Simulation of neuronal networks using

NEST

Simulering av nervcellndtverk med NEST

Johan Hake

Norges Landbrukshggskole
Institutt for tekniske fag

As, augusti 2003

Preface

This thesis is a partial fulfillment of the Cand. Scient. degree in Physics at
the Agricultural University of Norway. It has been written at the Department
of Agricultural Engineering, with professor Gaute Einevoll as main supervisor
and associate professor Hans Ekkehard Plesser as second supervisor.

I would like to thank professor Einevoll, who has not only been my main
supervisor, encouraging me and giving me good and thoughtfull feedbacks, but
the person who first introduced me to the thrilling and interesting subject of
neurophysics. Without him, I would probably not have written this thesis. I
would also like to thank associate professor Hans Ekkehard Plesser. His vast
knowledge from shortcuts in emacs and other basic but necessary things, to
deeper understanding of analytical and numerical methods, has been a great
help for me during my work. I also want to thank both for coping with my
impatience and need for doing it in my way and I hope I can work together
with them in the future.

When 1 learned using the excellent operating system of Linux, the pro-
graming language of C++ and finally the publishing tool of ETEX, I have also
had great help from my fellow students. Thanks!

I also want to thank my wonderful wife Hanna and our comming child,
who she bears. Hanna has really coped with me during my not-so-good-days,
especially in the writing process. The child who shall see the light of the day

this autumn, has also been a major inspiration for me.

I want to finish with citing Gaute, who with a grin on his face, often re-
minded me during the not-so-easy times in the process.

The more it hurts the more you learn!

As, August 13, 2003

Johan Hake

Summary

This thesis deals with the implementation of efficient and reliable models of
spiking neurons and conductance-based synapses, present in the dorsal lateral
geniculate nucleus (LGN) in a cat, in the framework of the NEST neuronal
network simulator.

The leaky-integrate-and-fire-or-burst (LIFB) model is used to model the
special bursting activity present in neurons in the LGN, and conductance-based
models for three types of synaptic receptors, AMPA, GABA, and GABAg are
presented. Two types of integration methods, the general purpose Runge-
Kutta (RK) method, and the exact integration method are used to integrate
these models. The RK methods are robust and extensively used methods that
provide a formal framework for error analysis. The second (RK2) and fourth
(RK4) order of these methods are used. The method of exact integration is
a precise and efficient method that gives a structure for fast registration of
presynaptic spikes and lumping of conductances, when used to integrate the
synaptic conductances.

A thorough error analysis is presented, revealing five discontinuities in the
LIFB model, each introducing an error when integrated, and one technical er-
ror occurring when a presynaptic spike is registered. A generic procedure for
handling discontinuity errors are introduced and implemented to handle two
out of five of these errors. The technical error is handled by using the precise
spike time when a presynaptic spike is registered.

In this thesis an effective procedure for handling conductance-based synapses
in NEST is presented. It does not use the general but time consuming event
handling system in NEST to communicate the conductances between a synapse
and the receiving neuron, but rather places the synapse inside the receiving
neuron, so direct communication between these are possible.

The extensions to NEST implemented as part of this thesis will allow for
more realistic simulations of the LGN circuit than previously possible.

Sammandrag

Den hir hovedoppgaven behandlar effektiva och tillférlitliga implementeringar
av modeller av fyrande neuroner och konduktansbaserade synapser, vilka &r
nirvarande i dorsal lateral geniculate nucleus (LGN) i en katt, i den neurala
nitverks simulatorn NEST.

Leaky-integrate-and-fire-or-burst (LIFB) modellen anvénds for att simulera
den speciella bursting aktiviteten som finnes i neuroner i LGN. Konduktans-
baserade modeller for tre olika typer synaspsreseptorer, AMPA, GABA, och
GABAg presenteras. Tva olika integrerings metoder, den generella Runge-
Kutta (RK) metoden och exakt integrering anvéinds for att integrera dessa
modeller. RK metoderna dr robusta och anvinds av manga och de skinker
oss ett ramverk for numerisk fel annalys. RK metoder av andra orden (RK2)
och fjirde orden (RK4) anvinds. Exakt integrering &r en precis och effektiv
metod som ger oss en struktur for effektiv registrering av presynaptisk fyring.
Nér denna metoden anvinds for att integrera den synaptiska konduktansen
blir det ocksa mdjligt att halla flera konduktanser i samma variable, sa kallad
lumping conductances.

En nogrann felanalys avslgjar fem diskontinuiteter i LIFB modellen, som
var och en introducerar ett numerisk fel ndr den blir integrerad, och ett tekniskt
fel som uppstar nir en presynaptisk fyring blir registrerad. En generell pro-
cedur for hantering av diskontinuitetsfel blir utvicklad och implementerad for
att hantera tva av dessa. Det tekniska felet blir behandlat med att anvinda
precis fyringshantering, nér en presynaptisk aktionspotential skall registreras.

I denna hovedoppgaven presenteras ett effektivt sidtt att hantera konduk-
tansbaserade synapser i NEST. Det generella men tidskrdvande hindelseshanter-
ingssystemet i NEST anvinds inte for att kommunisera konduktansen mellan
en synapse och det mottagande neuronet. Enskilda synapser blir héllre plasser-
ade inne i det mottagande neuronet, sa att direkt kommunikation mellan dessa
blir mojlig.

Utvidgningen av NEST som &r gjord som en del av denna hovedoppgaven
gor det mojligt att foreta mer realistiska simuleringar av den neurala kretsen
i LGN, dn vad tidigare varit mojligt.

Contents

Preface
Summary
Sammandrag

1 Introduction

2 Early visual pathway
2.1 Imtroductiono
2.2 Retinal circuit
2.3 Thalamusand LGN
2.3.1 Tomic and burst firing o000
2.3.2 Synaptic connections in the LGN

3 Models
3.1 Introduction
3.2 Model of relay cell, LIFB model
3.3 Models of synapses Lo
3.3.1 Conductance in ionotropic synapses
3.3.2 Conductance in metabotropic synapses

4 NEST
4.1 Introduction
4.2 Large networks and fixed time steps
4.3 Nodes, events and synapses
4.4 Interface
4.5 Extendability 00 oo

5 Numerical implementations
5.1 Introduction
5.2 LIFBmodel
5.3 Synaptic inputo
5.4 hwvariable

iii

vii

11
11
11
15
15
19

23
23
23
24
24
24

X CONTENTS

5.5 Erroranalysis 35
5.5.1 Registration of a presynaptic spike 37

5.5.2 Onset and offset of an external current 39

5.5.3 Threshold passings 40

5.5.4 Incoming spikes and synaptic currents 45

6 Result of testing 49
6.1 Testsetup e 49
6.2 Results. 52

7 Discussion 59
A Integration methods 63
A1 Runge-Kuttametods 63
A2 Exact integration L oL 68

B Interpolation parameters 71
C Selected C++ code 73
C.1 Introduction 73
C.2 LIFB Neuron with RK4TS method 73
C.3 Abstract synapse class L. 85
C.4 GABA,j synapseo 90
C.5 GABAgsynapseo 94
C.6 Spike event buffer o Lo 99

D Selected SLI code 103
D.1 Introduction 103
D.2 Thefifthtesto 103

References 107

Chapter 1

Introduction

The understanding of information processing abilities of biological neural net-
works is a huge task, which during the last decade has been catalyzed by the
fast development of computer power. With use of modern clustering technolo-
gies, networks of hundreds of thousands neurons can be simulated (Diesmann
et al. 1999). To accelerate such large simulations, simple models of neurons
are used. A type of model that is commonly used is the integrate-and-fire
models. These models avoid the biophysical description of an action potential
and only simulate the subthreshold dynamics of the neuron. Long before the
mechanisms for action potentials were understood, Lapicque (1907) presented
a basic model of an integrate-and-fire neuron. Nearly hundred years later these
type of models is still used to simulate neural activity.

Our group at the Agricultural University of Norway at As, is investigat-
ing the information processing abilities of a circuit in the early visual pathway
(EVP) of a cat, namely the dorsal lateral geniculate nucleus (LGN). One goal
for the group is to develop a network model of the LGN circuit, based on
spiking neurons, which we hope will tell us both qualitative and quantitative
features of the real biological network. A step toward this goal is to imple-
ment an integrate-and-fire model of one of the most important cells in LGN,
the relay cell. A few years ago Smith et al. (2000) suggested such a model,
the leaky-integrate-and-fire-or-burst (LIFB) model. This model reproduces the
significant feature of bursting activity of the relay cell. We plan to use this
model, not only for the relay cell, but as a general working horse for other neu-
rons with bursting activity in the circuit too. Three different synaptic models,
that are present in the circuit of LGN, shall also be implemented. These are all
conductance based models and are built upon models developed by Destexhe
et al. (1998). All the models are implemented in the NEural Simulation Tech-
nology (NEST) initiative, which is a simulation program for spiking-neuron
networks, written in C++ by Diesmann and Gewaltig (2003). NEST takes
advantage of advanced, multiprocessor threading technology to simulate large

2 Introduction

networks and it provides a very robust framework for network simulations with
spiking neurons.

The overall goal of this thesis is to implement efficient and reliable models
of spiking neurons and conductance based synapses, present in the LGN in a
cat, in the framwork of the NEST neuronal network simulator. These models
are escential for the development of network models for the LGN circuit.

The issue of efficient and reliable simulations of neural networks has been
studied lately by different authors (Hansel et al. 1998, Shelley and Tao 2001,
Destexhe et al. 1994 and Rotter and Diesmann 1999). Reliability in the simu-
lation result is crucial when large network simulations are done. If a network
is not simulated with sufficient precision, numerical errors are introduced and
may undermine any result claimed by the simulation. Also when simulations
with tens and hundreds of thousands of neurons are done, it is not enough to
have a fast framework for neural communication, that NEST provides us. The
implementation of the individual models have to be optimized, to achieve effi-
cient integrations. We are going to combine two different integration methods,
the general purpose method of Runge-Kutta (RK) and the fast and reliable
integration method of exact integration, with different methods for dealing
with numerical errors. By this we can benefit from the special features in our
models, without losing reliability and speed when these are simulated.

The thesis is structured as follows. The second chapter contains a brief
presentation of the EVP and the LGN circuit we are investigating, and the
third chapter presents the models we are using. These are the fundamental
building blocks in the network model we want to establish. Chapter 4 is a
brief presentation of NEST, the simulation program we are using, and chapter
5 contains a presentation of how the models from chapter 3 is implemented
in the different integration methods. This chapter also contains a thorough
error analysis of the implemented models. The implementations and the error
analysis are then tested in chapter 6. Finally, I discuss what was accomplished
and suggest the next steps.

Chapter 2

Early visual pathway

2.1 Introduction

In this chapter we give a physiological introduction of the signal processing
circuit we are going to develop models for, namely the feed forward circuit of
the dorsal lateral geniculate nucleus (LGN), in a cat.

Where nothing else is mentioned this chapter is based on Sherman and
Guillery (2001), Sterling (1998), Sherman and Koch (1998) and Dayan and
Abott (2001).

The early visual pathway (EVP) in cats! carries information from the nar-
row band of electromagnetic radiation that we call light, through the circuit
of the retina and the visual thalamus to the primary visual cortex. From here
the information is carried higher up in the brain hierarchy for further interpre-
tation. The EVP does not carry information about every photon striking the
retina into the primary visual cortex but rather a processed and compressed
neural image. The first would consume far too much energy and also would
carry a lot of redundant and non-useful information.

There are three parts in the EVP, the retinal circuit, the visual thalamus or
the (LGN) and the primary visual cortex. The retinal circuit receives physical
information from the light striking the retina and transforms it into a neural
image. The LGN relays this image to the primary visual cortex where it is fur-
ther processed. A striking property of the EVP is that visual information from
neighboring location in visual space are conveyed, through the entire pathway,
by neighboring neurons. This means that a map of the visual information
striking the retina is created in the primary visual cortex. This map is called
the retinotopic map, and it places a strong constraint on the signal-processing
in the EVP.

This thesis focuses on the feedforward circuit of the LGN, and is not con-
cerned with recurrent signals or signals from other parts of the central nervous

! This thesis focuses primarily on the EVP of the cat. The general picture of the EVP is
the same for most mammals, but that of the cat is the most studied.

4 Early visual pathway

system (CNS). Therefore only the parts of the EVP that give us the most im-
portant features about the information that reaches the LGN are emphasized.

2.2 Retinal circuit

The EVP starts with the retinal circuit. This is a complex circuit that receives
an image of the physical world from the optical system of cornea, pupil and
lens, and transfers it into a neural image that is carried by the optical nerve
to the LGN. The transformation is done in three stages: i) transduction of the
physical image by photoreceptors, i.e. cones and rods; ii) transmission of these
signals by excitatory chemical synapses to bipolar neurons; and i) further
transmission by excitatory chemical synapses to ganglion cells. Axons from
the latter form the the optical nerve. At each synaptic stage there are lateral
processing neurons called, respectively, horizontal and amacrine cells. These
six different types of neurons give the retinal circuit a vast operating range,
from starlight and twilight to daylight signal-processing. The circuit also com-
presses the optical image, from just being a number of photons hitting the
retina, to a more complex code that contain different spatial and temporal
structures of the light that strikes the retina. The spatial and temporal struc-
tures that are created in the retinal circuit are commonly called the receptive
fields.

The receptive field of retinal ganglion cells is the small roughly round area
in the visual field where a cell transducts information from. It is created by
converging inputs from many photoreceptors and bipolar cells and the special
properties are created by different synaptic treatments of the signals. The
receptive field could either be of ON or OFF type, with the difference that
ON types are sensitive to high intensity light in the center and low intensity
in the surround of the field, and OFF types are sensitive to low intensity light
in the center of the field and high intensity in the surround. In this way the
visual signal that is transduced through the rest of the EVP, does not carry
information about every photon striking the retina, but rather a compressed
image with information about bright and dark areas in the visual field.

Neurons carrying the visual signal through the EVP are divided into two
coarse classes, depending on the behavior of the receptive field. One type,
X cells, sums up contributions from the field linearly on a long timescale,
while the other type, the Y cells, sum up contributions in a fast and transient
manner. Another difference is that the spatial resolution of the receptive field
of the X cells is higher than the receptive field of the Y cells. This is illustrated
in figure 2.1. Here we see the relative size of the different type of ganglion cells,
with their corresponding receptive fields, and their response to a light spot.

2.3 Thalamus and LGN 5

Off/IX-pathway On/X-pathway Off/Y-pathway On/Y-pathway
Morphology i
Receptive
fields ®

Intracellular
responses

Figure 2.1: The figure shows the form and function of cat retinal ganglion cells. Ganglion
cells in the X-pathway have a narrow dendritic field, and the ones in the Y-pathway a broad
one. The cells are stimulated with light in the center of their receptive fields. The response of
the ON cells is firing and the OFF cells is suppression. The ganglioncells in the X-pathway
give a transient and sustained response and the ganglion cells in the Y-pathway give mainly
a transient response. Modified from Sterling (1998).

We see that the receptive field of the ganglion cells in the X-pathway is much
smaller than in the Y-pathway, and they therefore collect input from the retina
with higher spatial resolution.

2.3 Thalamus and LGN

After the different temporal and spatial information from the visual image has
been coded by the retina, the signal is carried by the ganglion cells to the part
of the thalamus called LGN. Here activity from other parts of the CNS have
the opportunity to modulate the relay of the signal to the primary visual cortex.

The neural components of the circuit of the LGN can be divided into three
components: the external afferent input to the nucleus, the relay cells that
project to cortex, and the interneurons. Figure 2.2 schematically illustrates
the circuit of LGN. The external inputs can be divided further into two classes:
driving and modulatory inputs (Sherman and Guillery 2001). The driving in-
put is strong and capable of driving the relay cell. The signals coming from the
retina are driving input, and it is this information the LGN relays to cortex.
The modulatory inputs consist of local feedback from the thalamic reticular
nucleus (TRN) and from the interneurons in the LGN, feedback from visual
cortex and signals from the brainstem. The TRN is a layer of neurons that is

6 Early visual pathway

Cortex | Brainstem
|
|
|

TRN

LGN

Retina

——> Excitatory RC: Relay cell

. IN: Interneurons
""" > Inhibitory RG: Retinal Ganglion cells

Figure 2.2: Schematic figure of the LGN circuit. The relay cells receive driving signals from
the retina and pass it to cortex, thick line. This signal is modulated by inhibitory signals
from interneurons and TRN cells, and by excitatory signals from the visual cortex. The
PBR cells, in the brainstem, innervate the whole LGN with both excitatory and inhibitory
modulatory signals. The figure is redrawn and simplified from Sherman and Koch (1998).

wrapped around the LGN. It is activated both by ascending input from LGN
and by descending input from V1. The TRN makes inhibitory projection on
LGN relay cells and interneurons. The brainstem is the lower extension of the
brain where it connects to the spinal cord and it controls basic functions such
as breathing, digestion, heart rate, blood pressure and being awake and alert.
The brainstem sends both inhibitory and excitatory signals to the LGN.

2.3.1 Tonic and burst firing

Thalamic relay cells have two different response modes: i) tonic and i) burst
firing mode. The first corresponds to a linear response to the input, the lat-
ter to a non-linear transient response. The response mode of the relay cell
depends on the membrane potential. If the relay cell has a relatively high
potential, being relatively depolarized, the response mode is tonic. If the cell
has a lower potential, being relatively hyperpolarized for a while, the response
mode is burst. Figure 2.3 shows the response of a cat relay cell, when a con-
stant current was injected. Depending on the initial potential of the cell the
response mode is different.

2.3 Thalamus and LGN 7

wowm A AAAA

B: —60W

|

80 msec

60 mV

C:

J 0.3nA L

Figure 2.3: Result from a constant current injection in a relay cell from a cat, with different
initial membrane potentials. A: The injection manages to drive the relay cell with a tonic
response. B: The injection does not manage to drive the relay cell and there is no response.
C: The T-current is de-inactivated and the injection manages to depolarize the relay cell
enough to cross the threshold for the T-current and the relay cell responds with a burst.
From Sherman and Koch (1998)

The spikes fired in tonic mode are ordinary sodium and potassium spikes
with high threshold value, around -35 mV, A in figure 2.3. The spikes fired
in the burst mode come from a transient calcium current called the T-current
or just I,. The threshold for activation of this current is around -65 mV, and
it is therefore called the low threshold calcium current. When the current is
activated the cell fires in burst mode. This lasts for about 20 msec, then the
T-current inactivates and the cell either goes into tonic firing or it stops to
fire. When the cell has been hyperpolarized, below -65 mV, for about 100-200
ms then the T-current is de-inactivated. It is then ready to fire a burst, if the
potential crosses the low threshold again and activates the current.

It is important to mention that there are several different ion currents in
the relay cell that contribute to the signal-processing ability of the relay cell,
but the low threshold calcium current is one of the most salient. For more
details see Hugenard and McCormick (1992) and McCormick and Hugenard

8 Early visual pathway

(1992).

The two different firing modes represent the driving stimuli in different
ways. The tonic mode follows the stimuli in a linear way and it represents
it more faithfully. If the stimulus is weak the tonic firing is weak, and if it
is strong the response is also strong. The representation of the stimulus in
burst mode is non-linear. The relay cell fires the same burst regardless of
whether the stimuli is weak or strong. Some authors have suggested that a
burst records the onset of a visual stimulus to the cortex. The modulatory
inputs are important because they have the ability to alter the mode the relay
cell is firing in.

2.3.2 Synaptic connections in the LGN

The synaptic connections between two cells decide what information a spike
from a presynaptic cell delivers to a postsynaptic cell. The dynamics of a
synaptic connection is therefore essential for the signal-processing ability of a
certain circuit. If the synapse is strong, a spike from the presynaptic neuron
excerts a strong influence on the dynamics of the postsynaptic neuron.

The range of different synapses in the LGN is vast. From fast, linear
and strong ezcitatory synapses (depolarizing the membrane potential of the
receiving neuron), to slow non-linear weak inhibitory synapses (hyperpolarizing
the membrane potential of the receiving neuron). There are still some questions
about the synaptic connections in the LGN but the feedforward circuit from
the ganglion cell is fairly well mapped out.

As mentioned above, the LGN receives signals from the retina via the reti-
nal ganglion cells, through two different pathways, X and Y. These signals are
delivered to the relay cells and the interneurons in the LGN. The interneurons
then deliver inhibitory signals to the relay cells. This overall picture is the
same for the two different pathways. The X pathway also includes a special
connection between the ganglion cell and the relay cell through an interneuron
terminal called a triad, schematically showed in figure 2.4. The terminal is
an appendage of the dendrites of the interneuron. It has been argued that
this is electrotonically isolated from the other parts of the dendrites to the
interneuron (Sherman and Guillery 2001). This indicates that spikes arriving
from the ganglion cell through a triad, do not influence the spiking activity of
the interneuron; but see Heggelund (2001).

The dynamics of a synapse are determined by the transmitter substance
and the receptors used by respectively the pre- and postsynaptic neurons, to
deliver the signal through the synapse. In the feedforward circuit of LGN there
are two types of transmitter substances delivering the message of a presynap-

2.3 Thalamus and LGN 9

to

t
cortex o

cortex

». The triadic
\ circuit

from e :
retina excitatory inhibitory retina
glutamate GABA
ionotropic L] L]

metabotropic e s

Figure 2.4: Schematic view of the two different feedforward circuits in the LGN. The driving
input follows the bold line. The arrows indicates the direction of the signal, and the boxes
the receptor type on the post synaptic side. The special triadic circuit in the X-pathway are
showed. For details about the receptors see table 2.1. Modified from Sherman and Guillery
(2001).

tic spike, glutamate for the excitatory synapses and GABA for the inhibitory
synapses. The strength of a synapse is determined by the number of trans-
mitter molecules a spike releases from the presynaptic terminal, by the type
and number of receptors at the receiving terminal, and by the geometry of the
transporting synapse. The receptors are divided into two types: i) ionotropic
and 1) metabotropic. A ionotropic receptor is situated together with the ion
channel the receptor is gating. While transmitter substance is bound to the
receptor, the corresponding channel is open. A metabotropic receptor is not
situated together with the ion channel, but it controls it by secondary messen-
ger systems. When transmitter substance is bound to the receptor it releases
a messenger proteins inside the cell, which then have to diffuse and attach
to a second receptor which then opens an ion channel. While the ionotropic

Early visual pathway

10
b it s e
; /,...——*"”‘“ /’\ GABA,
f
!
P AMPA i \
Py i ‘ 10 pA
7 i
! 100 pA i 200 ms
k.]
o F 10 ms !
I

i J

Figure 2.5: Two synaptic currents showing the difference between a fast and strong
ionotropic receptor, AMPA, and a slow and weak, metabotropic receptor, GABAp. Cur-
rent out of the membrane is defined to be positive, and AMPA is an excitatory synapse,
letting positive ions into the cell, therefore the negative sign on the AMPA current. Not the

scale of both time and current. Modified from Destexhe et al. (1998).

synapse is fast and linear the metabotropic is slow and non-linear: it may
need strong bursting input to open ion channels, but once the ionchannels are
open they stay open for a long time. Figure 2.5 shows two different synaptic
currents, one with a ionotropic receptor, AMPA, and one with a metabotropic
receptor, GABAg. The AMPA receptor gives a stronger current and is much

faster, than the GABA g receptor.

Figure 2.4 shows the different synapses involved in the feedforward circuit

in the LGN together with the type of receptors. The two different recep-
tors receiving glutamate are the ionotropic AMPA receptor, see figure 2.5 and
the metabotropic mGluR5 receptor?. There are two different receptors re-
ceiving GABA in the LGN circuit, the ionotropic GABA, receptor and the

metabotropic GABAg receptor, see table 2.1.

There is no exact understanding of how the mGluR5 receptors control the
release of GABA transmitters from the terminal in the interneuron dendrite in
the triadic circuit. It seems plausible that it acts by depolarizing the terminal.
This in turn could lead to more GABA transmitter release, but there are no

direct evidence of voltage change in the terminal.

