptor at positions

10, 30, 50, and 70 nm from the center of the cleft. (For an explanation of the histogram, see the legend of Fig. 8.)

FIGURE 10 Statistical data for bind-

ing events registered from Random

Walk simulations. The Ca21 source is

zero to three open LCCs, situated in the

center of the cleft (A, inset). The binding

events are registered at four different

RyRs, positioned at 10, 30, 50, and 70

nm from the center of the cleft. The

binding events were collected from 100

simulation runs. The total time simu-

lated was 16 ms. (A) Box-plot of the

number of binding events from the runs

at each receptor, together with a 95%

confidence interval for the true means

(red horizontal lines). The blue solid

circles represent the expected number of

binding events predicted by the varying [Ca21] from the continuous model at each receptor. (See inset for the [Ca21] at the RyR at 70 nm.) No significant

differences, at 5% level, were detected. (For an explanation of the box-plot, see the legend of Fig. 8.) (B1–B4) Transformed inter-event intervals from all runs

presented in scaled histogram plots, corresponding to the receptor at positions 10, 30, 50, and 70 nm from the center of the cleft. (For an explanation of the

histogram, see the legend of Fig. 8.)
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the expected distributions from the continuous model (red
lines). Fig. 8 shows the results from the first set of simula-

tions, where the Ca21 source was one LCC that was open

constantly. The inset in Fig. 8 A, shows the steady-state

[Ca21] in the cleft from the continuous model, where the

concentration at each RyR is marked by solid blue circles.

Fig. 9 presents the results from the second set of simulations,

where the Ca21 source was a passive influx from cytosol,

which resulted in a [Ca21] in the cleft that corresponds to a

diastolic value of 0.1 mM. The last figure, Fig. 10, presents

the results from the last set of simulations. Here, the Ca21

source was three LCCs, which alternated between open and

closed in the same manner during all simulations. The inset of

Fig. 10 A shows the varying [Ca21] from the continuous

model, at the RyR positioned at 70 nm from the center (red
line), together with the shifting LCC current.

We observe that the number of binding events and the

expected IEI distributions depend on the radial positions of

the RyRs, for the first and third set of simulations, both of

which are driven by a LCC current. This is not surprising,

because the [Ca21] are higher the closer they are to the

channel. Perhaps more interesting, the RyRs in the cleft ac-

tually discriminate the [Ca21] from a single Ca21 source.

This is important for accounting for when the cleft is treated

as a single compartment with the same lumped average

[Ca21] (15). There is also no over- or underregistration of

binding events on a certain RyR within each set of simula-

tions. This means that the continuous model reproduces the

binding events from the RW model independently of the

radial position of the RyRs.

Mean binding rate registered at a single receptor

Our goodness-of-fit tests revealed that there are no significant

differences among the registration of stochastic binding

events in the two models. This is not an average result, but a

result that holds on the level of single runs and at the level of

IEI. To acquire a better understanding of how this could be

true, we examined what we called a lumped binding rate,
�lLðtÞ; registered by a single RyR positioned 10 nm from the

center during a run with one constantly open LCC.

Each Ca21 ion within a maximum distance of the receptor

contributes, to a small extent, to the probability that a binding

event will occur. This allows us to formulate the overall

probability that a binding event will occur as a sum of small

probabilities, where each is of the form Pi
B ¼ 1� e�

�liDt; see

Eq. 24. Again, given small binding probabilities, this for-

mulation can be approximated with Pi
B ’ �liDt: The resulting

lumped binding probability is then PL
B ¼ Dt+

i
�liDt�lL; where

�lL represents the lumped binding rate.

During one simulation, we registered �lL at each time-step.