2m for metabotropic, Glu for glutamate, R for receptor and 5 for the fifth metabotropic
receptor type. Together with mGluR1 they form the first group, of three, so far discovered
in CNS. They are both excitatory metabotropic receptors. For more detail see Coutinho

and Knopfel (2002).

2.3 Thalamus and LGN 11

X-pathway Y-pathway

RG — RC AMPA
RG — IN AMPA
IN — RC GABA,, GABAg

The triadic circuit
GC— IN | AMPA, mGluR5 -
IN — RC GABA 4

Table 2.1: Table shows the different receptors on the post synaptic side in the feedforward
circuit in LGN. RG: retinal ganglion cell. RC: relay cell, IN: interneuron.
Tonotropic receptors: AMPA, GABA 4. Metabotropic receptors: mGluR5, GABAR.

Chapter 3

Models

3.1 Introduction

As described in chapter 2, the important signal processing units in the feedfor-
ward circuit in the LGN are the relay cell and the synaptic connections to this
cell from the ganglion cell and the interneuron. To simulate signal transfer in
this circuit, we must have reliable models of these signal processing units. Dif-
ferent models exist, for different timescales and for different needs of accuracy
and usability. If we, for example focus on the mean firing rate of a neuron and
want to model this property, firing rate models are useful. On the other hand
if we look at more detailed features in a single neuron or small populations
of neurons, other more detailed models of neurons and of synaptic dynamics
should be used. In this thesis we are dealing with models of the relay cell
and for synaptic transmission in the feedforward circuit of LGN, that shall be
used in large scale spiking network simulations. Therefore we only consider
simplified spiking models of the relay cell and the synaptic transmissions.

In this chapter we present the models we are going to use for the relay cell,
and the synaptic transmissions between neurons in the feed forward circuit of
LGN. The next chapter are going to present the numerical implementation of
these models.

3.2 Model of relay cell, LIFB model

The model used for the relay cell in this thesis is the model presented in Smith
et al. (2000), the leaky-integrate-and-fire-or-burst (LIFB) model'. This is
a leaky-integrate-and-fire (LIF) model with the T-current included in a phe-

!In Smith et al. (2000) the name of this model is Integrate-and-fire-or-Bursts, but to
emphasize an important feature of the model we have added a Leaky in front of the name.

14 Models

GT iext
L Q

.V _— V. =V

Figure 3.1: The electrical equivalent circuit of the LIFB model. When the membrane po-
tential V,y,, the potential across the capacitor, reaches Vi, the switch is turned on and the
circuit is short-circuited, resetting Vy, to Vies. It also sends a delta-spike, 6(t — t,,), at this
time to all its target neurons. g, is the leak conductance pulling the membrane potential
toward the reversal potential, V, , of the leak current. G, is the variable conductance of the
T-current given by, g,m_h pulling the membrane potential toward the reversal potential,
V., of the T-current. i..t is a variable current source, corresponding to either synaptic
currents or external input currents.

nomenological way, leading to bursting activity. The LIFB model has been
used to model other bursting neurons in the LGN too, for example the TRN
cell (Smith and Sherman 2002).

A LIF model is a single compartment model that assumes that signals are
carried by so called 0-spikes between the different neurons. A d§-spike does
not carry any information about the width or hight of the action potential. A
0-spike is sent from a LIF neuron to a receiving neuron when the membrane po-
tential crosses a threshold value, V;;,. After a spike has been sent the potential
is reset to a reset value, V,.;. Performing this reset together with the sending
of a d-spike instead of simulating the whole dynamics of a single spike, simpli-
fies the simulation and accelerate the computation. As many other models of
neural dynamics this model is based on the assumption that the membrane of
the neuron acts as a capacitor and a resistance between the inside and outside
of the neuron, where the intracellular and the extracellular fluids close to the
membrane act as the electrode plates of the capacitor. It also assume that the
neuron is electrotonically compact, i.e. the potential is the same in the whole
neuron. The LIFB model is given by

dVin S
Cm=p = Tl iy et (3.1)
ifV(Et,)=Vi, = 6t—t,) and V(t)) = V,es .
This model is based on the equation for the potential across two electrode

plates in a capacitor, with currents going across the two plates, see the equiva-
lent circuit in figure 3.1. The capacitance of the membrane ¢, and the different

3.2 Model of relay cell, LIFB model 15

-0+

50 100 150 200 20 300 350

50 100 150 200 20 300 350
MSec

Figure 3.2: The figure shows how the LIFB model reproduces salient features of real relay
cell from the cat, see figure 2.8. The LIFB model responds, to an injected current ie,: =
—0.9uA/cm?, given different initial conditions. The current where injected between 50 and
300 ms. The potentials are held respectively on: -55mV, -60mV, and -70mV by injected
currents: —0.35uA/em?, —0.15uA/em? and 0.15uA/em?. Depending on the initial potential
the LIFB model responds differently to the injected current. The first responds in tonic mode,
the second does not fire at all and the third responds with a burst. The figure show only the
sub-threshold dynamics of the LIFB model. During a spike the membrane potential normally
reaches 0 mV or more, but the LIFB model do not simulate the dynamics of a spike, but
rather reset, the potential when it reaches 35 mV to 50 mV.

currents are given in specific units?, allowing equation 3.1 to be used for relay
cells of different sizes. The current is defined to be positive if it goes out of the
cell. A positive current into the membrane should depolarize the membrane
potential. If for example ., is negative, a positive current into the cell, gives
a positive contribution to the derivative of the potential, thus depolarizing the
cell.

The leak current, 7, , is given by
i,=9,(V-=V). (3.2)

In the absence of any input only the leak current is active and the membrane

2By specific units we refer to specific capacitance, conductance, etc, i.e. capacitance per
unit membrane surface area

16 Models

potential approaches V,. V, is therefore the resting potential of the neuron.
The T-current, ¢, is given by

ip=g,m hx V-V, . (3.3)

The dynamics of this current are modeled by a variable conductance: g,m__h.
m__ is the activation variable given by

: >
m_ = Lo V=2l (3.4)
0 : V<V

When the potential is above V}, the current is activated, i.e. m_ is equal to
one. The inactivation and the de-inactivation status is given by the h-variable,
and its dynamics is modeled by

N
dh_ n (3.5)
dt U=h) . v <y,

Th

When the potential is above V}, h is falling toward 0, becoming inactivated.
When the potential is below V},, h is rising toward 1, becoming de-inactivated.
Typical values for the time constants for these two activities are 7, = 20 ms
for the inactivation and 7, = 100 ms for the de-inactivation. When the T-
current becomes activated, the conductance of this current becomes non-zero.
The reversal potential of the current is large, V., = 120 mV, leading to a strong
depolarizing current. i.,; are external currents coming into the LIFB neuron,
and could be synaptic currents, see below, or forced AC or DC currents. The
parameters of the LIFB model are taken from Smith et al. (2000) and are
shown in table 3.1.

Parameter Value Unit Parameter Value Unit

Vin 35 mV O 2 uF/cm?
Vies 50 mVo g, 0.035 mS/cm?
Vi -60 mV g, 0.07 mS/cm?
V. -65 mV Th+ 100 ms
V. 120 mV 1, 20 ms

Table 3.1: The table shows the standard parameters used in the LIFB model, from Smith
et al. (2000).

Figure 3.2 shows the sub-threshold dynamics of the LIFB neuron in three
different situations of external current injection. The simulation resemble the
behavior measured in real relay cells shown in figure 2.3. All three simulations

3.3 Models of synapses 17

are created by first injecting a current keeping the potential at: -55mV, -60mV,
and -70mV, respectively. Then a depolarizing current of 7.,;=-0.9 mA /cm? is
added. Depending on what mode the LIFB neuron is in, it responds differently.
In the top plot the neuron responds in a linear tonic mode to the current
injection. In the middle plot, the current does not manage to make the neuron
fire, i.e., could not raise the potential above -35mV, and the neuron does not
fire at all. In the bottom plot the neuron responds with a burst. Here the
T-current is de-inactivated by the low membrane potential, below -60mV, and
the injected current manages to get the membrane potential above the low
threshold of the T-current activating it, leading to the transient burst.

3.3 Models of synapses

The model used for the synapses in the feedforward circuit of LGN are based on
the model presented in Destexhe et al. (1998) and are all conductances based.
Here models of GABAg, GABA,, AMPA, and NMDA receptors are presented.
We are only going to develop the three first models. There is no model devel-
oped for the metabotropical mGluR5 receptor, but we suggest using the same
basic model as for the GABAg, with some difference in parameters. The argu-
ment for doing this is that the GABAg model, catches salient features of the
dynamics of a general metabotropic receptor, and that the GABAg model has
also been used to model mGluR1 receptors in the LGN by Emri et al. (2003).
We are going to simplify the models presented in Destexhe et al. (1998) so they
fit the effective integration method of exact integration, for more information
of this method see section A.2 in the appendix.

3.3.1 Conductance in ionotropic synapses

A ionotropic synapse is fast and the contribution to the total synaptic conduc-
tances from this synapse is fairly linear with the number of incoming spikes,
i.e., two spikes give rise to twice the amount of conductance than one does.
A spike in a presynaptic neuron triggers a fast rise in the concentration of
transmitter substance in the synaptic cleft, which is registered by receptors in
the postsynaptic membrane. These are attached to ion channels, which then
open when the transmitter substance arrives. When opened the conductance
across the membrane, for the ion of that channel, is increased. This procedure
is very fast and because of the fast unbinding of transmitter substance from
the receptors, it does not last long.

Destexhe et al. (1998) present a simple model for the conductance dynamics
of the ionotropic AMPA and GABA, receptors. We are going to use the data
presented in that paper and the dynamics of the model to develop our own

18 Models

o (M~ 1ms™1) ﬁ (ms—1) Vi (mV) Gis (nS) [T]mam (M) Substance

present
AMPA 1.1 x 10° 0.19 0 0.35-1.0 1073 1 ms
GABA, 5 x 103 0.18 -80 0.25-1.2 1073 1 ms

Table 3.2: The table shows values for the parameters in the model in eq. 3.6 for the AMPA
and GABA 4 ionotropic synapses.

model. Their generic model for a ionotropic synapse looks like:

dr
o = alll(l—r)=pr (3.6)
lis = gisr(v_‘/is) :

Here r is the fraction of activated ion channels, i.e., channels with transmitter
substance attached to them. [T] is the concentration of transmitter substance
in the cleft. It is [T]mae 1 ms after a presynaptic spike and zero any other
time, i.e., a hat-function triggered by a presynaptic spike, with 1 ms width
and [T)maz hight. i;s is the synaptic current from one ionotropic synapse, the
subscript is is short for ionotropic synapse. g;s and Vs are the maximum
conductance and the reversal potential of the synaptic current, respectively.
The latter determines whether the synapse is excitatory or inhibitory. The
maximum conductance is given in absolute units?.

Table 3.2 shows the parameters presented for the model in eq. 3.6, from
Destexhe et al. (1998), and figure 3.3 shows a simulation of the dynamics of
r and the following response in the membrane potential for the AMPA and
GABA , synapses, given one and four presynaptic spikes. The figure also shows
the concentration of the transmitter substance in the cleft, and the opening and
closing of ion channels as a response to the presence and absence of this. We
see that the fraction of open channels, r, saturates, during heavy presynaptic
spiking. Destexhe et al. (1998) explain that r should represent a fraction, and
therefore should saturate at one. From figure 3.3, especially from the AMPA
synapse plot, we could suspect that it actually does not do that. If it does
not reach one the maximum conductance of the synapse can neither reach gi.
The exact saturation values together with the time constance for the rise and
decay part for the r variable is shown in table 3.3.

We are not going to use eq. 3.6 for the conductance in ionotropic synapses.
Instead we are going to use a model which is simpler and faster to simulate
but still catches salient features of this model. The model we are going to use

3The LIFB model in eq. 3.1 requires conductance in specific units. To use eq. 3.6 in our
LIFB model, the synaptic conductances have to be divided by the area of the cell.

3.3 Models of synapses 19

AMPA

T

mM
0s 4 || [T} (mM)
0.6 + VIEIN
044 |\ r \
62 4 \ .

~ \\
0o - i i~
27 post

ostsynaptic
e voltage (mV)
-66 -
-68 -
-70 E
—72 - T T T T 1 T T T T - —72 - T T T T 1 T T T T 1

0O 10 20 30 40 0 10 20 30 40 0O 10 20 30 40 0 10 20 30 40
Time (msec) Time (msec)

Figure 3.3: The figure shows response of the synaptic model in eq. 3.6, for both AMPA,
left panel, and GABA 4, right panel, to one and four presynaptic spikes respectively. The
upper plots show the concentration of transmitter substance in the cleft following presynaptic
spikes and the fraction of open ion channels, the variable r, in response to the present
transmitter molecules. The lower plots show the postsynaptic voltage response to the different
inputs. Here we see that AMPA depolarize and GABA 4 hyperpolarize the cell. Modified from
Destezhe et al. (1998).

is v
iis = Gis(V — Vis) Z Bi(t —t) . (3.7)
1=1
In this model the total synaptic conductance from one synapse is modeled by
a sum of beta-functions, or difference of exponentials, which each models the
dynamics in the postsynaptic conductance given one presynaptic spike. g;s
is the peak conductance caused by one spike, not the maximum conductance
of the whole synapse as in the model in eq. 3.6. N is the total number of
spikes arriving the synapse, each causing the same postsynaptic conductance.
Vis is the reversal potential of the corresponding ion current. (3;(t — t;) is the
beta-function following the /th spike at time ¢;. It models the dynamics of the
conductance following a single spike at time ¢;. The function is given by

0 : 1<t

Bt =) = o <e—f—fl _ttl> : (3.8)

ao—€ t>tl7

where 7, is the time constant for the rise and 7, is the time constant for the
decay of the beta-function, and 7,, < 74. C is a normalization constant chosen
so the peak value of (3; is one, and is given by

Tr

c=_" <3>_Td_” . (3.9)

Td — Tr \Td

This model neither uses the concentration of transmitter substance in the
cleft, [T'], nor the time this substance is present there, as the model in eq. 3.6

20 Models

alTmaz
Tr = a[T]Tjaerﬁ (ms) Tq = % (ms) Too = oz[’][]n]mz+ﬂ
AMPA 0.78 5.3 0.85
GABA, 0.19 5.6 0.96

Table 3.3: The table shows the time constants for the rise and decay parts to the r variable
from the model in eq. 3.6 combined with the values in table 3.2, and the mazimum value the
variable can obtain.

does. But in Destexhe et al. (1998), only fixed values of these parameters
are presented, and we do not use any variables that take advantage of them.
To save parameters we have considered these as superfluous. The left panel
in figure 3.4 shows an example of the beta-function in eq. 3.8. The rising
part of the beta-function represents the binding of transmitter substance to
the receptors, and the decaying part represents the unbinding of transmitter
substance from the receptors. The right panel of the figure shows the sum of
beta functions following three incoming spikes.

Fitting to data

Our model have to be fitted to measured currents. The strength of the synapse
or the conductance caused by one spike, g, is difficult to measure and is differ-
ent for different occasions of a synapse. Therefore this value has to be chosen
in a meaningful way for each synapse. In general a synapse with large release
of transmitter substance from the presynaptic side and a large number of re-
ceptors in the postsynaptic side is stronger than a synapse with the opposite
attribute. The geometry of the dentrite is also important for the strength
of the synapse. If the dendrite leading to soma, is thin, the ion current has
difficulties to reach soma and the strength of the synapse is weakened. The

Figure 3.4: The left panel shows the beta-function from eq. 8.8 with 74=5 ms, 7.,=1 ms,

and t; =0 ms. The right panel shows the sum, Z?:1 B(t — t;), with the same parameters as
in the left panel. The spike times are: t; =5 ms, to=10 ms and t3=20 ms.

pA

3.3 Models of synapses 21

L L L L L L L L L L L L
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
ms ms

Figure 3.5: The fitted beta-function and the synaptic currents. The left panel shows the
current from the AMPA synape and the right panel shows the current from the GABA,
synapse, following one presynaptic spike. The data are from figures in Destexhe et al. (1998).

strength of the synaptic current is also weakened, if the synapse is situated far
out in the dendritic arbor, thus far from the soma.

The two time parameters, 7, and 74, can be fitted. We have done that
for the two ionotropic synapses we use, AMPA and GABA,. We have used
the figures in Destexhe et al. (1998) to obtain the data. The fit was done by
scanning the figures from Destexhe et al. (1998) and using the fminsearch-
function in Matlab to minimize the difference of the area between the two
curves. By doing this we minimize the error in the total synaptic current.
Figure 3.5 show the figure that was scanned from Destexhe et al. (1998) with
our fitted beta-functions. The values obtained from the fit are presented in
table 3.4.

Ty Td
AMPA 0.28 ms 5.34 ms
GABA, 027 ms 5.5 ms

Table 3.4: The table shows the time constants for the beta-function in the AMPA and
GABA 4 synapses. The values were obtained by fitting the synaptic currents in eq. 3.7, with
data from Destezhe et al. (1998), see also figure 3.5.

If we examine the rise phase of the AMPA model from figure 3.5 we see
that our model rises faster than the measured data. This is a pay-off for the
total fit. If we had chosen an other fit criteria, for example the square of the
distance between the two curves, we had obtained a better fit in the rise face
but a worse fit in the total current. The model in eq. 3.6 actually fit the
rise face better. See the slower time constant for the rising part of the AMPA
synapse for this model in table 3.3.

22 Models

3.3.2 Conductance in metabotropic synapses

A metabotropic synapse reacts slowly and non-linearly to presynaptic spikes.
This is because of the complex second messenger system, and also due to the
fact that the metabotropic receptors often lie at the rim of the synapse. There-
fore a metabotropic synapse need strong input from a presynaptic neuron to
deliver any postsynaptic current, but when this occurs, it lasts longer. These
features have been incorporated in a model for the GABAg metabotropic re-
ceptor, in Destexhe et al. (1998). We are going to use and develop their
simplest model for the GABAg receptor so we can use fast integration rou-
tines, lowering the numbers of parameters, but keeping the dynamics features.
Their model for the GABAg synaptic current looks like

dr

% = Kl[T](l—T)—KQT

d

d—j — Kyr— Kys (3.10)
. _ 5"
1GABAg — gGABABm (V — VGABAB) .

Here r and s represent the fraction of activated receptors, receptors with
bound transmitter substance, and the concentration of activated second mes-
senger protein. [T is the concentration of transmitter substance in the cleft.
Following a spike this is [T],;4; during one ms, otherwise it is zero. K; to
K, are the binding and unbinding rate coefficients. The non-linearity, ﬁ,
illustrates the dynamics of a hypotheses that it takes n second messenger pro-
teins bound to one receptor to open a channel, see Destexhe et al. (1998) for
more details. The dynamics of this non-linearity is shown in the right panel of
figure 3.6. K, is the dissociation constant of the binding of second messenger
protein to the ion channels. As for the ionotropic synapse in eq. 3.6, goapag
and Vgapa, are the maximum conductance and the reversal potential for that
synapse. Table 3.5 shows the values for the parameters, from Destexhe et al.

Parameter Value Parameter Value
K, 90 M~'ms! [T mas 1073 M
K, 12x107%ms™" | Lims
K; 0.18ms* present
Ky 34 x 103 ms~! JcABAg 1nS
Ky 100 M* VaaBag -95mV
n 4 binding cites

Table 3.5: The table shows the parameters for the model in eq. 3.10, from Destexhe et al.
(1998).

3.3 Models of synapses 23

L L L L L L L L L P L L L L ! L L L
[100 200 300 400 500 600 700 800 900 1000 [100 200 300 400 500 600 700 800 900 1000
ms ms

Figure 3.6: The left panel shows a plot of % from eq. 3.10, solid line and y2gian from

eq. 3.12, dashed line. The latter fitted to the former. Both models are fed with ten spikes
with an interspike interval (isi) of 3 ms.

The right panel shows the effect of the non-linearity of y;{%m from eq. 3.12. This non-
linearity is plotted with different input. The solid line is the response from ten spikes with
isi of 8 ms in the same synapse. The dotted line is the total response from five synapses
receiving two spikes each, given a total of ten spikes, with an isi of 8 ms. The dashed line
is the response from one synapse receiving ten spikes but now with an isi of 30 ms. We
clearly see that ten spikes through one synapse give larger respons than ten spikes through
five synapses. We also see that ten spikes concentrated in time give rise to a slightly larger

response than ten spike spread in time.

(1998)

We are going to re-write the system in eq. 3.10 so it fit the integration
method of exact integration. By setting [T'] equal to zero the dynamical system
of the r and s variables, begin to resemble the system given by eq. A.17 and
eq. A.25, in the appendix. If we introduce a two dimensional state vector y,
where the first and second state variables are y1 and y2, and setting y1 = K3,
y2=s,[T]=0,7174= K% and 7, = K%N we can write eq. 3.10 as

y =Ay , (3.11)
with

—L
y = yl s A — 7d (312)
Y2 1 —Ti
. _ y2"
lGABAR = JGABAR e (V — Vaaag) -

The major differences between this model and the one in eq. 3.10 is the
registration of a presynaptic spike. In eq. 3.10 this is done by letting the
postsynaptic side being exposed to a concentration of transmitter substance,

24 Models

Parameter Value Parameter Value

T, 29ms K, 100 M4
Td 830 ms n 4 binding cites
Ylmaz 0.18 gGABAB 1nS

Awg 0017 | Vaapa, —95mV

Table 3.6: The table shows the parameters for the model in eq. 3.11, eq. 3.12 and eq. 5.16.

[Tz, during 1 ms. In our model this is done by adding a value to the first
state variable in y. This value is dependent on two values y1,,,. and Agqq,
where y1,,4; 1S the maximum value the first state variable of y could reach
and A,qq is a value that have to be fitted from the model in eq. 3.10. The
procedure of registering a presynaptic spike is explained in section 5.3.

The fit was done by minimizing the area between the non-lineareties in the
two models, i.e., s”j—an from eq. 3.10 and yQZi"Kd from eq. 3.12, following an
input of 10 spikes with an interspike interval of 3 ms. This was done using
fminsearch-function in Matlab. The left panel in figure 3.6 shows the fit. The
full parameter list for our model is presented in table 3.6, including the value
for the fitted A,4y parameter. We notice the large time constants compared to
the ionotropic synapses from table 3.4, showing that this model has a much

slower dynamics than a ionotropic synapse.

Metabotropic glutamate receptors

Emri et al. (2003) have used the model in eq. 3.10 to simulate the re-
sponse from a mGluR1 receptor, a metabotropic receptor receiving glutamate.
The only parameter they change to do this, is the reversal potential, making
the synapse excitatory. Unfortunately they do not mention which value they
change it to.

Chapter 4

NEST

4.1 Introduction

NEST simulator, (Diesmann and Gewaltig 2003) is the simulation program we
use to simulate the networks of spiking neurons. It is also this program that
the models from chapter 3 is implemented in. The NEST program is coded in
C+-+. It is ported to a lot of different hardware systems, and in this chapter
we briefly present the fundamental concepts of NEST.

4.2 Large networks and fixed time steps

The NEST technology is built to simulate large networks of neurons. The
communication technique and threading technology used make it possible to
simulate networks with tens and hundreds of thousands of neurons. Of course
this requires that the simulations are done on large symmetric multiprocessing
(SMP) machines where the threading technology could be used.

A single neuron in a spiking neuron network is highly non-linear and thus
very unpredictable in its dynamics. Some neurons do not receive any input
and could in theory be integrated with large time steps. Other neurons receive
strong excitatory input, giving strong spiking output, and should in theory be
integrated with very small time steps to compensate for the very discontinuous
dynamics involved in receiving and sending spikes. But when we have large
networks with coupled neurons, this mixture of strategies is very difficult. We
do not know what input a neuron would get before we have integrated all the
other neurons, and NEST therefore integrate all neurons as simultaneously as
possible. This is done with all neurons being integrated with a fixed time step.
This imposes a constraint on the design of the update procedure, every unit in
the network in a certain time step have to be updated before any other units
are updated in the next one.

26 NEST

4.3 Nodes, events and synapses

The main communication unit in NEST is a node. Only nodes have the spe-
cial ability of sending and receiving events. For those who are familiar with
object-oriented programming, the node is an abstract class which every unit
that need the ability to communicate with other nodes via different events,
must inherit. The most common event is the spike event. This is a d-spike
that is sent between neurons, which all are nodes. The spike event could also
be sent to other nodes than a neuron, for example a spike detector, that reg-
isters which neuron sent the spike event and at what time. Other nodes, for
example a DC or AC generator, are able to send current events to neurons,
which are used to simulate external input currents to neuron models.

The synaptic models from section 3.3 in chapter 3 are implemented in
NEST without being nodes. This means that a singel synapse can not receive
any spike events. The synapses is stored in the receiving neuron and the send-
ing neuron only deliver the spike to the receiving neuron which then pass it
to the right synapse. The synapses is created and stored when a connection
between two neurons is made. Before this implementation, the synapses were
singel nodes sending the conductances to the receiving neuron trough the event
mechanism. By storing the single synapses inside the receiving neuron, we ac-
celerate the communications of the different conductances.

All the events must be delivered with a delay of at least one time step.
Therefore a node cannot send an event in one time step to a receiving node,
that have impact on this node in the very same time step. By this, causality
in the network is preserved.

4.4 Interface

The language used to make simulations in the NEST environment is called
Simulation Language Interface (SLI), a language akin to PostScript. It allows
you to make simple calculations, write programs with the most common control
structures and to build your own networks and simulate these.

4.5 Extendability

NEST is not a finished simulation tool, but rather offers an infrastructure for
simulations of large scale networks. Anyone could use NEST to add their own
models which they want to simulate in large network. In this thesis I have for
example implemented the LIFB model with different integration methods and
suggested a new way of implementing conductance-based synapses.

Chapter 5

Numerical implementations

5.1 Introduction

In this chapter we show how two different numerical integration methods are
used to integrate the models from chapter 3. We also discuss different numer-
ical errors that could be introduced by doing this and the treatment of these.
The implementations and the error treatments are then tested in chapter 6.

The way the models are implemented are important for practical and nu-
merical reasons. The integration methods have to be fast and effective and easy
to implement and of course they have to be precise. We use two different types
of numerical methods, Runge-Kutta (RK) methods and the method of eract
integration. These are briefly presented in appendix A. A more thoroughly
presentation of the RK methods could be accessed through the literature on
numerical methods, for example Mathews (1987), and Lambert (1991). A more
thorough presentation of the exact integration could be found in Rotter and
Diesmann (1999).

The RK methods are powerfull and fairly robust methods of integration.
We use two types of these methods, second order (RK2) and fourth order
(RK4), to integrate the complex LIFB model from eq. 3.1. They are both
implemented in section 5.2. The errors introduced by these methods can be
formalized and used in an over all error analysis. In 5.5, we use this frame
work to analyze the errors the implementation of the LIFB model, introduces.

The method of exact integration does not introduce any additional errors
than the rounding error, limited by the machine. The prerequisite for a model
to be integrated with exact integration is that it is linear, time invariant and
continuous in all its derivative. All the model we are going integrate with exact
integration have continuous derivative of all orders, and we therefore omit the
last demand when this method is discussed later. We use this integration
method to integrate three variables, used by the RK algorithm. The first

28 Numerical implementations

variable is all the synaptic conductances. As explained in section 3.3, we
have chosen to model the conductances by beta-functions. This function is a
solution of a two dimensional, linear and time invariant system of differential
equation, see section A.2 in the appendix, and can therefore be integrated by
exact integration. In section 5.3 we present a simplified implementation of
the use of exact integration when the synaptic conductances is integrated. In
section 5.5 we extend this version. The second variable integrated by exact
integration is the h-variable in the T-current from eq. 3.3. As long as the
membrane potential is either above or below the T-current threshold, V}, the
rise and decay of the h variable is expressed by a linear and time invariant
differential equation. The third variable is the external sinusoidal current,
used to drive the test network, see chapter 6. For more details about the
implementation of this, see Rotter and Diesmann (1999).

5.2 LIFB model

The RK methods we are going to use to integrate the LIFB model is well
known and straight forward to implement. These methods also give us a for-
mal framework for an error analysis, see section 5.5 below.

The LIFB model in equation 3.1 is linear in V" and the notation could there-
fore be simplified. We are going to use a notation similar to the one introduced
by Shelley and Tao (2001) for the implementation of the RK method.

It is useful to rewrite eq. 3.1 as

v

y f&. V) =at)V +b(t) , (5.1)
where a(t) is the sum of the different conductances, divided by the membrane
capacitance and is given by,

alt) = — (gL +gom h(t) + ngynu)) , (52)

m

where Y, gk (t) is the total sum of the different synaptic conductances. b(t)
is the sum of the external input currents and the different conductances mul-
tiplied by the corresponding reversal potential, and divided by the membrane
capacitance and is given by

1 .
b(t) = — (gL V. +g.m_ h(t)V, + ngyn(t) vk 4 zm> , (5.3)
k

m

where Y, g% (t) V¥ is the sum of the different synaptic conductances multi-
plied by the corresponding reversal potentials, and 4., is the sum of external

5.2 LIFB model 29

currents. It is important to notice that these two formulas are only valid in
time steps the V}, threshold is not passed. If the potential is above this thresh-
old, m_, is equal to one and if the potential is below it is equal to zero. If the
V), threshold is passed in the time step, a discontinuity occur. This is dealt
with in section 5.5.

By setting the potentials in the beginning and end of the nth time step to
V, and V,,;1, using the notation from eq. 5.1, and letting At be the size of the
fixed time step, we can express the next potential from the former by the two
RK algorithms. This is done by

At
Vo1 = Vo + 7(791 + ko)

kl - f(tna Vn) = Qo Vn + bO (54)
= ay(Vy + At(agVp+bo)) + b1

where ag = a(t,), a; = a(t,+At) and by = b(t,), by = b(t,+At), with the RK2
algorithm and by

At
Varr = Vi + — (k1 + 2k3 + 2ks + ky)

6

ki = f(tn, Vi) = ao Vi, + bo
At At

ky = f<tn+7; Vn+7k1>

At
= a1/2>< <Vn+7k1> + 61/2 (55)

At At

ks = f<tn+7, Vn"*_?kQ)

At
= Q12X <Vn+7k2> + 61/2

ky = f(ta+At, V,+Atky)
= ay(Vy+Atksy) + by

where ag, a1, by, by are the same as for RK2 and ay/, = a(t,+At/2) and b1/, =
b(t,+At/2), with the RK4 algorithm. The errors introduced when the LIFB
model is integrated by these RK schemes, are all addressed in section 5.5. Be-
cause the synaptic conductance and the h variable are included in ay, by, a2
and by 9, they have to be calculated before the algorithm in eq. 5.4 and eq.
5.5 are used to calculate the next potential.

By using the time dependent a and b parameters these methods become
very effective. During an interval, not containing any discontinuities, we do

30 Numerical implementations

not have to evaluate ag or by since agly, 1ar = a1y, and bgly, 1A = b1]s,- An
other important feature of both the RK2 and the RK4 schemes is that V,,, is
linear in V,,, so the next potential can be written as

Vn+1 = AVn +B) (56)

where A and B is the sum of all the parameters. These are used when errors
introduced by discontinuities are treated.

5.3 Synaptic input

The dynamics of the synaptic conductances presented in section 3.3 are all
based on the beta-function. This function is the solution of a two dimensional
linear and time invariant system of differential equations, and can therefore be
integrated by the method of exact integration. This is described in section A.2
in the appendix, and for more details see Rotter and Diesmann (1999). When
the beta-function is integrated by exact integration instead of being evaluated
as the difference of two exponentials, it introduces some very nice features.

(i) The simulation time for the beta-function is accelerated.
(ii) The registration of a presynaptic spike is much faster.

(iii) One state variable could hold many lumped conductances of the same
sort.

In access to these, the method of exact integration let us, in an easy way, add a
saturation feature to the postsynaptic conductance during heavy presynaptic
spiking, as the model in eq. 3.6 also do, see figure 3.3. Because of the non-
linearity in the model of the metabotropic synapes they can not be lumped,
so the third feature does not apply for these models.

Independent of what spike-adding procedure we choose, see below, for sake
of simplicity, we move the actual arrival-time of the [th spike to the time grid
in the beginning of the nth time step it arrives the synapse, setting t/l:t". This
make the registration of the presynaptic spikes much easier but it introduces
an error, we are going to address in section 5.5.

Accelerated simulation

If we use eq. 3.8 we have to evaluate two exponentials for every spike that is
registered in every time step. This is a very time consuming and in-efficient
procedure. By working with a fixed time grid we could instead use exact
integration. The beta-function, as described in section A.2 in the appendix, is

5.3 Synaptic input 31

a solution to a two dimensional, linear and time invariant system of differential
equations. This system is given by

y=Ay . (5.7)

_1 0
] o

Tr

where .
—B+0
B
[is the value of the beta-function. We notice that the second state variable
of y(t,) contains the value of the this function, at time ¢,,. The state vector at

time ¢, 11, y(tn11), can then be expressed with the former value, y(¢,), with a
simple matrix calculation

y:

Y(tni1) = 6AAtY(tn)) (5.9)

where 42! is the time evolution operator for the beta-function given by the

two dimensional matrix of

e d 0
e18t = A A A | (5.10)
TrTd (e T — e 7'7') e
Td—Tr

Instead of evaluating two exponentials every time step, we just make a single
matrix multiplication, i.e., eq. 5.9.

The dynamic of the metabotropic synapses is already described by a two
dimensional system of linear and time invariant differential equations. If we
compare eq. 3.11 and eq. 3.12 with eq. 5.7 and eq. 5.8, we see that they are
describing the same type of dynamics. Therefore we can integrate the former
with exact integration too, and benefit from the features given by this method.
We use the same equations as for the ionotropic synapse to update the state
variable of a metabotropic synapse, i.e., eq. 5.9 and eq. 5.10.

Registration of spikes

We have to deal with the registration of presynaptic spikes differently when
using the models for ionotropic and metabotropic synapses. First we examine
the procedure for ionotropic synapses.

The registration of the [th spike arriving a ionotropic synapse at time {,
is done by adding a beta-function with time argument zero, i.e. t — %;, to
the variable keeping the conductances, i.e. the second state variable of y.
As described in section A.2 in the appendix, a beta function is initialized by

32 Numerical implementations

adding the value of the derivative of the beta-function when the time argument

is zero,
Ty
. 1 1 1 T4 — Ty
heo (LN L(Z) T
Ty Td Ty Td

to the first state variable of y. C'is the normalization constant given by eq.
3.9. Because the first state variable of y only holds the value of the sum of
beta-functions, corresponding to the fixed time grid, we move the actual spike
arrival time from ¢; to the fixed time grid in the beginning of the nth time step
the spike arrives, setting ¢, = t;, where t; is the new arrival time.

One beta-function is added to the conductance, for every spike that arrives
the synapse. Due to the linearity of the matrix multiplication we do not have
to keep one vector for each beta-function. The total value of all beta-functions
in the sum from eq. 3.7 could be gathered in the same state vector y. In the
nth time step is this illustrated by

N N
Zﬁl(tn - t;) - Ay1,n +Ay2,n +--- 4 AYN,n - A ZYI,n = AYn . (512)

=1 =1

Here the 3, is the [th beta-function caused by the Ith presynaptic spike arriv-
ing the synapse at t;. N is the total number of spikes. Ay, , holds the value
of the [th beta-function when exact integration is used.

The calculation could be simplified further by including the conductance
caused by one spike, g;; from eq. 3.7, in the calculation of the beta-function.
This is done by adding

Ylada = Gis Do . (5.13)
instead of Bg when a spike is registered. The beta-function now has g;; as peak
value.

A presynaptic spike arriving a metabotropic synapse is registered with a
different procedure. We see from eq. 3.10 that, independent of how long the
postsynaptic side is exposed with transmitter substance, r will saturate at

K, [T]
ro=——td 5.14
imposing a maximum value for our y1 variable of
K, [T]
s = K31 = Ky ——251 5.15

We also see from eq. 3.10 that the r variable rise with a rate that is dependent
of it self. If r already is large then it will rise toward r_ slower than it would if

5.3 Synaptic input 33

it was zero. We have implemented this in a phenomenological way by adding

t
Yladd = (1 — M) Agda (5.16)

ylmam

to the first state variable in y every time a presynaptic spike is registered. Here
Agqq is a value that determine how much is added to y1 when a spike arrive.
This value is chosen so our model in eq. 3.12 fits the model in eq. 3.10, see
section 3.3 and figure 3.6. The fitted value of A,4; and the value of y1,,,, is
presented together with the other parameters in the model from eq. 3.12 in
table 3.6.

To simplify the registration of a presynaptic spike, we moved the time the
spike arrive the synapse, t; to the fixed time grid in the beginning of the time
step the spike arrive, t;. As we shall see in section 5.5, this introduce an error
to the conductance and we therefore extend the spike registration procedure
in the same section.

Lumped conductances

If a neuron receives synaptic input from M ionotropic synapses, each described
by eq. 3.7, with the same time constants and reversal potential, the total
synaptic current from those synapses can be expressed as a sum over the M
synapses:

M
it (t) = (V.= Vi) D_ gy - (5.17)
k=1
where i, is the total lumped current and y2k is the second state variable of
y*, which keeps track of the kth synapse’s sum of beta-functions. g& is the
conductance caused by one spike from the kth neuron. The total conductance
could then be expressed by

M
got(t) =D gk yt . (5.18)
k=1

Because we use the same system matrix for all the beta-functions, the same
linearity argument from eq. 5.12 holds. Instead of having M vectors keeping
track of the different sums of beta-functions, we could, as with the registration
of additional spikes, lump all the different vectors together into one vector. The
only difference is that now they represent different synapses and can therefore
have different g;,. But this have only implications for the amount added to the
first state variable, when a spike is registered. A spike from the kth neuron is
now registered by adding

Y1k = g5, Bo (5.19)

34 Numerical implementations

to the first state variable of the lumped conductances.

Because of the non-linearity of =22 from eq. 3.12, this could not be done
y2"+ Ky

with metabotropic synapses. For these synapses we have

M

. _ Y2
Lot (t) = (V = V4 7’?“57 , 5.20
tt() ()k:19 y2l + Ky ()

where y2; is variable keeping track of the dynamics of the conductance to the
kth metabotropic synapse. We see that we could not express these variables
as a singel sum, which is a prerequisite to lump them together.

Saturating conductances

We now have a effective way of implementing the synaptic conductance for the
two ionotropic synapses and a full implementation of the metabotropic ones.
The only feature from the model in equation 3.6 we have not included so far
is conductance saturation during heavy presynaptic firing. This could be done
in a phenomenological way by not adding a constant value to the first state
variable when a spike is registered, but a value that depends on the present
value of this variable.

If a spike arrived at time #, to a ionotropic synapse and yl(t;) is the value
of the first state variable in y at that time, a value given by

N 1 tl
Yladd = (1 Y (l)> Yladd (5.21)

ylmam

is added to yl(t;). Here 91444 is the same as in 5.13 and 91,4, is the maximum
value y1 can have. This value have to be chosen meaningful or be fitted. The
conductance following a spike is modeled by a the same beta-function, e.g., the
time constants is the same, as in eq. 3.7, but now with a variable maximum
conductance.

We have chosen y1,,,, for the AMPA and GABA , synapses, such that they
fit the models for the same synapses from Destexhe et al. (1998). To do this
we chose the g;; parameter in eq. 3.7 such that the conductance caused by
the first spike, peak at the same hight as the conductance from eq. 3.6 with
gis = 1, does. By setting g;s in eq. 3.6 equal to one, we actually compare
the conductance from eq. 3.7 with the r variable in eq. 3.6. In table 5.1 the
chosen parameters are shown and in figure 5.1 the fits are plotted. In the same
figure the conductances for the corresponding non-saturating synapses are also
shown.

5.3 Synaptic input 35

9

L L L L
0 5 10 15 20 25 30
ms ms

Figure 5.1: The conductances saturate during heavy input. The left panel shows the con-
ductance from the AMPA models and the right panel the conductance from the GABAy
models. All synaptic models receive spikes at: 1, 4, 7, 10 ms. The solid line shows the
conductance from eq. 3.6. Because G;s is set to one for this model, we actually plot the r
variable. The dash-dotted line shows the conductance from the beta-function with saturation
ability. The dashed line shows the original beta-function with no saturation ability. The
parameters used for the plots are shown in table 5.1 and 3.4 for the conductances with the
beta-functions, and in table 3.2 for the r variable, with g;s equal to one.

It is not straightforward to implement conductance saturation when oper-
ating with lumped conductance as in eq. 5.18. Now the y vector contains the
lumped sum of all the M state vectors, and the value in eq. 5.21 is dependent
on only one state variable. So we cannot use this equation to add a value to
y1. If we introduce two vectors of length M, one which keeps track of the last
spike from the kth synapse, sp, and one which keep track of the value of the
first state variable for the same synapse after the time for the last spike, y1,
we could by pass this obstacle.

If we assume that the kth synapse has received a spike at time ¢ this value
is stored in sp¥. The value of the first state variable of y for the kth synapse at
that time is stored in y1*. This value decays exponentially, with decay constant
Tr, see eq. 5.8. The next time the same synapse receives a spike, at time tfﬂ,
the value has decayed to

k k
t —sp
k k— -

g1t =y1te” T . (5.22)

We can now use this value in eq. 5.21 to get the 1%, value

k g k
Yada = <1 T Tk) Yladd > (523)
ylmaa:
where y1% is the maximum value of y1*. §1¥,, is then added to the first state

variable of y as a normal registration of a spike. 71%,, + #1* now form the kth
value of y1 and are therefore now stored in y1*. This is illustrated in figure

36 Numerical implementations

gis Ylmaz
AMPA 0.61 3.5
GABA, 094 3.9

Table 5.1: The table shows the chosen values for the synaptic model such that, during heavy
firing, the conductance saturate at the same level as g;s T, where g;s is set to one, from eq.
3.6 does. The conductance is plotted in figure 5.1 together with the r variable.

5.2. Here is the first state variable of the kth synapse shown. The synapse
receives its [th spike at ¢, = 15ms and its (I + 1)st spike at ¢, = 20 ms.

Using RK4

If we use RK4, because of the a,/, and b;/, parameters, we have to evaluate
the conductance in the middle of the time step too. This is done by using
At/2 instead of At when the time evolution operator in eq. 5.10 is calculated,
and then evaluate it twice every time step.

5.4 h variable

The h variable is integrated by the method of exact integration. This is done
differently depending on whether the membrane potential at the beginning of
the time step is above or below V}. This is done by exact integration, which
is explained in section A.2 in the appendix, by

At

hoir =€ T hy | (5.24)

in a time step where V,, >V}, and by

hpsr=1—¢ " (1—hy) | (5.25)

in a time step where V,, < Vj,. Here the exponential is the time evolution
operator, evaluated only once. If we use RK4 and the potential is above V,,
T-current is on, because of the a;/, and b,/ parameters, we have to evaluate
the h variable in the middle of the time step too. This is done by using At/2
instead of At when the time evolution operator in eq. 5.24 is calculated and
then evaluate it twice every time step. When the potential is below V},, we just
use eq. 5.25 as it is, because the T-current is inactivated and the h variable is
not included in neither of a;/, or bys.

When the membrane potential crosses the threshold for the T-current, the
dynamics of the h variable is switched from one of eq. 5.24 and eq. 5.25 to the

5.5 Error analysis 37

yr'

25 7

~k
Yladd

15F B

~k

I+1

I I I I I
14 16 18 20 22 24
time (ms)

Figure 5.2: The figure shows the first state variable of the kth synapse. The synapse receives
its Ith spike at t; = 15 ms and its (I + 1)st spike at t; = 20 ms. We see that the value at 15
ms is the value stored in y1*. This value decays to §1* for the time of the next spike and is
then used in eq. 5.23 to find gl’;dd. This value is then used to register a spike by being added
to the first state variable of y. It is also added to §1* to form the new value of y1*.

other. This crossing introduce an error to the h variable and it is dealt with at
the same time as the discontinuity of the onset of the T-current is dealt with,
see the following section.

5.5 Error analysis

All the error analysis is done with the total error in the membrane potential in
mind. An error in, let say the integration of the h variable could be acceptable
if it causes an error of the same or higher order in A¢, than the error introduced
by the RK method used to integrate the potential.

The potential is integrated by either the RK2 or RK4 method. As de-
scribed in section A.2 in the appendix, there are two ways of discussing the
error introduced by these methods, i) the local truncation error, (LTE), and
ii) the global truncation error, (GTE), where the latter is the consequence of
the former. The LTE is the error the integration algorithm, used every time
step, causes. These algorithms are eq. 5.4 for RK2 and eq. 5.5 for RK4. The
LTE for these are of order O(A#*) and O(At°) respectively, and is introduced
every time step. When the RK algorithms are integrated over several time
steps, the LTE accumulates to the GTE and is of one order less than the LTE,
i.e., O(At?) for RK2 and O(At*) for RK4. The errors caused by the imple-
mentation of our models have to be of higher or equal order than these errors
to the corresponding integration method. If they are of lesser order we have to

38 Numerical implementations

deal with them. Which truncation error should we then use to compare any
introduced error with?

To answer this question we have to understand what limit these errors
impose to the precision of the potential. We illustrate this by integrating the
LIFB model over a period of T" ms, and examine the potential at a time ¢,
where 0 < t; < T. If no other error than the LTE is introduced up to that
time, the total error to the potential is the GTE. If we use the RK algorithm
to integrate the next potential at V1, a new LTE error is introduced, but the
total error in V;; is still of the same order as the GTE.

If we, in the same time step, introduce an additional error, let say of the
same order as the LTE, this is added to the potential at V;,;. Because the
potential is limited by the GTE, which is of one order lesser than the error,
and the order of the total error is not changed, i.e.

TotalError = error + GTE = O(AtY +1) + O(AtY) = O(AtY) . (5.26)
If the error is of the same order as the GTE, we have
TotalError = error + GTE = O(AtY) + O(AtY) = O(AtY) | (5.27)

and also now the total error follows the same order. Of course if the introduced
error is of one or more order less than the GTE, the order in the total error is
lowered, for example

TotalError = error + GTE = O(AtY 1) + O(AtY) = O(AtN 1) . (5.28)

The discussed errors are introduced in the present time step, i.e. [t;, t;+1], and
therefore act locally. We therefore compare these with the truncation error
that limits the potential in the end of the time step, i.e., the GTE. If the error
is introduced not only in the present time step, but for all the remaining too,
we have another situation. Now these errors accumulate. If we should compare
it with the GTE, we have to keep in mind that it falls one order due to the
accumulation. Because the LTE also accumulate we could compare it directly
with this.

The different errors we are going to address is summed up by the following
lists.

(i) Registration of a presynaptic spike, at the fixed time grid in the beginning
of a time step.

(ii) Onset of an external current.

(iii) Reset of the potential after a spike.

5.5 Error analysis 39

(iv) Omnset and offset of T-current.
(v) Shifting between rise and decay for the h-variable.

(vi) Onset of postsynaptic conductance.

The first error is an implementation error, and the five remaining is caused
by the introduction of a discontinuity, to the first or second derivative of the
membrane potential inside a time step.

As described in section A.1 in the appendix, does a discontinuity in the kth
derivative introduce a local error, of order O(At*), to the potential in the same
time step the discontinuity occur. If the LIFB model in eq. 3.1, which is the
first derivative of V(¢), is discontinuous an error of order O(At) is introduced.
The second to fourth errors is introduced in the first derivative of the potential
and the last two errors is introduced in the second derivative. We shall have
in mind that the errors introduced by these discontinuities is local errors and
only effects the potential in the end of the time step the discontinuity occur.
Because the errors only occur locally, are these errors compared with the GTE
of the potential.