These values are plotted against time in Fig. 11 A. The right y
axis gives the corresponding binding probabilities. The sto-

chastic and discrete nature of the rates may be seen clearly in

these chaotic data. The rate varies from time-step to time-step,

as shown in the enlargement of the figure for t¼ [0, 0.01] ms,

shown in Fig. 11 B. The mean rate registered for the whole run

was �lL ¼ 1:90 ms�1. In 80% of the time-steps, the rate was

smaller than this value, and in 11% of the time-steps, the rate

equaled zero. In only 4.1% of the time-steps was the rate .10

ms�1 and the maximal registered rate for this run was 414

ms�1. These rates seem large but the resulting binding prob-

abilities, PL
B ¼ �lLDt;were, as seen in the right y axis, all�1.

We used the same size of time-step as earlier, Dt ¼ 1.25 3

10�4 ms. The binding probability that corresponded with the

mean rate for the whole run was 2.4 3 10�4. To be able to take

the average of the binding rates over several time-steps, it has

to make sense to take the sum of several binding rates. This

measure is justified by the small binding probabilities that

each receptor experiences every time-step (Fig. 11, A and B).

The crucial issue was how the average binding rate fluctuates

on a larger timescale, i.e., do the large variations in binding

rates in each time-step average-out at a larger timescale and if

so, how small can this timescale be?

The averaged binding rate did not vary much from run to

run. The mean averaged rate from 100 runs was [1.904 6

0.019] ms�1. This value did not differ significantly from the

constant rate from the continuous model, lc ¼ 1.91 ms�1,

p-value ¼ 0.74. This result corresponds to the failure of de-

tecting a significant difference between the average number

of binding events that was registered in the RW simulations

and the number given by the continuous model (see the re-

sults of the Student’s t-tests in Table 2). The variations in the

binding rate at the timescale of a whole simulation run thus

averaged-out and were statistically indistinguishable from

the continuous constant rate.

On a smaller timescale, we would expect the averaged rate

to fluctuate more. For example, the mean rate for the interval

shown in Fig. 11 B, i.e., t¼ [0, 0.01], was 2.70 ms�1. This is

greater than the average rate for the whole run, which was

TABLE 2 Binding event statistics

RyR positions

Student’s t-test
KS-test

m 95% CI p-values p-values

One open LCC, steady-state [Ca21]

10 nm 56.8 (54.3, 57.3) 0.22 0.17

30 nm 29.8 (28.4, 30.8) 0.74 0.042*

50 nm 17.1 (15.6, 17.2) 0.059 0.56

70 nm 8.79 (8.29, 9.41) 0.83 0.060

Diastolic steady-state [Ca21]

10 nm 15.0 (14.0, 15.5) 0.51 0.10

30 nm 15.0 (14.1, 15.4) 0.49 0.54

50 nm 15.0 (14.0, 15.5) 0.48 0.055

70 nm 15.0 (13.8, 15.3) 0.25 0.56

Transient [Ca21]

10 nm 68.3 (66.5, 70.1) 0.96 0.31

30 nm 35.6 (33.7, 36.1) 0.27 0.39

50 nm 20.4 (19.2, 21.0) 0.52 0.64

70 nm 10.4 (9.75, 10.8) 0.52 0.087

*Significant difference.
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1.90 ms�1. However, the fluctuation at this timescale does

not tell us much, because the expected number of binding

events with this rate at this timescale is 0.027. To investigate

the effect on the actual binding events, we have to take the

average on a larger timescale. A proper scale would be the

mean IEI registered in the simulation runs. This was found to

be 0.52 ms (Fig. 8 B1). We filtered the registered rate with a

Gaussian filter, which acts as a weighted mean over a certain

time window defined by the width of the filter, s (48). This

width was set to half the size of the mean IEI, 0.26 ms. The

result is presented in Fig. 11 C, together with the constant rate

from the continuous model. The filtered rate is a continuous

function of time and does not vary nearly as much as the

unfiltered rate in Fig. 11 A. The maximal value of the filtered

signal was 2.1 ms�1, the minimal was 1.7 ms�1, and the

standard deviation from the mean, which of course was the

same as the unfiltered rate, was 0.1 ms�1. This small variation

explains why the IEIs of the registered binding events from

the RW model were statistically indistinguishable from those

of the continuous model.