The presentations of the errors and how these are dealt with, follows in
the following subsections. The third and fourth errors are similar and are
therefore treated within the same subsection. The fifth error is closely related
to the onset and offset of the T-current and are therefore also treated in that
subsection.

5.5.1 Registration of a presynaptic spike

In setion 5.3, due to simplicity, we moved the spike time from the actual arrival
time, ¢;, to the fixed time grid in the beginning of a time step t; = t,, when
these are registered. If we do this we introduce an error in the spike time of

t—t, = AAt | (5.29)

where 0 < A < 1. To investigate what error we introduce in the conductance
we look at a time step t¢;, further on in time, t; > t;. We make a Taylor
expansion of the conductance, from that single spike at, g(t; — t/l), round the
actual time argument, t; — ¢;, of the conductance. We have

gti—1) = glti—ti+AAY) (5.30)
~ gti—t)+AAtg (t; — ;) + O(AF) .
Here ¢(t; —1;) is the actual contribution of the conductance from the spike that

arrived at ¢;. We see that, by using the wrong spike arrival time, t;, we intro-
duce an error in the conductance of order O(At). This is an error introduced

40 Numerical implementations

to all succeeding conductances following t; as well, and we therefore compare
it directly with the LTE of the RK methods. The orders of the LTE for RK2
and RK4 are both higher than the order of this error, and we therefore have
to deal with it.

To handle this error we have to expand the procedure of adding spikes,
introduced in section 5.3. We can no longer register a spike arriving the synapse
at time ¢;, by just adding, y1,44 to y1 at the beginning of the time step the spike
arrive, but rather add it at the time the spike actually arrive. The state vector
only hold values of the conductance at the fixed time grids and we therefore
have to calculate the value that y1,49 would have evolved to at the fixed time
grid at the end of time step. This value is then added to the total conductance
in the y vector.

We first resolve the conductance without the new conductance added, by
making an ordinary matrix calculation, see 5.9. A spike is then registered by
adding the evolved value of 1,44,

_trest O

e Yladd

yadd = T _trest _ trest _lrest 3 (531)
Ir?d (e 14 — e e
Tg—Tr

to this value. Here we have used the time evolution operator normally used
to get the next value of y from the former, with At exchanged with, ., =
tn+1 — 1. This procedure could also be used for lumping synapses, and/or
saturating synapses. We just exchange 91,44 With the respective values.

If we use RK4 we have to check if the spike has come in the first half of
the time step. If it did, we set t,ess = t, + At/2 — ¢, and add the expression in
eq. 5.31 to y(t, + At/2) instead of y(t,11).

This implementation is illustrated in figure 5.3. Here we see how the po-
tential is integrated differently with different integration methods and with
different spike registration procedures. We see that the methods not using the
precise spike timing integrates the potential better than the methods not using
it, when compared with the canonical run.

To accelerate the calculation of the exponentials in eq. 5.31, we could use
a simplified calculation. Instead of the exponential we use e* ~ 1 + x for the
RK2 and €” ~ 1 + z + 2%/2 + 2 /6 for the RK4. The error introduced to the
conductance by doing this, is of order O(At?) and O(At?) respectively. This
error is caused to all the following conductance values too, and are therefore
introduced in every RK algorithm following a registration. Because of this we
compare the error with the LTE. When used in the corresponding RK algo-
rithm the error is multiplied by At, and become of the same order as the LTE

5.5 Error analysis 41

-54.1

— RK4TSPS, At=2.4*10"* ms
—~ RK2, At=0.063 ms
—B- RK2TSPS

-6~ RK4

—— RKA4TSPS

-54.15

-54.2

Potential

-54.25

I I I
7715 772 7725 773 7735
Time grid

Figure 5.3: The figure shows how the potential is integrated differently with different in-
tegration methods and with different spike registration procedures. All meurons receives a
presynaptic spike in the 772:nd time step. The solid line without any symbols, is the poten-
tial in a canonical run integrated with a very small time step, At = 2.4 x 10~* ms using the
RKTS integration method and with precis spike timing. The diamonds and the circles are
the potentials of the RK2 and RK/ methods with out the precise spike timing. The squares
and the plus are the RK2TS and RK4TS method with the precis spike timing. We see that
the methods with precis spike timing integrate the potential much more precis than the meth-
ods that lack this procedure. We also see that the RK}TS with precise spike timing is the
method that integrates the potential absolutely best, when compared with the canonical run.

of the integration algorithm.

5.5.2 Onset and offset of an external current

This is the least difficult discontinuity to deal with. We only have to choose to
put on the external current precisely at the fixed time grid. Then as described
in secion A.1 in the appendix, no error is introduced. The discontinuity does
not occur within the time step the RK algorithm is bridging when calculating
the next potential. But we have to be careful when adding the current. If
we turn on the current at time ¢,,,; and we are in the nth time step, we shall
not include the external current in the b; parameter even if this represent the
value of b(t,,1). This is so, because the interval that we use to calculate the
next potential, is the semi open interval [t,, t,.1), and this does not include
the onset time. But when we change time step to the (n+ 1)st we have to add
the external current to the by parameter of that time step. For this two time
steps we therefore have bgly, 4 A7 b1ls, -

42 Numerical implementations

5.5.3 Threshold passings

The reset of the potential and the onset of the T-current are events that occur
after a threshold is passed, either V};, for the resetting, or V}, for the T-current.
These discontinuities appear in the first derivative of V(¢) and therefore a local
error of order O(At) is introduced in that time step. Unlike the onset of an
external current we can not choose where these discontinuities appear and the
potential will certainly not cross the two thresholds precisely at the fixed time
grid every time.

Hansel et al. (1998) first introduced a linear interpolation scheme to han-
dle the inaccuracy when resetting the potential after a spike, which could be
used with a first or second order integration method. Shelley and Tao (2001)
extended this interpolation scheme so it could be used in a fourth order in-
tegration method, i.e. RK4. We are going to extend their work to a generic
algorithm that could handle both the threshold passings we have. We call this
method time stepping, TS. To simplify further notation we set, V;, = V (t,)
and V11 = V(tyi1).

A threshold pass is detected by checking if V,,,1, which is calculated from
the RK schemes, is above Vj,esn, €very time step. Here Vi,.qn is either the
threshold for spike, V},, or the threshold for the T-current, V},. The time when
the threshold is passed is, t;,, and is estimated by interpolation, see below.
The method of Shelley and Tao (2001) is based on calculating two new val-
ues of the potential, Vj, and f/nﬂ, such that the interpolated potential at t,,
between these two values, would be the same as the potential should be right
after a threshold pass, V;Zfi?;l For the spike threshold this is V,., and for the
T-current threshold it is the same as the threshold value V}, but now with

changed dynamics for the potential. This is illustrated in figure 5.4.

In the figure the solid line is the interpolated potential between V, and
V.11, and represent the potential as if the threshold was never passed. The
dashed line is the interpolated potential between V,, and Vj,.;, and represent
the potential as if the threshold was already passed, with the additional de-
mand of V(ty,) = \Q%Z’;L We see from panel A, that V() = Vs, and that
the dynamics of V(¢) is almost the same as for V (t). It is shifted downwards
so it passes Vs at ty,. In panel B and C we see that V (ty,) = f/(tth) =V,
but now the dynamics is changed. This is because the T-current is turned on

in B and off in in C.

The two new potentials, V,, and f/nﬂ, is now connected by the RK algo-
rithm without a discontinuity occurring in the time step. We have therefore
effectively by pass this cause of error. Our method is limited to the precision
of t;,, and the method used for calculating Vn and Vn+1.

5.5 Error analysis 43

S <o

th thea th thet th the1

Figure 5.4: The different panels illustrate what value the new V, and V,41 would be if the
potential should cross Vyes in A and Vi, in B and C at the time for the threshold passing,
tin,- B illustrates the passing from below and C from above. The solid line represents the
interpolated potential between V,, and Vy11, as if the threshold was never passed. The dashed

line represents the interpolated potential between V,, and Vn+1, as if the threshold was passed,

with the additional demand that the interpolated potential V (t1,) equals %Z{feﬁ

Finding 4,

The time for the threshold passing, ;;, is found by an interpolation polynomial
for the potential V' (¢), between ¢, and ¢, ;. When using RK2 a linear interpo-
lation scheme is sufficient and when using RK4 a cubic interpolation scheme
is necessary, see below. The linear interpolation scheme is given by

Vn+1 - Vn

t. (5.32)

To find t;, we have to solve this linear equation with Vipresn = Vini(t), where
Vinresn 18 either the threshold for spike, V;;,, or the threshold for the T-current,
Vi ty, 1s given by

V;fhresh - Vn
ti, = ———— At . 5.33
h Vn-l—l - Vn ()
We see from eq. 5.33, that the error in ty, is of order O(A#?), the same order
as the GTE of RK2.

For the cubic interpolation scheme we need the derivatives of the potentials
at t, and t,,1 too. These are given by 0, = f(t,, Vi) = aoV,,+by and by
Unt1 = f(tns1, Vag1) = a1 Vop1+01. All the parameters are known from the

44 Numerical implementations

calculation of V,,; 1. The cubic interpolation scheme is given by

n — Vn _At 2n ‘n
V;nt(t):Vn_‘_’Unt_‘_ <3(V+1 V)At2 (LR +1)>t2

+ <_2(Vn+1 - Vn) - At(’l)n + ij"‘i‘l)) t3.

(5.34)

At3

To find t;, we have to solve this cubic equation with Vip,esn = Vipe(t). This
could be done numerical, with for example Newton-Raphson’s method. The
error in ty, is now of order O(At?), the same order as the GTE in RK4.

Finding Vn+1 B
To find this value we are going to use two general linear expression for V,, and

V1. The first, is found from the RK algorithm, eq. 5.6, with V}, exchanged

with V,, and V,,.; exchanged with f/nﬂ. We then have
Viei= AV, +B . (5.35)

The full expressions of A and B is dependent of what order of RK we use. For
RK2 these are

At
A = 1—|—7(a0+a1+Ata0a1) (536)
At
B = 7(60+61+Atboa1) .

The parameters for RK4 are presented in appendix B. We note that when
the spike threshold is passed, these parameters are calculated from the already
calculated a and b parameters, but when the T-current threshold is passed
we have to re-calculate these parameters, now including or excluding the T-
current.

To get the second linear expression that relates V,, and Vn+1, we use the
interpolation polynomial of the corresponding RK method to express V;Zfz?;l,
where V;%Z;l =V, for the spike threshold and Vt%iﬁ =V}, for the T-current
threshold, as if the potential was passed. We use the same variable exchange
as above, V., for V,, and ‘N/n+1 for V,, 1. This give us a linear expression for v,
and ‘N/n+1

Vil = Ky Vo + Ky Via + K3 (5.37)

where K, Ky and K3 is coefficients, obtained from either of the two interpo-
lation polynomials. The coefficients for the linear interpolation polynomial is
straightforward, from eq. 5.32 we have

after 13 ¥, t [/
yaster (1 _ A_t) A (5.38)

5.5 Error analysis 45

S0,
i
K o= 1-2
! At
i
Ky = — 5.39
2 At (5.39)
Kg = 0 .

The coefficients for the cubic interpolation polynomial are given in appendix B.

~ We now have two linear equations eq. 5.35 and eq. 5.37, relating V,, and

Vi1 with one of them pinpointing the interpolated potential between them to

V;Zfi?;l at ty,. If we solve for V,,,; and get

(1= A) Viiea + BEL — (1= A) Ky

Vi1 =
“ K+ (1—A)K,

(5.40)

We have now got the new potential value after the threshold pass, without any
discontinuity error introduced.

Updating the h variable

The including and excluding of the T-current in the a and b parameters are
done in three stages. First we calculate the value of the h variable at the time
for the threshpass, t;,. Second we calculate the value of the h variable as if
the potential were crossed, and third we add or withdraw the value of the h
variable from the a and b parameters, depending on whether the threshold was
crossed from below or from above.

If the threshold, V},, were crossed from above, turning off the T-current,
we first use eq. 5.24 with At in the time evolution operator exchanged with
tyn — t,, to evaluate the value of the h variable at the time of the threshpass

_tip—tn

hiw =€ n hy (5.41)

We then use this value to obtain the value of the h variable at the fixed time
grid in the end of the time step, as if the threshpass was passed. We then
use eq. 5.25, but now with At in the time evolution operator exchange with

tn+1 — tin, L
 tpg1—tep

hopi=1—e¢ % (1= hy) . (5.42)

The threshold is passed and the T-current is turned off. Now we have to re-
move the contribution from the T-current in the a and b parameters before we
evaluate the A and B parameters used to get the potential after a threshpass.
Note that we have to use the old values of the h variable, i.e., h, and h, 4

46 Numerical implementations

when we do this, not the new h,,, value.

If the threshold, V},, were crossed from below, turning on the T-current, we
first use eq. 5.25 with At in the time evolution operator now exchanged with
ti, — tn, to evaluate the value of the h variable at the time of the threshpass

_ tip—tn

hn=1—¢ " (1—hy) . (5.43)

We now use this value to obtain the value of the A variable at the fixed time
grid, not only in the end of the time step, but also in the beginning. We need
both values when we calculate the potential after the threshpass. To get hin
we actually reverse eq. 5.41 and get

hn =e¢ "h hth . (544)

This value is then used together with the ordinary time evolution operator
from eq. 5.24 to obtain the Bn+1 value. These two values are then used to add
the T-current to the a and b parameters, which are then used to get the new
potential after the threshold pass.

Small error analysis

The error introduced is limited by the precision of the interpolation polynomial
when the time for the threshold pass is estimated. The polynomials used in-
troduces an error of O(At?) and O(At?*) for the respective integration method.
This time is then used in the corresponding interpolation polynomial in eq.
5.32 for the RK2 and eq. 5.34 for the RK4 method, to pinpoint the potential
at this time to \Q‘;ji?;l and relate this potential to the V,, and V,,,; potentials.
This is done with the same precision as t;, is estimated with. We then use
the corresponding RK algorithm to relate the two potentials V,, and f/nﬂ and
this is done with a precision of one order more than the precision got from
the interpolation polynomial. V,,; is therefore limited by the precision of the
interpolation polynomial that is of order O(A#?) and O(At*) for the two RK
methods. This is of the same order as the GTE of the corresponding method
and we are safe.

The fifth error in the error analysis, concern the discontinuity when the
h variable shifts between rise and decay, is now actually by-passed. In both
cases, when the threshold is passed from above and below, the A variable is
treated as if it has been below or above in the whole time step, when it is used
in the RK algorithm, and therefore no discontinuity occur.

If the threshold for a spike is passed with the present implementation, a
bug could occur. When the neuron receives heavy excitatory synaptic input

5.5 Error analysis 47

the potential after a threshold pass, f/nﬂ, could actually become greater then
Vin, we therefore have to be moderate when the weights of the synapses are
chosen. This bug could also be by-passed if we allowed the neuron to spike
many times in a time step. Then we have to check if the potential after a V},
threshold pass again is above Vj;,. If it is that we have to use the two linear
equations eq. 5.35 and eq. 5.37 to calculate Vj, too. Vj, and f/nﬂ are then used
in the same procedure as described above, first interpolating the spike time
between these two values. Then using eq. 5.40 to achieve the potential after
this threshold pass.

5.5.4 Incoming spikes and synaptic currents

The beta-function used in chapter 3 to model the conductance following a
presynaptic spike, introduce a discontinuity error when a spike is registered.
The discontinuity occur when the time argument of the beta function (t—tsp;ke)
reaches zero, i.e. the spike is registered. Before that time the beta function
is zero, and after it promptly starts to rise, introducing a discontinuity in the
first derivative. This causes a discontinuity in the second order derivative in
the potential and therefore also a local error of order O(At?). No matter what
precision a spike is registered with, this error will occur. When using RK2 this
error will be of the same order as the GTE and therefore not altering the order
in At the total error follows. When using RK4, this error will be of two orders
lower than the GTE, and therefore limiting the total errror to second order.

The time stepping algorithm from the previous subsection, could be ex-
panded to include a way of dealing with this error too. The algorithm is quite
complex and cumbersome to implement, e.g. we have to register the incoming
spikes to a neuron in a chronological sequence, and then implement a way of
registering one spike at a time. We have therefore not implemented the pro-
cedure, but we briefly sketch how this could be done.

The implementation is based on the same procedure used in the previous
subsection, where the discontinuities of reseting the potential after a spike
and the onset and offset of the T-current, were dealt with. There we first
calculated the next potential V,,; as if the discontinuity did not occur. We
do the same for the registration of presynaptic spikes. We first calculate the
next potential as if the neuron did not receive any spikes in the present time
step. We then register the spikes, but now instead of registering them with
the ordinary beta-function that is zero for ¢t — ¢, < 0, we now let the beta-
function rise from below zero, passing zero when ¢ = ;.. For this we use
the same function as for ¢t — ¢,z > 0. This modified beta-function does not
introduce any discontinuities.

48 Numerical implementations

t n t n+1/2 t n+1

Figure 5.5: The figure illustrates the extended beta-function, now with negative values for
t < tspire instead of zero. The solid thick line is the extended beta-function and the dashed
thick line is the ordinary beta-function for negative time argument. The value of Bo, B1/2
and (31 is added to the corresponding a and b parameter when the spike is registered.

The different values of this function that are added for each spike to the
corresponding a and b parameters, are illustrated in figure 5.5. These param-
eters are then used to get the A and B parameters used in eq. 5.40 to get
the potential after the spike registrations. Before we use this equation we got
to have a corresponding V;Zfi?;l value, that pinpoint the potential to a certain
value in the timestep. For this we use the potential at the time for the first
spike arriving the neuron in the time step. This value is acquired by using
the interpolation polynomial betwen V,, and V,,;4, i.e. the potentials as if the
neuron did not receive any spikes in the time step, together with the spike
time for the spike. This procedure is quite straight forward, but if a threshold,
either Vj;, or V},, is passed in the same time step we have a problem. Now the
registration of the spikes could alter the exact time for the threshold pass and
if we are really unlucky could force a repass of especially the V), threshold.

To handle this, hopefully not so usually occasion when a threshold is passed
in the same time step as the neuron receives a spike, the same procedure from
above is followed, but now we only register one spike at a time. First we check
if the threshold is passed before the first spike is registered.

If it is, we register the time for the threshold pass and calculate not only
ffnﬂ but also V,,. These potentials are then used to register the next spike.
After that one spike is registered at a time. To do this we have to expand
the procedure, now in aditional to V., we also calculate V,, for each spike
registered. These values are then used to register the next spike. Between

5.5 Error analysis 49

every registration we have to check for repass. If a repass has occurred, we
follow the same procedure as for an ordinary threshold pass, but now also
calculating V,.

If the threshold is passed after the first spike is registered, we start regis-
tering the spikes instead of using the threshold pass procedure. After every
spike we check when or if the threshold is passed and compare this time to
the next spike time. If it is greater, we register the next spike. Is it lesser we
register the threshold pass with the procedure described above.

This is a very cumbersome procedure to implement. First we have to keep
track of which order the spikes arrive, not only a singel synapse, but to the
whole neuron. Second we have to keep the extra conductance each one of
them contributes in separate variables. This could be a very time consum-
ing procedure that could slow down the registration of the presynaptic spikes
considerebly. The possible gain and loss this procedure impose have to be
evaluated before it is implemented.

Another and not so cumbersome way of avoiding the error caused by the
discontinuous first derivative of the synaptic conductance when using RK4, is
to use a function that have at least two continuous derivatives for the regis-
tration of a presynaptic spike. Shelley and Tao (2001) use

0 : t<0
G(t):{ (f)me*5 im0 (5.45)

When m > 3 this function has a continuous second order derivative, and they
also present numerical result, proving that this function does not introduce
any further error. To test this theory, we are going to use,

0 1t <0
G(t) = { B 130 , (5.46)

for the conductance, which also has a continuous second derivative. This
implementation is tested and the result is presented in the next chapter.

Chapter 6

Result of testing

6.1 Test setup

To test our implementation of the different models from chapter 3 and 5,
we have made different tests. All the tests are done with a network of 101
LIFB neurons, simulated with both second order Runge-Kutta (RK2) and
fourth order Runge-Kutta (RK4), with and without time stepping schemes,
(TS), and with and with out precise spike timing, (PS). The start potentials
were initialized randomly, in the range from —80.0 < Vj < —40.0 where
j=1,23,.--,101.

The total error introduced by a method is estimated by comparing the last
potential of all neurons with a canonical run. This run is made, depending
on the setup, with the most precise integration method and with a small time
step, At, =272 ms ~ 2.44 x 10~* ms.

In all tests the error is estimated by taking the membrane potential of the
neurons after 500 ms and comparing this with the canonical run after 500 ms.

101

1 . .
Error(At) = D [VA, (t = 500) — VI (t = 500) | (6.1)
j=1

where V, is the last potential of the jth neuron in the test run and V7 is the
last potential of the jth neuron in the canonical run. These result are then,
for each test, plotted against the time step, used in the simulation. By taking
the logy of both the time steps and the error and then plot the result, we can
fit the curve and find out which order in At the total error is of.

We have made six different tests, each testing one additional feature in
our implementation of the integration methods from chapter 5. The general

52 Result of testing

equation we integrate in our tests for the jth neuron is

dVi

Cmﬁ - _ii - ZJT - szt - Zgyn
Z]L = gL(Vj - VL)
i = gm’ W x (V, —V7) (6.2)

i = H(t—t0)[Ape + Aposin(f2m (t — to) +)]
e = D BLY Ge(t—1)+>_CL> Gilt — 1)
k ! k !
ifVI(t7) = Vin=6(t—t) and V(1) = Vie
with the initial conditions

Vi) = W (6.3)
R(0) = 0

The dynamics of m? and h? are described in chapter 3. H(t —t,) is the Heav-
iside function, turning the external current on at t,. A,. and A, are the
amplitudes of the DC and AC-currents, ¢’ is the phase shift of the AC-input-
current for the jth neuron, and f is the frequency of the AC-current. B} and
C,Z denotes the excitatory and the inhibitory weights of the kth neuron and ¢/
is the arrival time of the [th spike from the kth neuron.

All tests where done on a AMD Athlon XP 2000+, with the models from
chapter 3 and 5 implemented in NEST, see chapter 4.

(i) The first test is done without any input and T-current, i/ = W, =0, ie.
letting all the potentials fall toward the rest-potential, V.

This tests the precision of the integration methods of RK2 and RK4.

(ii) The second test is done with an external input-current that drives the
neurons, but without spiking ability and T-currents, setting Vy; = oo
and ZJT = 0. The external currents, i,,, are turned on at to = 10.0 ms,

and their amplitudes are A, = 0.2uA/em? and A, = 0.5pA/cm?. The
frequency and the phase was set to f = 4Hz and ¢/ = 0.

This test shows how the integration methods, RK2 and RK4, handles
the discontinuous event of an onset of an external current. The onset is
chosen to coincide with the fixed time grid.

(iii) In the third test we added the T-current to the equation, letting the
membrane potential cross V}, trigging the T-current. We still don’t have

6.1 Test setup 53

any spikes, V;, = oo. The external currents are the same as for the
second test.

This test shows how the integration methods, RK2, RK2TS, RK4 and
RKA4TS, handles the discontinuous event of the onset of the T-current.

The fourth test adds the spiking ability to the neurons, restoring Vi, to
the tabulated value from table 3.1, but keeps the coupling weights Bj
and C} equal to zero. The parameters for the external current are set
to: to = 1.0ms, A, = —02pA/em?, A, = 0.7uA/em?, f = 4Hz and
¢’ = 0. The neurons spike about 10 times each.

This test shows how the integration methods, RK2, RK2TS, RK4 and
RKA4TS, handle the discontinuous event of a spike.

In the fifth test, we have non-zero weights. The parameters for the
external currents are set to the same values as in the fourth test except
for the phase, which is set to ¢/ = j2% where j = 0,1,2,---,100. An
all to all coupling in the network is added. To set the weights, Bi and
O}, we make a weight array, (W A). The ith element in the weight array,
W A(i), is produced by

i—50)2

WA(®) = e2('5 (6.4)
where? =0,1,2,---,100. The excitatory and inhibitory weights are then
chosen from this array. This is done by letting the excitatory weights
from the kth neuron to the jth, Bj get the following weights from the
weight array .

B =WA() , (6.5)

where j = k+4mod 101 and 7 = 0,1,2,---,100. The inhibitory weights
from the kth neuron to the jth, C} get their value from the weight array
in a similar way,

Cl =WA() , (6.6)

but now 7 = k + ¢+ 50 mod 101 and + = 0,1,2,---,100. The con-
ductances G, and G; are the models for the lumping, but not satu-
rating AMPA and GABA, synapses, from chapter 3, with gaypa =
0.014mS/em? and ggapa, = 0.01mS/em?. We now introduce precis
spike timing (PS) to the TS integration methods. This method registers
the spikes at the actual time they arrive the neurons. The other integra-
tion methods register the spikes to arrive in the beginning of the time
step they arrive the neuron. The neurons spike about 11 times each.

This test shows how the integration methods, RK2, RK2TS, RK2TSPS,
RK4, RK4TS and RK4TSPS, handle the discontinuous event of receiving
a spike.

54 Result of testing

-4 T

O RK2

-5r O RK4

—— Second order fit
— - Fourth order fit

log(Error)
I
©
N

-10F /

—12F 7

13l 3

_14 I I I I I I I
-3 -25 -2 -15 -1 -0.5 0 0.5 1
log(At)

Figure 6.1: Errors as a function of time step for two different RK algorithms. The test
network does not receive any input at all and the T-current is turned off. Circles are the
RK2 method and diamonds are the RKJ method. The errors follow the predicted order in
At from section 5.5, second for RK2 and fourth for rkj. RK/ reaches the machine limit at
At ~ 0.3 ms.

(vi) In the sixth test we take the third power of the beta function in G, and
G; to make the second derivative of the synaptic conductance continuous,
see eq. 5.46. The parameters for the external currents are set to the same
values as in the fifth test except for the amplitude of the AC-current,
which is set to A, = 1.0uA/cm?. The weights are taken from the same
weight array as in the fifth test and the maximum conductances are set
to gampa = 0.018mS/cm? and gaapa, = 0.01mS/cm?. As with the
GABARg, we can not lump these synapses together, in one state variable,
increasing the simulation time dramatical. We now have 20 000 synapses
instead of 200. The neurons spike about 5 times each.

A second test with shorter simulation time, now 200 ms instead of 500 ms,
and no inhibitory weights, is also done, with almost the same parameter
choice as the first test. In this test the neurons spike about two times
each.

6.2 Results

The result from the tests were plotted against the size of the time step used
in each simulation, and can be seen in figure 6.1 to 6.7, and are commented
below.

(i) The result from the first test is shown in figure 6.1. We see that the
errors follow the predicted order in At from section 5.5, second for RK2

6.2 Results

55

Figure 6.2: Errors as a function of time step for two different RK algorithms.

0 T

O RK2

¢ RK4
— Second order fit
2L — - Fourth order fit

4tk
A

log(Error)
!
o
N

7
-10 <o o 7

_12 I I I I I I I
-3 -25 -2 -15 -1 -0.5 0 0.5 1
log(At)

The test

network is receiving external driving current, the T-current is turned off and the neurons
are not allowed to spike. Clircles are the RK2 method and diamonds are the RK/J method.
The errors follow the predicted order in At from section 5.5, second for RK2 and fourth for
rk4. RKJ reaches the machine limit at At ~ 0.3 ms.

(i)

(iii)

and fourth for RK4. RK4 reaches the machine limit at At ~ 0.3 ms and
here the errors is dominated by rounding errors.

Figure 6.2 shows the result from the second test. We see that if the
discontinuous event of the onset of an external current are chosen to
coincide with a the fixed time grid no additional error is introduced.
The errors follow the predicted order in At from section 5.5, second for
RK2 and fourth for RK4. RK4 reaches the machine limit at At ~ 0.3 ms
and here the errors is dominated by rounding errors.

In figure 6.3, the result of the third test is presented. Now our algo-
rithm for dealing with the discontinuous event of onset and offset of the
T-current is tested. The errors follow the predicted order in At from
section 5.5, for the methods with time stepping algorithms, second for
RK2TS and fourth for RK4TS, and first order for the methods lacking
this algorithm, i.e., RK2 and RK4. RK4TS reaches the machine limit at
At ~ 0.02ms.

The result from the fourth test is shown in figure 6.4. In additional to the
T-current we now also test the ability to handle the discontinuous event of
reseting the potential after a spike. The errors follow the predicted order
in At from section 5.5, for the methods with time stepping algorithms,
second for RK2TS and fourth for RK4TS and first order for the methods
lacking this algorithm, i.e., RK2 and RK4. RK4TS reaches the machine

56

Result of testing

0 T
O RK2
O RK2TS
x RK4
L O RK4TS _
—— First order fit -
— - Second order fit Pl
— — Fourth order fit -
- 6 7/
4l _ poe
& 0
- 7 ,
s & s
o -6 -7
] _9 [
07 ,
-~
- O/ 7
-8 o7 L6
7/
a]
7z
—10- o/
10 o o 5 o o >

_12 I I I I I I I
-4 -35 -3 -25 -2 -15 -1 -0.5 0
log(At)

Figure 6.3: Errors as a function of time step for four different RK algorithms. The test
network s receiving external driving current, the T-current is turned on and the neurons
are not allowed to spike. Clircles are the RK2 method, diamonds are the RK2 method with
time stepping algorithm, x’s are the RK/J method and squares are the RKJ method with
time stepping algorithm. The errors follow the predicted order in At from section 5.5, for
the methods with time stepping algorithms, second for RK2TS and fourth for RK4TS and
first order for the methods lacking this algorithm, i.e., RK2 and RK/J. RK/TS reaches the
machine limit at At ~ 0.02 ms.

limit already at At ~ 0.13 ms.

(v) In figure 6.5 we see the result from the fifth test. Now the neurons

are coupled, and we test how the discontinuous event of registering a
presynaptic spike by adding a beta-function to the conductance, bias
the system. When the integration of the test potentials stabilized, i.e.,
not following the flat band in the top of the figure, the errors followed
the predicted order in At from section 5.5, for the methods with time
stepping algorithms and precise spike times, second for both RK2TSPS
and RK4TSPS, and first order for the methods lacking the precise spike
timing, i.e., RK2, RK4, RK2TS and RK4ts. The errors in the RK4TSPS
method do not follow a fourth order fit in At because a discontinuity
in the second derivative of the potential is introduced when the beta-
function is used to register a presynaptic spike, see 5.5. We also see that
the RK2TSPS stabilizes at At ~ 0.03ms and the RK4ATSPS stabilizes
at At ~ 0.13ms. Even if the errors from the RK4TSPS method do not
follow a fourth order fit, it is the most stable integration scheme, and
the errors are at least one order of magnitude below the errors from the
RK2TSPS method. This means that we can use a time step that is
ten times larger when integrating with RK4TSPS than with RK2TSPS,
with the same precision as result. The number of time steps used in the

6.2 Results

2 T
O RK2
O RK2TS
x RK4
ok O RK4TS
—— First order fit
— - Second order fit
— — Fourth order fit
-
-2t -6
_©
= Pree
e
o -4 PR
8 <
k=l -
3
-
- O ,
6 s 4
R 2
- 7z
£
-8 Q/ . 1Z‘/
o7 ,
A o o ’
o o o o o o o,
-10 I I I I I I
-4 -35 -3 -25 -2 -15 -1 -0.5 0

log(At)

Figure 6.4: Errors as a function of time step for four different RK algorithms. The test
network s receiving external driving current, the T-current is turned on and the neurons
are allowed to spike but are not coupled. Circles are the RK2 method, diamonds are the
RK?2 method with time stepping algorithm, z’s are the RKJ method and squares are the
RK/ method with time stepping algorithm. The errors follow the predicted order in At from
section 5.5, for the methods with time stepping algorithms, second for RK2TS and fourth for
RKJTS and first order for the methods lacking this algorithm, i.e., RK2 and RK4. RK/TS
reaches the machine limit already at At ~ 0.13 ms.

(vi)

simulation is then reduced by a factor of ten.

Shelley and Tao (2001) do not do the RK4TSPS test with a conductance
that is discontinuous in its first derivative, and they therefore do not
get the second order fit for their fourth order scheme. They are using a
conductance that is continuous in its second derivative, and consistent
with our error analysis, follows a fourth order fit. In the sixth and last
test we are trying to reproduce this result.

The result from our sixth test are shown in figure 6.6. We now see that
the only methods that stabilize are the RK2TSPS and the RK4TSPS
methods. All the other methods are unstable and do not manage, no mat-
ter what precision, to produce the same amount of spikes as our canonical
run. The plot also show us that the estimated errors to RK4TSPS, fol-
lows a second order fit in At, and not a fourth order fit. This is not what
Shelley and Tao (2001) got and certainly not what we predicted from
the analysis in section 5.5. The error caused by the RK2TSPS method,
after stabilization, follows second order in At, indicating that at least
the result from this method are consistent with our analytical results.

To investigate the method a bit more we did a second test, now only 200
ms long, with only excitatory input. The result is plotted in figure 6.7.

58 Result of testing

T T T T

1 % e g
RK2
RK2TS 5 8 8 8 e 9 i
RK2TSPS -4
RK4
RKATS
RKATSPS

First order fit
Second order fit
-2F| — — Second order fit

o
T
“4x+DOO

v -
= PR
5 -
s o_ab Ral - 4
g P v
S ul -
9 A -
- /v
-5 o P E
- Y
= -
P -
61 > v 4
- ~
o~ s
-7+ /v/ -
-
v
p2
-
8l - i

-2
log(At)

Figure 6.5: Errors as a function of time step for six different RK algorithms. The test
network s receiving external driving current, the T-current is turned on and the neurons
are allowed to spike and are coupled. Clircles are the RK2 method, diamonds are the RK2
method with time stepping algorithm, squares are the RK2 method with time stepping and
precise spike timing, crosses are the RK4 method, ©’s are the RKJ method with time stepping
algorithm and triangles are the RKJ method with time stepping algorithm and precise spike
timing. When the integration of the test potentials stabilized, i.e., not following the flat band
in the top of the figure, the errors followed the predicted order in At from section 5.5, for the
methods with time stepping algorithms and precise spike times, second for both RK2TSPS
and RK/TSPS and first order for the methods lacking the precise spike timing, i.e., RK2,
RKJ, RK2TS and RK/ts.

We see the same results as in the former test, but here the tests with
a time step in the range, 0.1ms < At < 1ms, with RK4TSPS method
indicates, with a little good will, that the estimated error follows a fourth
order fit in A¢. But for At < 0.1 ms it drops to second order. It appears
that the error reach the machine limit for At < 2 x 1072 ms. The error
from the RK2TSPS method, follows a second order fit in At and the
other methods do not stabilize at all.

The last two test-runs indicates that an error we have not anticipated, is
introduced to the RK4TSPS method. At the time of writing we have not
yet resolved what these could be. One may speculate if the difference in
number of synapses between test five and six has any thing to do with
the failure. Because of the lumping and non-lumping features of the
synapses used we have a total of 200 individual synapses in the fifth test
and a total of 20 000 individual synapses in the sixth test. If more time
were given, we would try to reproduce the results from Shelley and Tao
(2001), now with the T-current turned of and we would use the same
function for the conductances as they use.

6.2 Results 59

2
of 8 8 8 5 g = ® & % & 8 %
~
O RK2 -
0 RK2TS PR
O RK2TSPS - _
-2 X RK4 g 7
+ RKATS - v_ -
vV RKATSPS & o
= — Zero order fit o~ g
S — - Second order fit - -7
u -4r 2 -7 7
=3 -
S % vV
_ 2
£ 7
o -V
6L - - 4
& Phe
~
~
v
~
gl v~ i
v -
-
~10 I I I I I I I
-4 -35 -3 -25 -2 -15 -1 -0.5 0
log(At)

Figure 6.6: Errors as a function of time step for six different RK algorithms. The test
network is receiving external driving current, the T-current is turned on and the neurons
are allowed to spike and are coupled. The postsynaptic conductances is now modeled by a
beta function in third. Circles are the RK2 method, squares are the RK2 method with time
stepping algorithm RK2TS, diamonds are the RK2 method with time stepping and precise
spike timing, RK2TSPS, x’s are the RKj method, crosses are the RK/ method with time
stepping algorithm, RK/TS and triangles are the RKJ method with time stepping algorithm
and precise spike timing, RK4TSPS. Here only the errors from the RK2TSPS method follows
the predicted order from section 5.5. The errors from the RK4TSPS method should follow a
fourth order fit but follows a second order. The rest of the methods are not stable, and their
errors do not follow any order in .

60 Result of testing

or g b
Q -
-
e ® § 8. -8 ¥
-
s e o o 8 8§ § o o .
0 RK2 o7 <
~ s
O RK2TS _ p
5 O RK2TSPS Y ,
= x RK4 X
U -4F | 4 RK4TS -7 ‘ 1
=3 - /
8 vV RKATSPS 0 s
—— Zero order fit - <
— - Second order fit - -0 /ﬁ
— — Fourth order fit _@ 4
-6 _ - 1
£ Pivg
o -
- PR
o o~
8L M i
~
v v ¥
~10 I I I I I I I
-4 -35 -3 -25 -2 -1 -0.5 0
log(At)

Figure 6.7: Errors as a function of time step for six different RK algorithms. The test
network is receiving external driving current, the T-current is turned on and the neurons
are allowed to spike and are coupled. The postsynaptic conductances is now modeled by a
beta function in third. Circles are the RK2 method, squares are the RK2 method with time
stepping algorithm RK2TS, diamonds are the RK2 method with time stepping and precise
spike timing, RK2TSPS, z’s are the RK4 method, crosses are the RK/ method with time
stepping algorithm, RK/TS and triangles are the RKJ method with time stepping algorithm
and precise spike timing, RK/TSPS. The errors from the RK2TSPS method follows the
predicted order from section 5.5. The errors from the RK/TSPS method have tendency to
follow a fourth order fit in the interval of 0.1 ms < At < 1ms, but flattens to a second order
fit for At < 0.1 ms. The rest of the methods are not stable, and their errors do not follow
any order in .

Chapter 7

Discussion

The overall goal T had for this thesis was to implement efficient and reliable
models of spiking neurons and conductance-based synapses, present in the dor-
sal lateral geniculate nucleus (LGN) in a cat, in the framwork of the NEST
neuronal network simulator. These models are escential for the development
of network models for the LGN circuit.

I have used the leaky-integrate-and-fire-or-burst (LIFB) model (Smith et al.
2000) as a primary spiking neuron model for the bursting relay cell in the
LGN. This model can also be used to model other neurons in the LGN, which
also show bursting behavior (Smith and Sherman 2002). The models of the
synapses were based on the models developed by Destexhe et al. (1998). These
are conductance-based models of the ionotropic AMPA and GABA , receptors
and of the metabotropic GABAg receptor. The latter could be used to model
the metabotropic glutamate receptor, mGluR5, that is present in the LGN.
Emri et al. (2003) used the same model to simulate the metabotropic, mGluR1
glutamate receptor.

To satisfy the demand of reliable implementation I integrated the LIFB
model with the second and fourth order of the general purpose methods of
Runge-Kutta (RK). These methods also gave me a formal framework to ana-
lyze the different errors introduced when the model was integrated. The LIFB
model introduces five different discontinuities that when integrated with the
RK methods, cause errors additional to the truncation errors introduced by
the RK methods itself. Three especially important discontinuities are: the
reseting of the potential after a spike, the onset and offset of the T-current
causing the bursting activity, and the onset of postsynaptic currents following
a presynaptic spike. I extend the former work of Hansel et al. (1998) and
Shelley and Tao (2001) to a generic procedure for handling these kinds of dis-
continuity errors. The procedure for the first and second type of discontinuity,
were implemented in NEST and successfully tested. A method for handling

62 Discussion

the third discontinuity when the model is integrated by the fourth order RK
method is proposed, based on the same generic procedure, but unfortunately
I was not able to test it. Another procedure to handle the third discontinuity
when using the RK4 method, is introduced by Shelley and Tao (2001). They
use a model of the conductance based on a function that is continuous in its
second derivative, thus only introducing a discontinuity error that is of the
same order as introduced by the integration method. I show in my analysis
that this methods should work but I fail to reproduce the numerical results
when the implementation is tested. At the time of writing I unfortunatly do
not know wy I could not reproduce the result. But I show that the present
RK4TSPS method integrate a network of coupled LIFB neurons with ten times
the precision then the RK2TSPS method, thus reducing the number of time
steps used in the simulation by a factor of ten.

By registering a presynaptic spike by moving it to the fixed time grid, i.e, to
the beginning of the time step during which the spike arrives, the registration
procedure is simplified. I show, both analytically and numerically, that this
introduces an error that is greater than the error introduced by the integration
methods. I suggest a solution to this error and it is successfully tested.

The method of exact integration (Rotter and Diesmann 1999) provides an
efficient and reliable framework for the integration of functions that are solu-
tions of linear, time invariant and continuous systems of differential equations.
I implemented the synapses from Destexhe et al. (1998) with a function that
could be integrated by exact integration, the beta-function, so I could benefit
from this effective integration method. The method also provides a straight
forward procedure of registering presynaptic spikes. A single value is just
added to one of the variables used to integrate the conductance, and several
synapses with the same dynamics could also be lumped together in the same
state variable, accelerating the calculation of the synaptic conductance.

By using the two integration methods together with the generic procedure
for handling discontinuity errors, I benefit from the strengths from both inte-
gration methods, while the limitations each one of them impose is by-passed.
The RK method is a generic integration method, extensiely used. But as ex-
plained in section A.1 in the appendix and in section 5.5, errors are introduced
when discontinuities in the integrated model occur. This is handled by our
error handling procedures. The effective and precise method of exact integra-
tion is unfortunately limited to linear, time invariant and continuous systems.
It could therefore not be used to integrate the whole LIFB model, but I suc-
cessfully used it to simulate smaller parts of the model, especially the synaptic
conductances.

63

Almost all models and error handling procedures, presented and discussed
in this thesis are implemented in NEST. This provides the group in As, and
others that are using NEST, with important simulation tools, when network
models of the LGN are developed. I have also developed and implemented a
new technique dealing with conductance-based synapses in NEST. The former
was based on the event system of NEST, briefly discussed in chapter 4. This
introduces delays and unnecessary time spent on handling events. The event
handling is effective when communications are made between many nodes. As
each synapse only delivers synaptic conductance to just one receiving neuron,
it may be integrated into this neuron. I have implemented a way of doing
this. The actual synapse is created when the connection betwen two neurons
is made, and is then stored in the receiving neuron. If the synapse were able
to lump incomming spikes and another connection is made to the same reciev-
ing neuron trough the same synapse, instead of creating a new synaspe the
old one is used. Thus the synaptic handling is accelerated, and I was able to
implement the lumping ability of the ionotropic synapses in a straight forward
way.

The next step would of course be to simulate the feedforward circuit of
LGN presented in chapter 2. To do this, a model for the triadic circuit, in the
X-pathway has to be developed and tested. Other neurons in the circuit should
also be included in the network model, so I could explore more of the signal
processing ability of the EVP in a cat. I should also try to locate the error
done when the method of RK4TSPS and a conductance that is continuous in
its second derivative were used. A numerical implementation of the sketched
procedure, that handles the error introduced by the discontinuous event of
registering a presynaptic spike by a beta-function, should also be done, so the
method could be tested.

Appendix A

Integration methods

The differential equations from chapter 3 are all initial value problems (IVP).
In general an IVP can be expressed as

= F) o(0) = (A1)

There exists a pletora of integration methods to solve this kind of problems,
all of which try to solve for v(¢), where t > 0. This is most typical done by
dividing the time course between 0 and t into M intervals and these could be
of equal or non-equal size. The value of v(¢) is then calculated by iteration
from one value, on the grid v(¢;), to another v(¢;1), where ¢, = t; + At, until
v(t) is reached. The integration methods presented here, Runge-Kutta (RK)
and exact integration rely fundamently on the Taylor expansion of a function.
If v(t) has continuous derivatives of all orders in the interval [¢;, #;,1], it could
be represented as

1 1
v(tigr) = v(t;) + 0" (t) At + 51;(2) (t:) At® + 60(3) (t)A + (A.2)

This series give a robust fundation for the integration methods and the error
analysis.

A.1 Runge-Kutta metods

The exposition of the Runge-Kutta methods is based on Mathews (1987).

Before we present the RK methods we first present Taylor’s integration
method which the RK methods are derived from. Taylor methods are derived
directly from the Taylor series and are often called Taylor’s formula. For
numerical puposes, we do not use eq. A.2 but a finite sum to approximate
the v(t;y1) value. If v(¢) has derivatives of all orders in the semi open interval

66 Integration methods

of [t;, tix1)! and we fix a number N, v(#;;1) can be expressed by the Taylors
formula, (Finney and Thomas 1994)

1 1
v(tigr) ~ v(ty) + v’ (t) At + 51;(2) (ti) A2 4. .+ ﬁv(m (t)AtN . (A.3)
The error in the approximation in equation A.3 is the local truncation error
LTE and is given by
1
= (N+1) AtNJrl A4
A (A4)
where t; < ¢ < t;;1 and At > 0. If the N’th order of the Taylor method is used
to integrate one step then the LTE is of order O(At¥*1). N can be chosen
large so the LTE becomes small. The LTE is the error introduced when we go
from one step to an other, and this error are accumulated to the global trun-

cation error (GTE), which is of one order lower than the LTE, i.e. of order
O(AtY) (Mathews 1987).

If, the kth derivative is discontinuous in the open interval of [t;, t;11), it
introduce a local error of O(At*). This error is introduced, to the next poten-
tial, v(t;y1). If the GTE is of order O(At") the Nth or higher derivative can
actually be discontinuous and the GTE is not altered. But if the discontinuity
occurs at the time step, t;,1, it is not contained in the semi open interval of
[ti, tiz1) and no error from the discontinuity is introduced to v(t;41). When
the next value, v(t;12), is calculated from the values of the derivatives at t;,1,
there exists no discontinuities either in this interval. So neither now is any
error introduced to v(t;y2). This is illustrated in figure A.1.

A drawback of the Taylor method is that we have to evaluate the N’th
derivative of v(t;) to approximate v(t;;1). This could be hard work if the
IVP from equation A.1 is complicated. Then the method of RK is a more
convenient method to use. Every RK method of order N is derived from a
Taylor method in such a way that the GTE is of order O(AtY) (Mathews
1987). To approximate v(t;41) from v(¢;) with RK methods we only have to
evaluate the first derivative of the v(¢) function. From equation A.1 we see
that this is the value of the f(¢,v(¢)) function. A trade-off to this is that we
have to make several functional evaluations in the time step. These methods
could be constructed for any order of N, but we are only going to use two
versions, one of the second and one of the fourth order in this thesis. These
are also the most used.

In general the RK methods use a linear combination of the function values
fo, f1,- -+, fn_1, evaluated somewhere in the semi open interval of [¢;, ¢;11),

!In the original formula in Finney and Thomas (1994) the interval is open, and it should
contain the evaluation point, for us it is ¢;. When this point is included the interval becomes
semi open.