Parameter sensitivity

To check the dependency of some of the parameters we have

used, we made five runs in which we altered the diffusion

constant, Dc, together with the maximal input current from

one open LCC, �iLCC; in the same manner as Tanskanen et al.

(32) did. We scaled the Dc and �iLCC by factors of [5, 2, 1, 0.5,

0.1] and ran 100 runs of the steady-state condition, in which

one LCC was open. The spatial resolution for the registration

of binding events was set to s ¼ 5 nm for every run. We

compared the number of registered binding events with the

expected number from the continuous model. The number for

the latter was constant in all runs, because the concentrations

at the receptors were the same under the scaling. The result is

shown in Fig. 12 A. The figure shows a box-plot of the

number of binding events registered at the receptor 30 nm

from the center of the cleft versus the scale on the x axis.

There are no significant differences for scale ¼ [5, 2, 1, 0.5],

but for scale¼ 0.1, there is. To investigate the dependency of

the parameters further, we also altered s. We used [5, 2, 1,

0.5] for s and also did 100 runs for each different value. The

result is presented in a similar box-plot in Fig. 12 B. Note that

the leftmost datapoints in this figure are identical to the

rightmost datapoints from the previous figure. From the fig-

ure, we see that the number of registered binding events falls

steadily. This illustrates that the binding event registration

depends, not only on physical parameters, but also on the

spatial resolution of the RW method. This observation co-

incides with the parameters used in the dimensionless on-rate

Eq. 29.

One large difference between the continuous model and

the RW model is that in the RW model, a binding event ac-

tually leads to a removal of an ion from the cleft, in contrast to

the continuous model where nothing happens. To test

whether this difference is crucial for the registered difference

between the two models as seen in Fig. 12 B, we performed

the same simulations, but without registering any binding

events. Instead we registered the mean binding rate from each

run and compared this with the rate predicted from the con-

tinuous model. In Fig. 12 C, the red lines represent 95%

confidence intervals of the true mean binding rate from the

100 runs. The rate predicted from the continuous model is

represented by the blue solid circles. We cannot differentiate

statistically between the collected mean binding rates and

those of the continuous model. We also collected the mean

binding rates from the simulations we did in Fig. 12 B, in

which ions were removed from the solution after they were

bound. The 95% confidence interval of the true mean for

these binding rates is represented by the blue horizontal lines.

Here, we see that the binding rates follow the number of

registered binding events from Fig. 12 B, and not the pre-

dicted rate from the continuous model. These results illustrate

why the RW model starts to differ from the continuous model

for low values of the diffusion constant together with small

values of the spatial resolution.

FIGURE 11 (A and B) Lumped bind-

ing rates for each time-step, registered

from one RyR during a single Random

Walk simulation. In the simulation, one

constantly open LCC channel was used

and the RyR was positioned 10 nm

from the center of the cleft. (B) En-

largement of panel A for t ¼ [0, 0.01]

ms. The mean binding rate fluctuates a

lot for each time-step. (C) Filtered ver-

sion of the binding rate. A Gaussian

kernel with s¼ 0.26 ms, corresponding

to the scale of the registered IEIs, was

chosen for the filtering. (A–C) Corre-

sponding binding probabilities are

given by the right y axis. For the ith

time-step, this quantity is computed by

Pi ¼ 1� e�li Dt ’ li Dt.
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As discussed above, the difference between the two models

is parameter-sensitive. This sensitivity can be expressed by

the dimensionless on-rate, k1*, from Eq. 29. This value de-

pends on the diffusion constant, D, the macroscopic on-rate,

k1, and the spatial resolution, s. For the simulations for which

we registered a difference between the RW model and the

continuous model, i.e., for scale ¼ 0.1 in Fig. 12 A, k1* ¼
0.013. This value indicates an upper limit for when the two

models start to diverge. The spatial resolution is, in a sense, a

free parameter. One could, in theory, make it as small as one

likes, thus forcing a difference between the two models. Al-

ternatively, one could make it large to smooth out a potential

difference. In practice, the value of this parameter is deter-

mined by the level of spatial detail that is required in the

simulation.