A.1 Runge-Kutta metods 67

~— ~—

\
/

ﬁ
=~

[Al
L L
t

i i+1 Ui t i+1 tio

Figure A.1: The two panels show the two semi open intervals of [t;, tiy1) and [tit1, tiva),
and the kth derivative of v(t), which is discontinuous. In the left panel the discontinuity
appears inside the first interval and therefore imposes a LTE of order O(At*), to v(tiy1). If
the GTE is of the same or lower order the discontinuity does not alter it, but if the GTE is
of higher order it is now lowered to O(At*). In the right panel the discontinuity appear at
ti+1. Neither of the two semi open intervals include the discontinuity and therefore does it
not introduce any additional error to the integrated v(t).

to approximate the mean rise of the function in that time step. This value is
then used to approximate, by extrapolation, the next value,

U(tﬂ_l) = ’U(tz) + At(aofo + a1f1 4+ 4 aN_lfN_l) s (A5)

where

Jo f(ti,v(ti)),
f1 = f (ti+blAt, U(ti)—f-ClgAtfg),

(A.6)
Invo1 = f(ti+bn 1AL vt H+
At [C(N71)0f0+C(N71)1f1+' +ON-1)(N-2) fN72]) 5

where N is the order of the RK method. fj is the derivative of v(t) at time ¢,
i.e., at the fixed time grid at beginning of the time step. The other f-functions
are an approximation of the derivative of v(¢) somewhere inside the semi open
time interval. by is bounded by 0 < b, < 1 and determine where in the time
step the f-function is evaluated. The ¢;; coefficients are the weights of the kth
f-function, f; and these weights are bounded by by, as by = Z;Vﬂ ckj- Note
that the kth f-function, f;, where k =1, 2 --- N — 1, takes an approximation
of v(t) at t; + byAt, formed by a linear combination of the former function

values, as argument when the approximated first derivative is evaluated.

68 Integration methods

Second order Runge-Kutta (RK2)

We are going to use eq. A.5 and eq. A.6 together with the Taylor series, eq.
A.2, to show how the coefficients are chosen for a second order RK method.
To simplify notation we set, t; = ¢t and v(¢;) = v or v(t). We start with the
Taylor formula for v(t)

1
v(t + At) = v(t) + Atv'(t) + 5At%”(wt) + DA + -+, (A.7)

where D is a constant involving the third derivative of v(¢). The other terms
in the serie involve powers of At/ for j > 3. We can express these derivatives
with f(¢,v) The first derivative is

v'(t) = f(tv) (A.8)
and the second derivative, with use of the chain rule is
V(t) = filt,) + fultv) f(tv) (A.9)

Using eq. A.8 and eq. A.9 in eq. A.7 we get an expression for v(t + At)

o(t+Af) = v(t)+Atf(t,v)+%At2ft(t,v) (A.10)

+ %Aﬁfv(t, v)f(t,v) + DA + - .
Now consider the RK eq. A.5 and eq. A.6. For the second order we have
v(t+At) = v(t)+ At(aofo + arfr)
fo = f(t,v), (A.11)
fi = f{t+h At v+e0Atfo),
We then use the Taylor polynomial approximation to expand f;
fi = f(t,0) + biAtfy(t,v) + cioAtf (8, 0) f(tv) +dAE + -+, (A12)

where d includes the second partial derivatives of f(¢,v). Then eq. A.12 is
used in eq. A.11 to get the expression for v(t + At)

v(t+At) = v(t)+ (ap + a1) Atf(t,v) + arb At f,(t,v) (A.13)
+ arcl oA £, (t,0) f(t,v) + ardA + -+ .

Comparing similar terms in eq. A.10 and eq. A.13 yields the following
conclusions,

ap+a; = 1
1
Cllbl = 5 (A14)
1
a1Clg = 5 .

A.1 Runge-Kutta metods 69

Vet

i i+1
Figure A.2: The figure illustrates the geometry of eq. A.15. The solid small lines are
approzimations of the slope in the beginning, ki and the end, ks. The dashed line is the
mean of k1 and ko and are used to find the approzimation of the final v(t;y1) value. The
dotted line are the extrapolation of the first slope, used to find an approzimation of v(t) in

the end of the timestep. This value is then used in f(t,v) to find an approximation of the
slope in the end of the time step.

So if we require that ag, a;, by and cyq satisfy the relations in eq. A.14,
then the RK2 method in eq. A.13 will have the same order of accuracy as
the Taylor’s method in eq. A.10. With four unknown and three equations the
system is underdetermined, and we choose one of the coefficients. We choose
ap =1, and the other coefficients follows, a; by = 1 and ¢;g = 1. With
these, eq. A.13 becomes

=1
27

v(t+ At) = wv(t)+ %(l«:l + ko) + O(AF)
ki o= f(tv) (A.15)
ke = f(t+ At,v+ Atksy) .

We now have a RK2 method with a LTE of order O(A#*) giving a GTE
of order O(A#?). The fraction ’“QL’” is an approximation of the mean slope to
v(t), in the time step. This slope is then used to approximate the new v(¢;;1)
value, from v(t;). This is illustrated in figure A.2, where the small solid lines
are the local slopes of, k1 and k9, and the dashed line is the mean slope, used
to find the final v(t;,1) value.

70 Integration methods

Fourth order Runge-Kutta (RK4)

To develop equations like eq. A.15 for the fourth order Runge-Kutta (RK4)
from the general eq. A.5 is a much more complex issue and beyond the scope
of this Appendix.

The RK4 method is a commonly used integration method because it is
fairly straightforward and it evaluates the new v(¢;,1) value with a small LTE,
of order O(A#®), leading to a GTE of order O(At*). The RK4 method is of
the following form,

At

’U(t + At) = U(t) + ?(kl + 2]{)2 + 2k3 + l{)4) + O(At5)
kl = f(t,’l))
At At
At At
kg = f(t—F?,U—f—?kg)

ks = f(t+ At,v+ Atks) .

Even if the choice of coefficients in (A.16) is complex we can study the
geometry of them in the same way as we did for the RK2 method. The k;
coefficients are approximations of the slope to v(t) in the time step, in the
beginning, ki, in the middle, k; and k3, and in the end, k4 . These are then
weighted to form an approximation of the mean slope of v(¢) in the time step.
This slope is then used to get the approximation of the final v(¢;,1) value. See
figure A.3.

A.2 Exact integration

Exact integration is as the name says, an integration method that solve the
IVP of eq. A.1 with no truncation error introduced, and it is a very efficient
integration method too. To be integrated with exact integration the IVP have
to be time invariant, linear and the integrated function got to have continuous
derivatives of all orders. We are only breifly going to present these method, for
a more thorough presentation we recommend Rotter and Diesmann (1999).
Consider the following homogenous, linear and timeinvariant system of first
order differential equations

y =Ay; y(0) = yo . (A.17)

Here A is a square matrix with fixed constants that characterize the system.
Any higher-order linear systems could be substituted by a first-order system.
The solution of this homogeneus system is given by the columns in the matrix

A.2 Exact integration 71

i+1]

i i+1/2 i+1

At

Figure A.3: The figure illustrate the geometry of eq. A.16. The solid small lines are
approzimations of the slope: in the beginning, ki, in the middle: ky and k3, and in the end,
ky. The dashed line is the weighted mean of those and are used to find the approzimation of
the final v(t;y1) value. The dotted lines are extrapolations of the first three slopes, used to
find an approzimation of v(t) in the timestep. This value is then used in f(t,v) to find an
approzimation of the next slope.

exponential y = yge??. This can be checked by substituting all derivatives in
a higher dimensional version of Taylor’s formula, eq. A.2, with y® = Aky.
If we fix the time to a grid with the size of At, we can express the value of,
y(tiy1), with the former, y(¢;), as:

y(tis) = ey (t;) . (A.18)

eA2t is now called a time-evolution operator and could be used iterative to

reach values on the grid for y

Exponential decay

One of the most elementary functions is the exponential decay expressed by
i+ an =0, n(0) =no , (A.19)
for a scalar variable 7. The explicit solution of this system is:

n(t) = noe™" . (A.20)

72 Integration methods

If we bring eq. A.19 to the normal form of eq. A.17 we identify

y=mn, y(0) =mnp, A= —a . (A.21)

With a fixed time grid we get a time-evolution operator for the exponential
decay:
Yir = e "y, (A.22)

Alpha- and beta- functions

Two commonly used functions in neural simulations are the alpha- and beta-
functions. These two are solutions of

i+ (a +0)1 + (ab)n = 0, n(0) = 0, N(0) =10 , (A.23)

a second order differential equation. For a = b the solution is an alpha-function
and with a # b the solution is the beta-function. The explicit solution, with
the alpha-function comming first, of eq. A.23 is

n(t) = note " and n(t) = o (e —e™), (A.24)

To bring this equation over to the normal form of eq. A.17 we have to rephrase
it into a two-dimensional first-order system. This could be done in many
different ways, but a convinient way to this for the system in eq. A.23 is

,y(O):[?Z)O],A:[_la _Ob] (A.25)

With the time fixed to a grid, the time-evolution operator or the matrix expo-
nential, is then

bn + 1)
n

AAL e oAbt 0
¢ - Ate—aAt e—aAt ? (A26)
for the alpha funtion, and
—alAt
AAE e 0
e = [1 (efaAt . 6fbAt) o bA]) (A.27)
b—a

for the beta function. When this is used in eq. A.18 we get the next value in
the state vector y(¢;.1) from the former y(¢;). The actual value of the alpha-
or beta-function at time ¢, is given by the second state variable of y(t;1).

Appendix B

Interpolation parameters

In chapter 5, the procedure for calculating the potential after a threshold pass,
with no further numerical error, is presented. The equation that finally gives
us the potential comes from two linear equations that relate f/n+1 and Vj, with
each other. The first potential is the one we want to solve for. The two
equations are

Vn+1 - Avn +B) (Bl)

and

Viteah = Ko Vo 4+ Ky Voo + K (B.2)

The first equation is obtained from the second or fourth order Runge-Kutta
integration schemes, in eq. 5.4 and eq. 5.5. The second equation is obtained
from the linear or cubic interpolation polynom from eq. 5.32 and eq. 5.34. We
solve these for the potential after the threshold pass, and get

- (1—A) Vi L BEK) — (1 — A) Ky
Vo= . B.3
i K+ (1—A)K, (B-3)

This equation is general and gives the potential after a threshold pass for both
RK2 and RK4. The only thing that differd are the parameters. For RK2 are
these given in chapter 5, by eq. 5.36 and eq. 5.39, and the parameters for the
RK4 are given by

At
A =1+ (AP 4 2 AL 4 2 ALP 4 AT

At
B = = (By +2 By + 2 By 4 By?) |

74 Interpolation parameters
where
Aillelp = Qq
e At e
Ag tp = al/g <1 + 7 Alll lp>
At
R (R
AP = ay (1+ At AP
B{wlp — b(]
e At e
Bg tp = bl/g + 7 B{l tp Cll/z
e At e
Bg tp = bl/g + 7 Bg tp Cll/z
By = b +AtBy"a, |
and

t
Ki = 1+ag-2At—

At

<%91uu%+a+<%91u%+m(ag

A ? i\’
K2 = <E> (3 - Atal) + <E> (Atal — 2)

tin
Ky = bygx — At —
s 0F AL

(

i

At

2
Lih

At (2by+ b —
> (2o + 1)+<At

(B.5)

>lu%+my(am

10

15

Appendix C

Selected C++ code

C.1 Introduction

In this appendix selected C+-+ code files are presented. They are chosen so
they give a consistent view of my contribution to NEST, with the discontinuity
handling and the implementation of the synapses emphasized.

C.2 LIFB Neuron with RK4TS method

The LIFB model is implemented in several different neuron models in NEST,
which this is the most advanced. It implements the LIFB model with a Runge-
Kutta algorithm of fourth order, with the time stepping mechanism for dealing
with the discontinuities of reseting the potential after a spike and the onset
and offset of the T-current. It also shows how the synapse-connect mechanism
works and how we have implemented the lumping and non-lumping feature of
the synaptic integration.

lifb neuron rk4ts.h

#ifndef LIFB_NEURON_RK4TS_H
#define LIFB_NEURON_RK4TS_H

#include "nest.h"
#include "event.h"
#include "node.h"
#include "synapse.h"

/* BeginDocumentation
Name: LiFBNeuron_rk2ts - Leaky integrate, fire and burst neuron with 2:nd order time-stepping schemes
Description:

The LiFB neuron implements Rinzel’s model of geniculate cells
with low-threshold calcium spikes activated by hyperpolarization

(1) Naming
The neuron is based on the leaky integrate-and-fire neuron, but a
low-threshold Ca++ current is included, leading to burst firing;

20

25

30

35

40

45

50

95

60

65

70

75

80

76 Selected C++ code

see [1].

(2) Inputts

The neuron can recive inputt from current and spike event. The current
event should be received in microA/cm~2. The spike event is recived
through a synapse.

(3) Synapses

a) The neuron can only recive spike event through synapses. This is
done by the SLI-command:

Neuronl Neuron2 SynapseType SynapseConnect -> port rport

b) The SynapseType should be registered in the special synapsemodel
dictionary and could be voltage dependent.

c) The synapses could be lumping or not lumping. If the synapse is
lumping, additional connection to this neuron with the same synapse,
is made to the allready existing synapse. This accelerate the
synapse handling.

d) If the neuron is connected to a spiking source without the
ordinary Connect command, a default synapse is created based on the
default rport value of the SpikeEvent. If the default is O then a
synapse with library entry O is created.

e) The synapse inputt should be in mS/cm~2.

(4) Time Stepping Schemes

To handle the nonlineareties during threshold passes of V_th and V_h,

the modified time-stepping schemes for second order rungekutte, from [2]
is implemented. This give an analytic precision of the same order as the
global timestep.

A forth order algorithm could also be implemented. This give an analytic
precision of the third order of global timestep. This require that the
synapses have precis spike handling and gives conductance information to
the neuron in between the time steps.

(5) Parameters

Default parameters are from [1], Table 1; see GetStatus to find out
about parameters; all params and V, h can be set.

0BS! The total area of the neuron, (the area of the compartment) should
be set to ensure the right synaptic inputt.

If the neuron is "synapseconnected" to another neuron, the GetStatus
command also give information about the synapse.

References:

[1] G. D. Smith et al, J Neurophysiology 83:588--610 (2000)

[2] M. J. Shelley & L. Tao, J Computational Neuroscience 11:111-119 (2001)
Author: Johan Hake, Spring 2003

Seellso:
*/

namespace nest {

using std::vector;
using std::map;

class Network;

class lifb_neuron_rk4ts:
public Node

{

public:

typedef Node base;

C.2 LIFB Neuron with RK4TS method

7

1lifb_neuron_rk4ts();
85 1ifb_neuron_rk4ts(const 1lifb_neuron_rk4ts&);
~1ifb_neuron_rk4ts();

port connect (SpikeEvent &);
port connect(Node *);
90
void handle(thread, SpikeEvent &) ;
void handle(thread, CurrentEvent &);
void handle(thread, PotentialRequest &);

95 port connect_sender(SpikeEvent &);
port connect_sender(CurrentEvent &);
port connect_sender(PotentialRequest &) { return 0;}

/**
100 * Return current membrane potential.
* This function is thread-safe and should be used in threaded
* contexts to access the current membrane potential values.
* Qparam steptime - the current network time

*
105 */
double_t get_potential(steptime) const;
/%%
* Define current membrane potential.
110 * This function is thread-safe and should be used in threaded
* contexts to change the current membrane potential value.
* Q@param steptime the current network time
* Qparam float_t new value of the mebrane potential
*
115 */
void set_potential(steptime, double_t);
protected:
120 void init();
void calibrate(realtime);
void resize_buffers(delay);
void update(thread, steptime, realtime);
125 void get_properties(DictionaryDatum &) const;

void set_properties(const DictionaryDatum &) ;
std::string get_name(void) const ;

130 private:
RingBuffer currents_O_;

RingBuffer currents_1_;
RingBuffer currents_2_;

135
/** variables holding the currents */
double_t c_0_;
double_t c_1_;
double_t c_2_;
140
// neuron parameters
// Voltages in mV, currents in pA, conductances in mS,
// capacitance in muF, times in ms
double_t V_th_; //'< threshold
145 double_t V_res_; //'< reset voltage
double_t V_L_; //'< leak current reversal potential (Cl-)
double_t V_T_; //'< T-current reversal potential (Ca++)

double_t V_h_; //'< T-current activation threshold

78 Selected C++ code

150 double_t g_L_; //'< leak conductance
double_t g_T_; //'< T-current conductance
double_t C_; //'< capacitance

155 double_t tau_h_r_; //'< time constant of T-rice
double_t tau_h_d_; //'< time constant of T-decay

// state variables

double_t V_O_; //'< membrane potential in the begining of the timestep
160 double_t V_1_; //'< membrane potential in the end of the timeste
bool is_above_V_h_; //'< Is true if V is above V_h

/** inactivation level.

165 * ==0: no T-current, h==1: max T-current
*/
double_t h_O0_; //'< inactivation level in the begining of the time step
double_t h_1_; //'< inactivation level in the middle of the time step
double_t h_2_; //'< inactivation level in the end of the time step
170
double_t idt_; //'< internal time resolution

// parrameter used to update the h variable
double_t h_rise_; //'< used when the potensial is below V_h
175 double_t h_decay_; //'< used when the potensial is above V_h

/%% parrameters used in the Runge Kutte algorithm
* dV/dt = a*xV + b

*
180 * X_0 the value in the begining of the timestep, used by the RK algorithm
* X_1 the value in the end of the timestep, used by the RK algorithm
*/

double_t a_0_; //'< parrameter used by the RK algorithm

double_t a_1_; //'< parrameter used by the RK algorithm
185 double_t a_2_; //'< parrameter used by the RK algorithm

double_t b_0_; //'< parrameter used by the RK algorithm

double_t b_1_; //'< parrameter used by the RK algorithm

double_t b_2_; //'< parrameter used by the RK algorithm
190

double_t pot_[2]; //'< MT safe buffer for membrane potential.

vector<Synapse*> sv_; //! vector storing the different synapses, the index corresponds to the rport of the
map<int_t,port> 1ls_; //' map keeping track of the rports of the registered lumping synapses
195

void update_h (double_t t_th_,realtime dt); //!< Updates the h variable after a threshpassing

// Gives the next potensial value
double_t rk4 (realtime dt); //:<
200
// Gives the potential after a threshpassing
double_t potential_after_th(double_t V_thresh, double_t thresh_ratio , realtime dt);

// Finds the time for threshhold passing.
205 double_t thresh_find(double_t V_thresh, realtime dt);

};

// Rungekutte 4:nd order algorithm
210 inline
double_t lifb_neuron_rk4ts::rk4(realtime dt)
{
double_t k_1 = a_0_ * V_O_ + b_0_;

215

220

225

230

1

10

15

20

25

30

35

40

C.2 LIFB Neuron with RK4TS method

79

double_t k_2
double_t k_3
double_t k_4
return V_O_ + dt *

}

non
[

+
o
ot

N * * *

inline
double_t lifb_neuron_rké4ts::get_potential(steptime now) const
{

return pot_[now%2];

}

inline
void 1lifb_neuron_rk4ts::set_potential(steptime now, double_t u)
{
pot_[(now+1)%2]=u;
}

} // namespace

endif

lifb neuron rk4ts.cpp

#include <cmath>
#include <map>

#include "exceptions.h"
#include "network.h"
#include "dict.h"
#include "integerdatum.h"
#include "doubledatum.h"
#include "dictutils.h"
#include "numerics.h"
#include "synapse.h"

#include "1lifb_neuron_rk4ts.h"

nest::1ifb_neuron_rk4ts::1lifb_neuron_rk4ts()
: Node(),

currents_0_(network()->get_threads(),1),
currents_1_(network()->get_threads(),1),
currents_2_(network()->get_threads(),1),
V_th_(-35.0), // mv
V_res_(-50.0),
V_L_(-65.0),
V_T_(120.0),
V_h_(-60.0),
g_L_(0.035), // ns
g_T_(0.07),
c_(2.0), // muF
tau_h_r_(100.0), // ms
tau_h_d_(20.0),

), // start at rest

),

), // The calsium current is de-inactivated

>

V_0_(V_L
V_1_(V_0
h_0_(1.0
h_1_(h_0
h_2_(h_0

2
2)

nest::lifb_neuron_rk4ts::lifb_neuron_rk4ts(const nest::lifb_neuron_rk4ts &n)
: Node(n),
currents_O_(network()->get_threads(),1),

80 Selected C++ code

currents_1_(network()->get_threads(),1),
currents_2_(network()->get_threads(),1),
V_th_(n.V_th.), // mV
45 V_res_(n.V_res_),
V_L_(n.V_L_),
V_T_(n.V_T.),
V_h_(n.V_h_),
.g L)), // mS
n.g T),

n.C), // muF
tau_h_r_(n.tau_h_r_), // ms
tau_h_d_(n.tau_h_d_),
V_0_(n.

55 V_1_(n.

_(n
50 _(

_L
_T
_(

Q0] 0’

60 init();

nest::1ifb_neuron_rk4ts::~1ifb_neuron_rk4ts()
{
65 for(vector<Synapse *>::iterator i=sv_.begin();
i !'= sv_.end(); ++i)
{
delete *i;
T
70 sv_.clear();

}

std::string nest::1ifb_neuron_rk4ts::get_name(void) const
o

return std::string("lifb_neuron_rk4ts");

}

void nest::lifb_neuron_rk4ts::resize_buffers(delay d)
80 {
currents_O_.set_delay(d);
currents_1_.set_delay(d);
currents_2_.set_delay(d);
for (uint_t i = 0; i < sv_.size(); ++i)

85 {
sv_[i]->set_delay(d);
T
}
90 void nest::1ifb_neuron_rkdts::init()
{
c_0_ =c_1_=c_2_ = 0.0;
V_0o_ =V_1_;
h_ O_ =h_1_=h_2_;
95 is_above_V_h_ = V_O_ >= V_h_;
a 0_=a1l_=a2_ =-(glL_+ (is_above_V_h_ ? h_1_ : 0.0) * g T_);
b_O_ =b_1_=Db2_ =glL_* V.L_+ (is_above_V_h_ 7 h_1_ : 0.0) * g T_ * V_T_;

for (uint_t i = 0; i < sv_.size(); ++i)
100 {
// *(sv_[i]->get_g()+1) is used to get the second value in the
// conductance array.
a_2_ -= *(sv_[i]->get_g()+1);
b_2_ += *(sv_[i]l->get_g()+1) * sv_[i]l->rev_pot();

105 }

C.2 LIFB Neuron with RK4TS method

realtime dt = network()->get_resolution();
h_rise_ = std::exp(-dt / tau_h_r_);

h_decay_ = std::exp(-dt / (2 * tau_h_d_));

110
a_2_ /= C_;
b_2_ /= C_;
pot_[0]= pot_[1] = V_1_;
¥
115
void nest::lifb_neuron_rk4ts::calibrate(realtime dt)
{
h_rise_ = std::exp(-dt / tau_h_r_);
h_decay_ = std::exp(-dt / (2 * tau_h_ d_));
120 for (uint_t i = 0; i < sv_.size(); ++i)
{
sv_[i]->calibrate(dt);
}
}
125
void nest::1ifb_neuron_rk4ts::update(thread t, steptime T, realtime dt)
{
// shifting variables to the next timestep
130 VO_ =V_1_;
h_O_ =h_2_;
a_0_ = a_2_;
b_0_ = b_2_;
135 // Collecting the currents in the first part of the time step
c_0_ = currents_O_.collect(T);
// Is the current in the last part of the previous time step
// different from the first part of this? (Has a current been turned on/off?)
140 // Then use the "new" current instead of the "old"
if (c_0_ !'= c_2_)
{
b_0_ -=c_2_/ C_;
b_0_ += ¢c_0_/ C_;
145 }
// Collecting the currents in the second part of the time step
c_1_ =currents_1_.collect(T);
c_2_ =currents_2_.collect(T);
150 // Updating the h variable diffrent if V is above V_h or not
if (is_above_V_h_)
{
h_1_ = h_decay_ * h_0_;
h_2_ = h_decay_ * h_1_;
155
al_=-(glLl_+ hil_ *g[T_);
b1_=glL_* VL_ +hi1_ % g T_ % V.T_+c_1_;
a_2_ =-(gll_+ h2 *g[T_);
160 b2 =glL_*xV.L_ +h2 *gT_*V.T_ +c2_;
}
else
{
h_2_ =1.0 - h_rise_ * (1.0 - h_0_);
165
a_l_=a2_ =-glL_;
b_1_ =g L_* V_.L_ + c_1_;
b_2_ =g L_* V.L_ + c_2_;
}

170

82

Selected C++ code

175

180

185

190

195

200

205

210

215

220

225

230

235

// Updates the sum of the inputts a and b

// Collects the a and b inputts
for (uint_t i = 0; i < sv_.size(); ++i)

{
sv_[i]->update(T);
// get_g gives a pointer to an array of size two, *(sv_[i]l->get_g()) gets
// the first value and *(sv_[i]->get_g()+1) gets the second value
a_1_ -= *(sv_[il->get_g());
b_1_ += *(sv_[i]l->get_g()) * sv_[i]l->rev_pot();
a_2_ -= *(sv_[i]->get_g()+1);
b_2_ += *(sv_[i]l->get_g()+1) * sv_[i]->rev_pot();
// if (get_1id() == 70 && i == 20)
// std::cerr << *(sv_[i]->get_g()) << ", " << std::flush;
}
// Divide by the conductanse
a_1_ /= C_;
b_1_ /= C_;
a_2_ /= C_;
b_2_ /= C_;

// gets the next potensial value
V_1_ = rk4(dt);

// threshold
if (V_1_ >= V_th_)

{

// The time for the threshpassing

double_t t_th = thresh_find(V_th_, dt);

// If the resetpotensial is below the threshhold for the T-current

if (V_h_ > V_res_)

update_h(t_th, dt);
// Getting the potensial after the threshpassing
V_1_ = potential_after_th(V_res_, t_th / dt, dt);
// Create the spike event to send

SpikeEvent sp;

sp.set_time(T*dt + t_th); // include precise time

network()->send_to_targets(t,this, T, sp); // produce a spike
}

// Passing threshhold for the T-current?

if ((V_1_ >= V_h_ && !is_above_V_h_) |[(V_1_ < V_h_ && is_above_V_h_))

{
// The time for the threshpassing
double_t t_th = thresh_find(V_h_, dt);

// Swiching the flag
is_above_V_h_ = !is_above_V_h_;

// Updating the h variable
update_h(t_th, dt);

// Getting the potensial after the threshpassing
V_1_ = potential_after_th(V_h_, t_th / dt , dt);

}

// Update "export potential"
set_potential(T,V_1_);

C.2 LIFB Neuron with RK4TS method

83

240

245

250

255

260

265

270

275

280

285

290

295

300

}

void nest::1lifb_neuron_rk4ts::update_h(const double_t t_th, realtime dt)

{

}

if (is_above_V_h_)

{
/*% Calculating the new values of th inactivation variable as if
* the potensial was above the threshhold V_h
*/
const double h_th
h_0_ std::exp(
h_1_ h_decay_
h_2_ h_decay_

1.0 - std::exp(-t_th / tau_h_r_) * (1 - h_0_);
th / tau_h_d_) * h_th;

=2 == ||

* h_0_;
* h_1_

// Updating the a and b parrameters used to calculate the potensial after a threshpass

a_0_ += -h_ O_ * g T_ / C_;
a_l_+= -h_1_ * g T_/ C_;
a_2_ +=-h 2_ * g T_ / C_;
b_O_ += h_0_ * g T_ * V_T_ / C_;
b_1_+=h_1_ * g T_* V.T_ / C_;
b_2_ += h_2_ * g T_ * V.T_ / C_;
}
else
{
// substracting the contribution of the inactivating variable to the a and b values.
a_0_ -=-h_0_ * g T_/ C_;
a_l_-=-h_1_ % g T_/ C_;
a_2_ -=-h_2_ *x g T_/ C_;
b_0_ -= h O_ * g T_ * V_T_ / C_;
b_1_ -=h_1_* g T_* V.T_/ C_;
b_2_ -=h_2_ * g T_ * V_T_ / C_;
/** Calculating the new values of th inactivation variable as if
* the potensial was below the threshhold V_h
*/

const double h_th = std::exp(-t_th / tau_h_d_

) * h_0_;
h_2_ =1.0 - std::exp(-(dt - t_th) / tau_h_r_) * (1 - h_th);

// Finds the time for threshhold passing.

nest::double_t nest::1ifb_neuron_rk4ts::thresh_find(double_t V_thresh, realtime dt)

{

// Setting the derivativs of the begining and end of the timestep
// The last koefisient without / dt~3 (for numerical reasons)

double_t dVdt_0 = a_O_ * V_O_
double_t dVdt_1 a_2_ * V_1_

+ b_0_;
+ b_2_
// The interpolation polynom
double_t koef_0 V_0_ - V_thresh;
double_t koef_1 dvdt_0;

double_t koef_2 (3% (V_1_ - V_0_) -dt x (2% dVdt_0 + dvdt_1)) / pow(dt, 2);
double_t koef_3 (-2 % (V_1i_ - V_O_) +dt * (dVdt_0 + dvdt_1));

// Newtons method

bool find = false;

double_t toleranse dt * le-12;

double_t t_help_0 = (V_thresh - V_O_) *dt / (V_1_ - V_0_);
double_t t_help_1;

int_t count = 0;
while (!find && count < 20)
{

t_help_1 = t_help_0 - (koef_0 + koef_1 * t_help_0 + koef_2 * pow(t_help_0, 2) + koef_3 * pow(t_help_0 / dt, 3

305

310

315

320

325

330

335

340

345

350

355

360

365

84

Selected C++ code

}

if (fabs(t_help_0 - t_help_1) < toleranse)
find = true;

else

t_help_0
count++;

}

= t_help_1;

return t_help_O0;

nest::double_t nest::lifb_neuron_rk4ts::potential_after_th(double_t V_thresh, double_t thresh_ratio, realtime

{

// Helping variables used to calculate the A and B parrameter for the time step when a threshhold is passed.

double_t A_help_ 0 =

double_t
double_t
double_t

double_t
double_t
double_t
double_t

// The A
// v_1 =
double_t
double_t

a_0_;
A_help_ 1 = a_1_* (1 + dt * A_help 0 / 2);
A_help_ 2 = a_1_ * (1 + dt * A_help_ 1 / 2);
A_help_ 3 = a_2_ * (1 + dt * A_help_ 2);
B_help_0 = b_0_;
B_help_1 = b_1_ + dt * B_help_ 0 * a_1_ / 2;
B_help_2 = b_1_ + dt * B_help_1 * a_1_ / 2;
B_help_3 b_2_ + dt * B_help_2 * a_2_;
and B parrameters calculated from the rk4 algorithm

oo -

*

V.0 +B
1 +dt * (ALhelp O + 2 * A_help_1 + 2 * A_help_2 + A_help

_3) / 6;
dt * (B_help_0 + 2 * B_help_1 + 2 * B_help_2 + B_help_3) / 6;

// Helping variables used insted of calling the function pow()
double_t thresh_ratio_2 = pow(thresh_ratio, 2);
double_t thresh_ratio_3 = pow(thresh_ratio, 3);

// Helping variables from the interpolationpolynom.
// V_thresh = K_0 * V_0 + K_1 * V_1 + K_2

double_t K_O
double_t K_1
double_t K_2

// Returning

return

1 + a_0_ * thresh_ratio * dt - thresh_ratio_2 * (2 * dt * a_0_ + 3) +
thresh_ratio_2 * (3 - dt * a_2_) + thresh_ratio_3 * (dt * a_2_ - 2);
= b_0_ * thresh_ratio * dt - thresh_ratio_2 * dt * (2 * b_O_ + b_2_) + thresh_ratio_3 * dt * (

thresh_ratio_3 * (dt

the value solved for V_1_

((V_thresh - K22) * A+B *x K.0) / (K.O+ A *XK.1);

void nest::1ifb_neuron_rké4ts::get_properties(DictionaryDatum &d) const

{

def<double_t>(d, "V_thresh", V_th_);
def<double_t>(d, "V_reset", V_res_);
def<double_t>(d, "V_leak", V_L_);
def<double_t>(d, "V_T", V_T_);
def<double_t>(d, "V_h", V_h_);
def<double_t>(d, "g_leak", g L_);
def<double_t>(d, "g_T", g_T_);
def<double_t>(d, "C", C.);
def<double_t>(d, "tau_h_rise", tau_h_r_);
def<double_t>(d, "tau_h_decay", tau_h_d_);
def<double_t>(d, "V", V_0_);
def<double_t>(d, "h", h_0_);

for (uint_t i=0; i < sv_.size();++i)

{

sv_[i]->get_properties(d);

}

370

375

380

385

390

395

400

405

410

415

420

425

430

C.2 LIFB Neuron with RK4TS method

85

}

// Todo: When an attribute

is changed it should have consequenses for the rest...

void mnest::1ifb_neuron_rk4ts::set_properties(const DictionaryDatum &d)
{
updateValue<double_t>(d, "V_thresh", V_th_);
updateValue<double_t>(d, "V_reset", V_res_);
updateValue<double_t>(d, "V_leak", V_L_.);
updateValue<double_t>(d, "V_T", V_T_);
updateValue<double_t>(d, "V_h", V_h_.);
updateValue<double_t>(d, "g_leak", g_L_);
updateValue<double_t>(d, "g_T", g_T_);
updateValue<double_t>(d, "C", C_);
updateValue<double_t>(d, "tau_h_rise", tau_h_r_);
updateValue<double_t>(d, "tau_h_decay", tau_h_d_);
updateValue<double_t>(d, "V", V_1_);
updateValue<double_t>(d, "h", h_2_);
for (uint_t i=0; i < sv_.size();++i)
{
sv_[i]->set_properties(d);
}
calibrate(network()->get_resolution());
init();
}
nest::port nest::lifb_neuron_rk4ts::connect_sender(SpikeEvent &e)
{
/* Connects the neuron with a spiking sender through a chosen
* synapse. The information about which synapse the connection
* is made with, is stored in the rport of the event.
* If the synapse allready excist and it is lumping then the
* function return the index of synapse in the synapsevector.
* If not, a synapse is created and put in the synapsevector
* and the index is returned as the rport value of the connection.

*/

int_t syn_type = e.get_rport();
map<int_t,port>::iterator it = ls_.find(syn_type);
// Is the synapse registerd as a lumping synapse?
if (it !'= 1s_.end())
{

// Get the rport for the lumping synapse

port rp = it->second;

// Set the delay for the connection
sv_[rp]l->set_delay(e.get_delay());

// return the rport value of the synapse
return rp;

}

else

{
// Creates a synapse by using the requested model from the network
SynapseModel *synapse_model = network()->get_synapse_model(syn_type) ;
Synapse *new_synapse = synapse_model->allocate();

// The index in the synapsevector is used as the rport of the connection
port rp = sv_.size();
sv_.push_back(new_synapse) ;

// Check the delay with the synapse
new_synapse->set_delay(e.get_delay());

like a and b par.

86

Selected C++ code

435

440

445

450

455

460

465

470

475

480

485

490

495

}

// if the synapse is lumping, register it.
if (new_synapse->is_lumping())
1s_[syn_typel=rp;

return rp;

}

nest::port nest::lifb_neuron_rk4ts::connect_sender(CurrentEvent &e)

{

}

// We are the target neuron and

// check the delay with our input buffer.
currents_1_.set_delay(e.get_delay());
currents_2_.set_delay(e.get_delay());

// return the default rport=0

return 0;

nest::port nest::1ifb_neuron_rké4ts::connect(SpikeEvent &e)

{

}

return register_connection(e);

nest::port nest::1ifb_neuron_rk4ts: :connect(Node *target)

{

}

assert(target !=NULL);
SpikeEvent se;
return se.connect(*this, *target);

void nest::lifb_neuron_rk4ts::handle(thread p, SpikeEvent & e)

{

}

void nest::1lifb_neuron_rk4ts::handle(thread p, CurrentEvent& e)

{

}

// we assume that the time stamp of the event contains
// the absolute time of arrival.

sv_[e.get_rport()]->register_spike(p, e);

// we assume that the time stamp of the event contains
// the absolute time of arrival.

const double_t c_0=*(e.get_current_pointer());
const double_t c_1=*(e.get_current_pointer()+1);
const double_t c_2=x(e.get_current_pointer()+2);
const double_t w=e.get_weight();

currents_O_.add_value(p, e.get_stamp(), w*c_0);
currents_1_.add_value(p, e.get_stamp(), wkc_1);
currents_2_.add_value(p, e.get_stamp(), w*c_2);

void nest::1ifb_neuron_rk4ts::handle(thread p, PotentialRequest& e)

{

/*

* If we receive a potential request, we construct a

* potential event and send it immediately to the requestor.
*/

PotentialEvent pe;

pe.set_sender(*this);
pe.set_receiver(e.get_sender());
pe.set_port(e.get_port());

C.3 Abstract synapse class 87

500

505

1

10

15

20

25

30

35

//
//
//
pe

//

pe-

ne

C.3

Here, we have a +/- one problem, depending on
whether the node is already updated or not.
node::get_time() takes care of this problem.
.set_stamp(get_time()+1);

pe.delay defaults to 1, so we need not set it.

set_potential(get_potential(network()->get_time()));
twork()->send(p,pe);

Abstract synapse class

Here follows the code for the abstract synapse class which has to be inherit
by any implemented synapse model. synapse.h also include the SynapseModel
class and the GenericSynapseModel class that are used to create synapse ob-
jects during runtime.

synapse.h

#ifndef SYNAPSE_H

#def

#inc
#inc
#inc
#inc
#inc

ine SYNAPSE_H

lude "instance.h"
lude "node.h"

lude "event.h"

lude <string>

lude "ring_buffer.h"

namespace nest {

class Synapse;

class SynapselModel

{

public:

/**

* Default constructor.

class SynapseModel only has one constructor.

@param char[] C-style string with the name of the synapsemodel.

*
*
*
* The name should be a single word, uniquely defining the model.
* Ideally, this name should be identical to the name, returned by
* the associated Synapse class.

*/

SynapseModel(const char []);
virtual “SynapseModel(D{};

VAL

* Allocate new Synapse and return its pointer.
* allocate() is not const, because it

* is allowed to modify the Model object for

* ’administrative’ purposes.

*/

virtual Synapse* allocate(void) =0;

/**
* Reserve memory for n Synapse.
* A number of memory managers work more efficently, if they have

88 Selected C++ code

40 * an idea about the number of Nodes to be allocated.
* This function prepares the memory manager for the subsequent
* allocation of n Synapse.
* Q@param n Number of Synapse to be allocated.
*/
45 virtual void reserve(size_t n)=0;
/**
* Initialise synapse model-wide client data.
* Synapse model objects can be used to store data which is shared by a
50 * larger group of Nodes similar to static members.
* This function can be used to initialize such client data. The
* default implementation is empty.
* Q@see calibrate
*/
55 virtual void init(){};
/**

* Notify SynapseModel of a change of the temporal resolution.
* Model objects can be used to store data which is shared by a
60 * larger group of Synapse similar to static members.
* Such client data may depend on the temporal resolution of the
* system. Thus, this function can be used to adjust internal
* parameters to a change in resolution.
* @param realtime New value of the temporal resolution.

65 */

virtual void calibrate(realtime){}; //'< re-calibrate

/**
* Return name of the SynapseModel.
70 * This function returns the name of the SynapseModel as C++ string. The
* name was defined through the constructor.
* @see SynapseModel::SynapseModel
*/

const std::string& get_name() const;

75
protected:
/%%
* Holds the name of the synapse model.
* Qinternal
80 * @see get_name
* Q@see SynapseModel::SynapseModel
*/
const std::string name_;
};
85
inline
SynapseModel: :SynapseModel(const char n[])
:name_(n)
{3
90
inline
const std::string& SynapseModel::get_name() const
{
return name_;
95 }
/**
* Generic SynapseModel template.
* The template GenericSynapseModel should be used
100 * as base class for custom model classes. It already includes the
* element factory functionality, as well as a pool bases memory
* manager, so that the user can concentrate on the "real" model
* aspects.
* Qingroup user_interface

105

110

115

120

125

130

135

140

145

150

155

160

165

C.3 Abstract synapse class

89

*/
template <typename ElementT>

class GenericSynapseModel: public SynapseModel
{

public:
GenericSynapseModel(const char[]);

Synapse* allocate(void);
void reserve(size_t s);

};

template< typename ElementT>

inline

GenericSynapseModel<ElementT>: :GenericSynapseModel(const char s[])
: SynapseModel(s)

{}

template< typename ElementT>
inline
Synapse* GenericSynapseModel<ElementT>::allocate(void)
{
return new Instance<ElementT>;

}

template< typename ElementT>
inline
void GenericSynapseModel<ElementT>::reserve(size_t s)
{
Instance<ElementT>: :reserve(s);

}

/*BeginDocumentation
Name: Synapse

Description:
The base class for all synapse objects.

Every child-synapse has to implement its own dynamics. The only parrameters
that are common for all synapses are the reversal potential, maximal
conductance, a spike buffer and a variable saying if the synapse is lumping
or not.

The synapse could be lumping or not lumping. If a synapse is lumping and a
connection is registered throught this, all further connection through the
same type of synapse is registered through the first one. This accelerates
the spike handling and the uppdate mechanism.

Comment :

As for now, only synapse with linear conductanse and where spikes

are registered with addition of a constant value could be lumping. The last
criteria disables the synapse to saturated when many spikes come in from
one neuron through the same synapse.

This could be omitted by implementeing a way of knowing which

neuron fired the spike (maybe through a port system) and by keeping
record of when that neuron last time fired a spike. This together with
a record of the "r" variable, the fraction of open receptors, of each
synapse will do the cake. This could be easy implemented with a central

management of spikeevent.

If the spike handling is manage localy, a modification has to be done. The
present ringbuffer has two drawbacks. 1) It "sort" the spike dependent on
thread, not by sending neuron. 2) The collect() function of the ringbuffer

Selected C++ code

170

175

180

185

190

195

200

205

210

215

220

225

230

just sum upp the incomming weighted spikes in that time step, our

implementation have to deal with every spike independently.

Author: Johan Hake, Spring 2003

class Synapse {

public:

Synapse();
Synapse(const Synapse &) ;

virtual ~Synapse();

// Register a spike in the ringbuffer
virtual void register_spike(thread p, SpikeEvent & e);

// Updates the synaps
virtual void update(steptime T)=0;

virtual void set_properties(const DictionaryDatum&)=0;
virtual void get_properties(DictionaryDatum&) const=0;
virtual void calibrate(realtime)=0;

// Return a pointer to double so it could return an array ov conductance
virtual double_t* get_g()=0;

double_t rev_pot() const;

virtual std::string get_name() const=0;
bool is_lumping() const ;

realtime get_resolution();

Network* network();

ulong_t get_now() const;

virtual void set_delay(delay d);

protected:

RingBuffer spikes_;
bool is_lumping_;

double_t rev_pot_;
double_t g_max_;

};

inline

void Synapse::register_spike(thread p, SpikeEvent & e)

{
// we assume that the time stamp of the event contains
// the absolute time of arrival.
spikes_.add_value(p, e.get_stamp(), e.get_weight());

}

inline

235

240

245

1

10

15

20

25

30

35

40

45

C.3 Abstract synapse class

91

bool Synapse::is_lumping() const
{

return is_lumping_;
¥
inline
double_t Synapse::rev_pot() const
{

return rev_pot_;

} //Namespace

#endif

synapse.cpp

#include "synapse.h"
#include '"network.h"
#include "node.h"

namespace nest {
Synapse: : Synapse ()
: spikes_(network()->get_threads(),1),
is_lumping_(true),
rev_pot_(0.0),
g_max_(0.0)

{
}

Synapse: :Synapse(const Synapse &s)
:spikes_(network()->get_threads(),1),
is_lumping_(s.is_lumping_),
rev_pot_(s.rev_pot_),
g_max_(s.g_max_)

{
}
Synapse: : “"Synapse ()

{
}

realtime Synapse::get_resolution()
{
return Node::network()->get_resolution();

}

ulong_t Synapse::get_now() const
{
return Node::network()->get_time();

}

Network* Synapse::network()
{
return Node::network();

}

std::string Synapse::get_name() const
{
return std::string("Synapse");

}

void Synapse::set_delay(delay d)
{
spikes_.set_delay(d);

92 Selected C++ code

C.4 GABA, synapse

The most complex implementation of the GABA , synapse is presented here.
This model register a presynaptic spike at the time it actually arrives the
synapse. Therefore the ps (precise spike timing), in the name. It provides
the conductance from two times in the time steps, in the middle and in the
end, therefore the 2 in the name. It can therefore only be used by neuron
models that use conductances in the middle of a time step, for example model
integrated with RK4.

gabaasynapse 2ps.h

#ifndef GABAASYNAPSE_2PS_H
#define GABAASYNAPSE_2PS_H

#include "nest.h"

#include "event.h"

#include "synapse.h"

#include "spike_event_buffer.h"

/* BeginDocumentation
Name: GabaASynapse_2ps
Description:

The GabaAsynapse is a ionotropic exitatory synapse.

The GabaAsynapse implements a modified model of Destexhe’s ampasynapse
model from [1], chapter 4. The synaptic conductanse is given in nS.

The synaptic conductance is based on a beta function. This is a simplyfied
model compared to [1], chapter 4. The parameters that determine the chape of
the total conductance caused by a singel spike, the two time constants
tau_d_ and tau_r_ and the maximum conductance g _max_ are fitted to data
from [1] corrensponding to a singel spike.

The conductance are updated with exact integration scheme, presented in
[2]. A spike is registered by adding a constant value, weighted by the weight
of the connection, to the first state variable of the beta function, g_O_.