DISCUSSION

We have compared a RW model and a continuous model of

Ca21 diffusion in the dyadic cleft, using the distributions of

stochastic events of single Ca21 ions binding to single re-

ceptors as the measurement. We showed that for a large range

of physiologically relevant parameters, there are no signifi-

cant differences between the continuous model and the RW

model with respect to these binding events. This is a some-

what unexpected result, considering the small number of ions

included in the discrete model of [Ca21] and the inherent

variation in their position. In one set of simulations, the av-

erage number of Ca21 ions in the cleft is 0.02, corresponding

to a diastolic [Ca21] of 0.1 mM. Thus, most of the time, there

are no Ca21 ions in the cleft. Despite this, the corresponding

constant binding rate from the continuous model can repro-

duce the binding events registered in the RW model.

New method for computing bimolecular
binding probabilities

We present a method for bimolecular binding probabilities

that is, to the best of our knowledge, novel. The proposed

model is based on a macroscopic rate law that we use in our

RW simulations. The model is analytical and gives the

binding rate between two molecules exactly. To obtain this

result, it is necessary only to ensure that the probability that

more than one binding event per time-step will be registered

is small. The method is used to calculate the probability that a

diffusive ligand will bind to a receptor, which can be sta-

tionary or mobile. The binding rate depends only on the on-

rate, k1, the diffusion constant(s), Dc (Dm), the size of the

time-step, Dt, and the distance between the two molecules,

DS. The only parameter not known before a simulation is DS,

and our knowledge of the other parameters allows us to

precompute the binding probabilities with respect to DS. The

method also lets us use larger time-steps for the computa-

tionally expensive reaction process. We also investigated

thoroughly the physical parameters for which the model is

applicable.

Comparison method from hazard analysis
and neuroscience

RW methods and continuous methods are models of diffu-

sion at two different levels. They have been compared before,

but here we used a quantitative goodness-of-fit measurement

in the comparison study. The statistical method that we used

was originally developed for the evaluation of point process

models, e.g., errors in industrial processes, so-called hazard

analysis (49). The method has also recently been used in

neuroscience for evaluating models in the analysis of data for

FIGURE 12 (A and B) Number of

registered binding events from 100 runs

each, where we altered different param-

eters. The data were collected from a

receptor 30 nm from the center and are

represented by the box-plots together

with a 95% confidence interval for the

true means (red horizontal lines). The

blue solid circles represent the expected

number of binding events that are pre-

dicted by the continuous model. (A) We

scaled the number of Ca21 ions that enter

the cleft, i.e., �iLCC; together with the

diffusion constant D, with a factor rep-

resented by the x axis. The spatial reso-

lution was constant for these simulations,

s¼ 5 nm. The blue asterisk denotes a statistical difference between the continuous model and the RW model for scale¼ 0.1. (B) We kept the scale constant at 0.1,

but altered the spatial resolution (see the x axis). Here, the difference between the RW model and the continuous model increased as the mean value of the collected

binding events declined with the spatial resolution. (C) We ran the simulation 100 times. We collected the mean binding rates for each run that the receptor were

exposed to. The data from each set of 100 runs are presented as 95% confidence intervals for the true means. The blue horizontal lines represent the binding rates

collected from runs in which we registered binding events, as in panel B. The red horizontal lines represent binding rates collected from runs in which we did not

register binding events, only the rate. In these runs we could not differentiate statistically between the registered binding rates and the rates predicted from the

continuous model.
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neural spike trains (47). The method is straightforward to use

and could be employed in similar studies where discrete and

stochastic models are compared.

Stochastic Random Walk versus deterministic
continuous modeling of [Ca21]

A number of recent publications claim that when the number

of participating particles in a volume falls, a deterministic

description of concentration is invalid or does not make

sense, and fully stochastic methods have to be employed

(2,6,10,12). Our conclusion refines these statements.

The continuous model predicts the average number of

particles involved in a process. For processes that involve a

small number of particles, RW simulations show that the

variation in the number of particles can be of the same mag-

nitude or larger than this average, in a single simulation (1–

3,7). This is a strong argument against using a continuous

description of [Ca21] in small volumes such as the dyadic

cleft, but only if the precise position of a certain diffusive

ligand is important for the physiological process. We show

that this is not the case for ligands with sufficiently large

diffusion constants. The important receptors in the cleft that

register the Ca21 signal do not switch states according to

whether there are Ca21 ions close to them or not, but rather

according to whether there are any Ca21 ions bound to them or

not. These events set the right timescale for the discreteness

and stochasticity of the signaling in the cleft. In our study, we

showed that these events can be simulated perfectly well by a

continuous model of [Ca21], for a given range of model pa-

rameters. The binding events occur on a larger timescale,

hiding the huge variations in the single binding rates con-

nected to each diffusing Ca21 ion in the RW simulations (il-

lustrated in Fig. 11, A–C). Fig. 11, A and B, show the strongly

fluctuating binding rates. Fig. 11 C shows the same rate but

filtered through a Gaussian filter, with s equaling half the

mean IEI, the timescale for the binding events. Here we see

that the fluctuations on the scale of IEIs are small and follow

the constant rate of the continuous model. In this way, the

receptor acts as an integrator of the fluctuations in the binding

rates. We also show that the radial positions of the receptors

are important for determining the rate of binding events at

each receptor. This is important to bear in mind when, as in

some models, the dyadic cleft is treated as one compartment

with the same lumped [Ca21] (15). The concentration may

reach a steady-state level quickly, but not all receptors sense

the same [Ca21] inside the cleft.

Tanskanen et al. (32) present results where their RW model

shows a different result for the ECC gain, when the diffusion

constant of Ca21 and the influx of Ca21 ions in the cleft are

varied with the same amount. This difference is most probably

caused by a different number of Ca21 ions binding to the

RyRs in the different runs. If the same had been done in a

simulation in which the Ca21 diffusion was modeled deter-

ministically, a significant difference would not have been

noticed, because the [Ca21] at the RyR would have been the

same, or more precisely, would have varied with the same

mean, in each run. The authors claim that this is a ‘‘subtle but

potentially significant difference in predicted macroscopic

behavior arising from the underlying stochastic simulation of

Ca21 motion in the dyad’’ (32). We scaled the parameters in

the same way as they did and we also recognized a difference,

but only for the smallest value of the scaling, i.e., scale¼ 0.1

(Fig. 12 A). In addition, we changed the spatial resolution of

the RW simulation and found that the number of binding

events also depends on this parameter (Fig. 12 B). Finally, we

showed that the difference between the models depends on the

fact that an ion is removed from the solution after it is bound

(Fig. 12 C). The difference becomes significant for large values

of the dimensionless k1* parameter (see Eq. 29), i.e., small

values of D and s, and large values of k1. When k1* is too

large, a single ion’s contribution to the total binding rate be-

comes significant and the removal of the ion after a binding

event will thus alter the total rate. We found that when k1* .

0.013, the two models registered different numbers of binding

events. This is probably a conservative measure, because in

our simulations we did not close a receptor for registration

after an ion was bound. This made the effect of removing an

ion from the vicinity of an unbound receptor larger than it

would have been if the receptor had been in a bound state. For

example, when k1* ¼ 0.026 for the binding of Ca21 ions to

the stationary buffer in the transient simulation, we did not

register any difference between the two models. It is important

to bear in mind that the on-rate k1 for the RyRs is difficult to

measure, and thus is often a free parameter. This makes the

actual difference between the two models more fuzzy in real

modeling, because one probably could fit the two models’

macroscopic behavior to the same data, just by using slightly

different parameters.

There are limitations in the continuous model that relate to

the representation of more details. Such details could, for

example, be the electrostatic interaction between single

molecules (50), diffusion limitations due to excluded volumes

(51), or diffusion in environments with large tortuosity and

with possible molecule traps (52). However, the introduction

of these extra details must be accompanied by an argument for

the necessity of their inclusion. The study by Nicholson et al.

(52) actually incorporates the micro-level effects into an ef-

fective diffusion constant. The authors thereby sanction the

use of a macroscopic model of a micro-level phenomenon.

Limitations in our model of the dyadic cleft and
Ca21 dynamics

Our study of the dyadic cleft is limited, because it only ex-

amined the distribution of binding events and not the result of

this event, i.e., the whole physiological signaling pathway of

the Ca21-induced Ca21 release. However, these extra dy-

namics have nothing to do with diffusion. Thus, their inclusion

would only introduce redundant information into our com-
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parison study. We did include the dramatic event of a channel

opening and closing during the simulation (Fig. 10).

Our physiological model of the cleft does not incorporate

all present knowledge about the cleft, e.g., the electrostatic

effect on diffusion due to the charged phospholipids in the

membrane (53,54), or the obstructing effect that the large feet

of the RyRs obviously have in the cleft (55). However, the

aim of the study was not to present a state-of-the-art model of

the dyadic cleft, but rather to use the cleft as a well-studied

model system for our comparison study between the RW

model and the continuous model. The effects of these extra

details can, however, be included in both models, again only

introducing redundant information. The electrostatic effect of

the membrane is probably the easiest to include in the con-

tinuous model, as Soeller and Cannell (21) have done in their

study of Ca21 diffusion in the cleft. Our cleft model is also

one-dimensional. Others have simulated the Ca21 dynamics

in the cleft using both two and three dimensions (12,21,29).

We could have expanded our study to both two and three

dimensions and added the geometric effects of the large feet

of the RyRs, but our intention was not to present the most

accurate model of the cleft. The dimension we included in our

study was in the radial direction, because it is in this direction

that the gradient in [Ca21] is largest when a channel is open.

Neither did we include the effect of crowding (56,57) in

the small and fuzzy cleft space (58). However, a Ca21 ion is

much smaller than the other diffusing macromolecules that

are supposed to be in the cleft (59). A single Ca21 ion can

thus probably utilize most of the volume, making the ex-

cluded-volume argument regarding crowded environments

(51) less forceful for Ca21.

The binding of single Ca21 ions to the RyRs are not re-

flected in the solution of the continuous model. Each RyR

should introduce a small Ca21 sink to the nearby environment

when an external Ca21 source is turned on, and introduce a

small source when the external Ca21 source is turned off. Due

to the large diffusion constant to Ca21, and the low affinity of

the RyR, this sink is very small compared to the outflux of

Ca21 ions from the cleft. We performed RW simulations in

which a Ca21 ion was removed from the solution when it was

registered as bound to a RyR, and the same simulation where

the Ca21 ion was not removed. We could not distinguish

between the results. This sink is also only present during a

transient face of a [Ca21]. During the steady state, the bind

flux is balanced by the unbind flux from the receptors.

CONCLUSION

The discrete and stochastic Ca21 signaling in the physio-

logical important dyadic cleft can be modeled accurately

using a deterministic model of [Ca21] together with a discrete

and stochastic receptor model, for a certain range of param-

eters. Our study is the first to use the discrete binding event of

single Ca21 ions as a direct quantitative measure in a com-

parison study between an RW model and a continuous model

of [Ca21] in a small signaling micro domain. We also con-

tribute a model of bimolecular binding probabilities that can

be used in RW simulations. This model is, to the best of our

knowledge, novel. The model is analytical; hence, the results

do not depend on the size of the time-step. The study as a

whole contributes both to the development of intracellular

reaction-diffusion simulators (6) and the fundamental un-

derstanding of what the models actually represent (2).
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