References:
[1] A. Destexhe et al, Kinetic Models of Synaptic Transmission,
Methods in Neuronal Modeling (2nd ed.) MIT Press, (1998)
[2] S. Rotter and M. Diesmann, Exact digital simulation of time-
invariant linear systems with applications to neuronal modeling,
Biol. Cybern. 81, 381-402 (1999)

Author: Johan Hake, Spring 2003
*/

namespace nest {
class GabaASynapse_2ps:

public Synapse
{

C.4 GABA synapse 93

45

50

95

60

65

70

75

80

85

90

95

100

105

public:

GabaASynapse_2ps();
GabaASynapse_2ps(const GabaASynapse_2psé&) ;

void update(steptime T);

void set_properties(const DictionaryDatumé&) ;

void get_properties(DictionaryDatum&) const;

void register_spike(thread , SpikeEvent & e);
void calibrate(realtime);

double_t fast_exp(double_t x);

// Returns the conductance
double_t* get_g();

// Overload set_delay
void set_delay(delay){};

std::string get_name() const;
private:
SpikeEventBuffer spike_events_;

// The timeconstants for the beta function. tau_r_ is for the rise and
// tau_d_ is for the decay.

double_t tau_r_;

double_t tau_d_;

// State variables for the conductance. g_1_ holds the total conductance
double_t g_0_;

double_t g_1_[2];

double_t g_out_[2];

// A constant value first weighted by weight to the connection and
// then added to g_O_ when ever a spike arrives at the synapse
double_t spike_add_;

// The update matrix
double_t exp_A_00_;
double_t exp_A_10_;
double_t exp_A_11_;

};

inline
double_t* GabaASynapse_2ps::get_g()
{

return g_1_;

}

inline
void GabaASynapse_2ps::register_spike(thread p, SpikeEvent & e)
{

realtime sat; // Spike Arival Time

if (! (sat = e.get_time()) > 0.0)

{

sat = e.get_stamp() * get_resolution();
Yelse

110

115

120

125

130

1

10

15

20

25

30

35

94 Selected C++ code

{
sat += e.get_delay() * get_resolution();

T

spike_events_.add_spike(p, sat , e.get_weight());
3
inline
double_t GabaASynapse_2ps::fast_exp(double_t x)
{

const double_t x_2 = x*x;

return 1 + x + x_2/2 + x_2 * x/6;
3
inline
std::string GabaASynapse_2ps::get_name() const
{

return std::string("GabaASynapse_2ps");
3

}// namespace
#endif

gabaasynapse 2ps.cpp

#include "dict.h"
#include "integerdatum.h"
#include "doubledatum.h"
#include "dictutils.h"
#include "numerics.h"
#include "network.h"

#include "gabaasynapse_2ps.h"
#include <cmath>

nest: :GabaASynapse_2ps: :GabaASynapse_2ps()
: Synapse(),
spike_events_(network()->get_threads()),

tau_r_(0.27), // ms calculated to fitt [1]
tau_d_(5.5), // ms calculated to fitt [1]
g_0_(0.0)

g_out_[0] = g_out_[1] = 0.0;

g_1_[0] = g_1_[1] = 0.0;

is_lumping_ = true;

rev_pot_ = -80.0; // mV from [1]

/** g_max_ is the maximum conductance value produced by one spike. This is
not the same value as the G_max in [1].
In [1] G_max is multiplied by a value r, which is the fraction of open
receptors in the synapse. If r_max is the maximum value of open receptors
caused by a singel spike, then our g_max_is given by G_max * r_max.
From [1] we fitted r_max to be 0.93 and from [1] we have that G_max
is between 0.25 and 1.2.
This give us a g_max_, caused by a singel spike, to be 0.23 < g_max_< 1.1.
*/
g_max_ = 0.5; //nS
calibrate(get_resolution());

}

nest: :GabaASynapse_2ps: :GabaASynapse_2ps(const GabaASynapse_2ps &as)
: Synapse(as),
spike_events_(network()->get_threads()),

40

45

20

95

60

65

70

75

80

85

90

95

100

C.4 GABA synapse

95

{

}

tau_r_(as.tau_r_), // ms
tau_d_(as.tau_d_),
g_0_(as.g_0_)

g_1_[0]=as.g_1_[0];
g_1_[1l=as.g_1_[1];
calibrate(get_resolution());

void nest::GabaASynapse_2ps::update(steptime T)

{

realtime now_plus_dt = (T+1)*get_resolution();

// Any spikes in this time step?
if (spike_events_.any_spike(now_plus_dt))

{

double_t g_0O_sum_add[] = {0.0, 0.0};
double_t g_1_sum_add[] = {0.0, 0.0};

// Get the spikes from

the buffer

std::vector< std::pair< realtime, weight> > sp(spike_events_.collect(now_plus_dt));
realtime dt = get_resolution();
for (std::vector<std::pair<realtime,weight> >::iterator it = sp.begin();
it < sp.end(); ++it)

}

// spike time

now_

plus_dt

// Has the spike come in the first part of the time step?
realtime rest_t = now_plus_dt - it->first;

uint_t part;
if (rest_t > dt/2)

rest_t -= dt/2;

{

part = 0;
}
else
{

part = 1;
}

const double_t exp_A_OO_temp =
const double_t exp_A_10_temp =

fast_exp(-rest_t/tau_d_);
(exp_A_00_temp - fast_exp(-rest_t/tau_r_.)) / (1/tau_r_ - 1/tau_d_);

g_1_sum_add[part] += exp_A_10_temp * spike_add_ * it->second;
g_0_sum_add[part] += exp_A_OO_temp * spike_add_ * it->second;

// Calculate the new values of the conductance
exp_A_10_ * g O_ + exp_A_11_ * g_1_[1];
0_ = exp_A_00_ * g_0_;

g
8

1_[0] =
+=
4=
[=

+=
+=

g
g

1
0

sum_add[0] ;
sum_add[0] ;

exp_A_10_ * g_O_ + exp_A_11_ x g_1_[0];

-1
0

= exp_A_00_ * g_0_;

sum_add[1];
sum_add[1];

105

110

115

120

125

130

135

140

145

150

1

96 Selected C++ code

{
// Calculate the new values of the conductance
g_1_[0] = exp_A_10_ * g O_ + exp_A_11_ * g 1_[1];
g_0_ = exp_A_00_ * g_0_;
g_1_[1] = exp_A_10_ * g O_ + exp_A_11_ * g_1_[0];
g_0_ = exp_A_00_ * g_0_;

3

//g_out_[0] = std::pow(g_1_[0],3)*g _max_;

//g_out_[1] = std::pow(g_1_[1],3)*g_max_;

}

void nest::GabaASynapse_2ps::get_properties(DictionaryDatum &d) const
{
def<double_t>(d, "GabaA_tau_rise", tau_r_);
def<double_t>(d, "GabaA_tau_decay", tau_d_);
def<double_t>(d, "GabaA_reversal_potensial", rev_pot_);
def<double_t>(d, "GabaA_g_max", g_max_);
def<double_t>(d, "GabaA_g_0", g_0_.);
def<double_t>(d, "GabaA_g_1", g_1_[1]);
}

void nest::GabaASynapse_2ps::set_properties(const DictionaryDatum &d)

{
updateValue<double_t>(d, "GabaA_tau_rise", tau_r_);
updateValue<double_t>(d, "GabaA_tau_decay", tau_d_);
updateValue<double_t>(d, "GabaA_reversal_potensial", rev_pot_);
updateValue<double_t>(d, "GabaA_g_max", g_max_);
updateValue<double_t>(d, "GabaA_g_0", g_0_);
updateValue<double_t>(d, "GabaA_g_1", g_1_[1]);
calibrate(get_resolution());

}

void nest::GabaASynapse_2ps::calibrate(realtime dt)
{
// Two step in every time step.
dt /=2;
// Sets the maximum of the "base" betafunction to be one.
spike_add_ = std::pow(tau_r_ / tau_d_, tau_r_ / (tau_r_ - tau.d_)) / tau_r_;

// Sets the maximum of the conductance for a singel spike to be g_max_
//spike_add_ *= g_max_;

// The update matrix.

exp_A_00_ = std::exp(-dt / tau_d_);

exp_A_10_ = (std::exp(-dt / tau_d_) - std::exp(-dt / tau_r_)) / (1/tau_r_ - 1/tau_d_);
exp_A_11_ = std::exp(-dt / tau_r_);

C.5 GABAg synapse

Here is the only implementation of the GABAg synapse presented. It does
not use neither precise spike timing nor does it provides conductances in the
middle of a time step. It can thus only be used by RK2 methods.

gababsynapse.h

#ifndef GABABSYNAPSE_H
#define GABABSYNAPSE_H

10

15

20

25

30

35

40

45

50

95

60

65

C.5 GABAg synapse

97

#include <cmath>
#include "nest.h"
#include "event.h"
#include "synapse.h"

/* BeginDocumentation
Name: GabaBSynapse
Description:

The GabaBsynapse is a metabotropic, inhibitory synapse.
The GabaBsynapse implements a modified model of Destexhe’s GabaBsynapse
model from [1], chapter 4. The synaptic conductanse is given in nS and have

to be adjusted to fitt the model that recive the synaptic current.

The original model from [1] and my modified model

Original | Modified
dr | dr*
-- = K_1%T(1-r) - K_2*%r | -- = - K_2 r%
dt | dt
I
ds | ds
-- =K_3r - K 4 s | --=1r -K4s
dt | dt
s°n
I_GabaB = g _max * --------- (V - V_rev) (no changes)
s™n + K_d
Model explanation
r : Fraction of activated receptors.
s : Concentration of G-proteins binded to K+ channels
n : Number of individual binding sites for the G-protein in a singel

K+ channel

1 : Binding rate for transmitter substance in the cleft to receptors

2 : Unbinding rate for the transmitter substance to the receptors

3 : Binding rate for the G-proteins to the K+ channel

4 : Unbinding rate for the G-proteins to the K+ channel

d : Dissociation constant of binding G-protein to K+ channels

: Consentration of transmitter substance in the cleft. They expose the

postsynaptic side during a pulse of 1 ms. T is zero when there are
no spike and T during 1 ms after a spike.

The following difference are made from [1]:

1) The equation is modified so it fitts the exact integration scheme from [2].

The r variable is scaled by the parrameter K3, given r*.

2) Instead of letting r rise during the time the postsynaptic side is exposed
to transmitter substance, a singel value are added to the variabel r ones.
This value depend upon the fraction of allready activated receptors, r,
the maximum value of r, r_inf, the pulse length, pulse, the time constant
for r when rising, tau_r_add.

r_add = (r_inf - r)*(1 - exp(-pulse / tau_r_add)

tau_r_add

1/ (k_1_x T_+ k_2_.),
r_inf = k_1_x*

Ax k 3.x T_ / (k1 % T+ k 2)
In [1] the pulse is 1 ms. In my model I have changed it to adjust for
the differences in the two models.

70

75

80

85

90

95

100

105

110

115

120

125

130

98

Selected C++ code

The dynamic of the r* and s variables are the same as for the two state
variables for the betafunction in [2] letting us use the exact integration
scheme from [2].
References:
[1] A. Destexhe et al, Kinetic Models of Synaptic Transmission,
Methods in Neuronal Modeling (2nd ed.) MIT Press, (1998)
[2] S. Rotter and M. Diesmann, Exact digital simulation of time-
invariant linear systems with applications to neuronal modeling,
Biol. Cybern. 81, 381-402 (1999)

Author: Johan Hake, Spring 2003
*/

namespace nest {
class GabaBSynapse:
public Synapse
{

public:

GabaBSynapse() ;
GabaBSynapse (const GabaBSynapse&) ;

void update(steptime T);
void set_properties(const DictionaryDatum&);
void get_properties(DictionaryDatum&) const;
void calibrate(realtime);

// Returns the conductance
double_t* get_g();

std::string get_name() const;
private:

// Variables from

double_t k_1_; //'< Binding rate for transmitter substance in the cleft to receptors
double_t k_2_; //'< Unbinding rate for the transmitter substance to the receptors
double_t k_3_; //'< Binding rate for the G-proteins to the K+ channel

double_t k_4_; //'< Unbinding rate for the G-proteins to the K+ channel

double_t k_d_; //'< Dissociation constant of binding G-protein to K+ channels

double_t g_out_; //!< The total synaptic conductance

double_t T_; //'< Consentration of transmitter substance in the cleft.

double_t pulse_; //!< The duration of the pulse of transmitters in the cleft

uint_t n_; //'< Number of individual binding sites for the G-protein in a singel K+ channel
double_t r_; //'< Fraction of activated receptors.

double_t s_; //'< Concentration of G-proteins binded to K+ channels

// The exact integration matrix
double_t exp_A_00_;
double_t exp_A_10_;
double_t exp_A_11_;

// Values used to register a spike
double_t exp_r_add_;
double_t r_inf_;

C.5 GABAg synapse

99

135

140

145

150

155

160

1

10

15

20

25

30

};
inline
double_t* GabaBSynapse::get_g()
{
return &g_out_;
¥
inline
void GabaBSynapse::update(steptime T)
{
// A spike is registered
r_ += (r_inf_ - r_)*exp_r_add_ * spikes_.collect(T);

// The exact integration step
s_ = exp_A_10_ * r_ + exp_A_11_ * s_;

r_ = exp_A_00_ * r_;
g_out_ = g max_ / (k_d_ / std::pow(s_,static_cast<int>(n_)) + 1);
¥

inline
std::string GabaBSynapse::get_name() const
{
return std::string("GabaBSynapse") ;
}

}// namespace
#endif

gababsynapse.cpp

#include "dict.h"
#include "integerdatum.h"
#include "doubledatum.h"
#include "dictutils.h"
#include "numerics.h"
#include '"network.h"

#include "gababsynapse.h"
#include <cmath>

nest: :GabaBSynapse: :GabaBSynapse()
: Synapse(),
// All parrameter values from [1]
k_1_(90.0), // (M*ms)~-1
k_2_(0.0012), // ms~-1
k_3_(0.18), // ms~-1
k_4_(0.034), // ms~-1
k_d_(100),
g_out_(0.0),
T_(1e-3), // M
pulse_(1.105), //ms The pulse length are altered to fitt the model in [1]
n_(4),
r_(0.0),
s_(0.0)
{
is_lumping_ = false;
rev_pot_ = -95.0; // mV from [1]
g_max_ = 0.06; // nS
calibrate(get_resolution());
¥

nest::GabaBSynapse: :GabaBSynapse(const GabaBSynapse &s)
: Synapse(s),

35

40

45

50

95

60

65

70

6]

80

85

90

95

100 Selected C++ code
k_1_(s.k_1.), // Mxms
k_2_(s.k_2_), // ms
k_3_(s.k_3.), // ms
k_4_(s.k_4_), // ms
k_d_(s.k_d_),
g_out_(s.g_out_),
T_(s.T.), // M
pulse_(s.pulse_), // ms
n_(s.n_),

r_(s.r_),
s_(s.s_)
{

}

void nest::GabaBSynapse:

{

}

calibrate(get_resolution());

def<double_t>(d, "GabaB_k_
def<double_t>(d, "GabaB_k_
def<double_t>(d, "GabaB_k_
def<double_t>(d, "GabaB_k_
def<double_t>(d, "GabaB_k_

:get_properties(DictionaryDatum &d) const

1", k_1.);
2", k_2_);
3", k 3.);
4", k 4.);
d", k_d_);

def<double_t>(d, "GabaB_transmitter_conc" , T_);
def<double_t>(d, "GabaB_transmitter_pulse" , pulse_);
def<long_t>(d, "GabaB_binding_site" , n_);
def<double_t>(d, "GabaB_reversal_potensial", rev_pot_);
def<double_t>(d, "GabaB_g_max", g_max_);
def<double_t>(d, "GabaB_r", r_);

def<double_t>(d, "GabaB_s", s_);

void nest::GabaBSynapse::set_properties(const DictionaryDatum &d)

{

}

void nest::GabaBSynapse:

{

updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,

"GabaB_k_1",
"GabaB_k_2",
"GabaB_k_3",
"GabaB_k_4",
"GabaB_k_d", k_d_);
"GabaB_transmitter_conc" , T_);
"GabaB_transmitter_pulse" , pulse_);

updateValue<long_t>(d, "GabaB_binding_site" , n_);

updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,
updateValue<double_t>(d,

"GabaB_reversal_potensial", rev_pot_);
"GabaB_g_max", g_max_);

"GabaB_r", r_);

"GabaB_s", s_);

calibrate(get_resolution());

double_t tau_d
double_t tau_r

1/k_2_;
1/k_4_;

:calibrate(realtime dt)

// The exact integration matrix

exp_A_00_ = std::exp(-dt
exp_A_10_
exp_A_11_

std::exp(-dt

double_t tau_r_add =1 /

/ tau_d);

(std::exp(-dt / tau_d) - std::exp(-dt / tau_.r)

/ tau_r);

(k_1_* T_+ k_2.);

r_inf_ = k_1_% k_3_% T_* tau_r_add;

exp_r_add_ = 1 - std::exp

(-pulse_ / tau_r_add);

) / (1/tau_r - 1/tau_d);

1

10

15

20

25

30

35

40

45

20

C.6 Spike event buffer

101

C.6 Spike event buffer

This is an extension of the ringbuffer class already implemented in NEST. In
additional to the connection weights this buffer stores the precise spike time
of the incoming spikes too. They are stored in a chronological order.

spike event buffer.h

#ifndef SPIKE_EVENT_BUFFER_H
#define SPIKE_EVENT_BUFFER_H
#include "nest.h"
#include '"node.h"
#include <vector>

namespace nest

{

class SpikeEvent;

class SpikeEventBuffer {
public:

SpikeEventBuffer(thread max=1);

/**

* Collect all values at the buffer

* origin so that the sum becomes available

* through get_value().

* Collect() should only be called once per time-slice
*/

std::vector< std::pair<realtime, weight > > collect(realtime);

/**
* Initialize the buffer with noughts.
*/

void clear();

/**
* Resize the buffer according to max_thread.

*/
void resize();

/*%

* Set the maximum number of threads.

* Note that there must be at least one thread.
* Qpreconditions p>0

* Qpostconditions p>0

*/

void set_max_threads(thread p);

/**
* Add a spike to the spike bufferds.
*/
void add_spike(thread p, realtime st, weight w);
VAL
* Return true if the buffer does not contain any SpikeEvents in time
*/

bool any_spike(realtime);

private:

step T

95

60

65

70

6]

80

85

90

95

100

105

110

115

102

Selected C++ code

thread max_threads_;
std::vector<std::list < std::pair<realtime, weight> > > buffer_;

};

inline
void SpikeEventBuffer::add_spike(thread p, realtime st, weight w)
{

if (buffer_[p].empty())

{
buffer_[p].push_back(std: :make_pair(st,w));
}
else
{
std::1list< std::pair<realtime,weight> >::iterator pos = buffer_[p].end();
/** For clarification
if st = 14.0 and the following spike times are registrated in the
list, the while loop stop at position showed here
pos
I
v
10.0 12.0 15.0 17.0 end()
To add the spike the iterator pos have to be moved one step up
*/
while (pos != buffer_[pl.begin() && (--pos)->first>st)
{
}
buffer_[p].insert(++pos,std: :make_pair(st,w));
}
}
inline

std::vector< std::pair<realtime, weight> > SpikeEventBuffer::collect(realtime now_plus_dt)
{

std::vector< std::pair<weight, realtime> > spikes;

// Steping through the threads
for(thread p=0; p< max_threads_; ++p)

{
std::1ist< std::pair<realtime,weight> >::iterator it = buffer_[p].begin();
while(it != buffer_[p].end() && (*it).first < now_plus_dt)
{
spikes.push_back((*it));
buffer_[p].erase(it++);
}
// Clear the collected vector
}
return spikes;
}
inline
bool SpikeEventBuffer::any_spike(realtime now_plus_dt)
{
for(thread p=0; p< max_threads_; ++p)
{

// Check first if the buffer is empty then if the first
if (! buffer_[pl.empty() && buffer_[p].front().first < now_plus_dt)
return true;

120

125

1

10

15

20

25

30

35

C.6 Spike event buffer

103

}
return false;
}
¥

#endif

spike event buffer.cpp

#include "debug.h"
#include "spike_event_buffer.h"

/*%
Buffer Layout.
The SpikeEventBuffer contains a vector of list. The number of vectors correspond
to the number of threads. Every list hold the information of an incomming spike.
The spike time and the weight. A spike is added to the list so the list contains
an ordered secuenze of spikes.

*/

nest::SpikeEventBuffer::SpikeEventBuffer(thread max_t)
:max_threads_(max_t)

{
std::1ist< std::pair<weight, realtime> > sl;
buffer_.insert(buffer_.begin(),max_t,sl);

}

void nest::SpikeEventBuffer::resize()

{
std::1ist< std::pair<weight, realtime> > sl;
buffer_.resize(max_threads_,sl);
}
void nest::SpikeEventBuffer::set_max_threads(thread max_t)
{
assert(max_t >=1);
max_threads_=max_t;
resize();
}

void nest::SpikeEventBuffer::clear()
{
buffer_.clear();

}

1

10

15

20

25

30

Appendix D

Selected SLI code

D.1

In this appendix a selected SLI code file is presented. The selected code is
taken from the simulation of the fifth test, from chapter 6. Here the neurons
are all coupled and the new SynapseConnect command is used, see line 88 and

109.

D.2

/method

Introduction

The fifth test

[(2) (2ts) (2tsps) (4) (4ts) (4tsps)] def

modeldict begin
userdict begin

01
{

5 % Loop for the different neuron types

/neuron_type Set

0
{

1 12 ¥, Loop for the different time step length

/dt_step Set
ResetKernel
[0] << /threads 1 >> SetStatus

% Sets the resolution
/dt 1.0 def
1 1 dt_step

{; dt 2 div /dt Set}
for
dt SetResolution

% Sets the delay for the spikes
/spike_delay 0.5 dt div round cvi def
spike_delay 0 1t

{/spike_delay 1 def}
if

% Sets the delay on the input devices
/device_delay 1.0 dt div round cvi def

106

Selected SLI code

35

40

45

50

95

60

65

70

6]

80

85

90

95

% Create an array with random number between -80.0 -40.0
rngdict /knuthlfg get 12 CreateRNG /myrand Set
/V_init [101] {; myrand drand 40 mul -80 add} Table def

% Creates 101 1lifb neurons and an array with the adresses to the neurons
mark
neuron_type 1 1t {lifb_neuron_rk2 exit} case
neuron_type 3 1t {lifb_neuron_rk2ts exitl} case
neuron_type 4 1t {lifb_neuron_rk4 exitl} case
neuron_type 6 1t {lifb_neuron_rk4ts exit} case
switch
101 CreateMany ;
/1lifb_ad [1 101] {0 exch 2 arraystore} Table dup join def

% Creates a weight array
/gauss {10.0 div dup mul -0.5 mul exp} def
/weights [-50 50] {gauss} Table dup join def

% Creates 101 ac generators and 1 dc generator
neuron_type 3 1t
{ ac_generator }
{ ac_generator_2 }
ifelse
101 CreatelMany ;
/ac_gen_ad [102 202] {0 exch 2 arraystore} Table dup join def
/dc
neuron_type 3 1t
{ dc_generator }
{ dc_generator_2 }
ifelse
Create def

% Creates the mesuring devices
/sd prec_spike_det Create def

% Return the 1lifb and the ac_gen adress
/1lifb_ad_get {lifb_ad exch get} def
/ac_gen_ad_get {ac_gen_ad exch get} def

% Set upp the network!
01100 {
/out Set
01100 {
% Puts an arrays with the source node on the stack
/in Set out lifb_ad_get

%Puts an array with the target node on the stack
out in add lifb_ad_get
mark
neuron_type 2 1t {AmpaSynapse exit} case
neuron_type 3 1t {AmpaSynapse_ps exitl} case
neuron_type 5 1t {AmpaSynapse_2 exit} case
neuron_type 6 1t {AmpaSynapse_2ps exit} case
switch

% Synapse connect two neurons
SynapseConnect ; /port Set

% Sets the weight
out lifb_ad_get port weights in get SetWeight

% Sets the delay
out lifb_ad_get port spike_delay SetDelay

% Puts an arrays with the source node on the stack

100

105

110

115

120

125

130

135

140

145

150

155

160

D.2 The fifth test

107

}

)
)
0
{

}

out lifb_ad_get

%Puts an array with the target node on the stack

out in add lifb_ad_get

mark

neuron_type 2 1t {GabaASynapse exitl} case
neuron_type 3 1t {GabaASynapse_ps exit} case
neuron_type 5 1t {GabaASynapse_2 exit} case
neuron_type 6 1t {GabaASynapse_2ps exitl} case

switch

% Synapse connect
SynapseConnect ;

% Sets the weight

out lifb_ad_get port weights in 50 add get SetWeight

% Sets the delay
out lifb_ad_get po

} for

two neurons
/port Set

rt spike_delay SetDelay

out ac_gen_ad_get << /amplitude 0.7

/frequency 4.0
/phase out 100.0 div 360 mul

>> SetStatus

%Put two ac_gen adress on the stack one for connection omne for delay

out ac_gen_ad_get out ac_gen_ad_get
out lifb_ad_get Connect device_delay SetDelay

dc dc out lifb_ad_get Connect device_delay SetDelay

out lifb_ad_get sd

for

Setts the weights of the synapses and the initial values of the potentials

and the h variables
1 100

/out Set
out lifb_ad_get <<

>>
for

Connect ;

/GabaA_g_max 0.01
/Ampa_g_max 0.014
/V V_init out get
/h 0.0

SetStatus

dc << /amplitude -0.2 >> SetStatus

/name (rk) method neuron_type get join (_dt_-) dt_step cvs join join def

/ospks name (_spike.dat) join ofstream ; def

sd << /output_stream ospks

/withtime true
/withpath true
>> SetStatus

% For registration of the potential of one neuron
%vm_one voltmeter Create def
%vm_one 99 lifb_ad_get Connect ;

%opot_one

name (_onepot.dat) join ofstream ; def

%vm_one << /output_stream opot_one

165

170

175

180

185

190

108 Selected SLI code
% /withpath false
% /start 0.0
%>> SetStatus
% SIMULATE!!
(Simulating:) name join =
% The length of the simulation
/simlength 500 def
simlength dt div cvi 1 add Simulate
% Recording the last potentials
/opot_all name (_lastpot.dat) join (w) file def
opot_all () <- 16 setprecision
0 1 100
{ lifb_ad_get GetStatus /V get <- (\n) <- }
for
flush ;
ospks close
opot_all <close
%opot_one close
} for
} for
end

end

References

Coutinho, V. and T. Knopfel (2002). Metabotropic glutamate receptors:
Electrical and chemical signaling properties. The neuroscientist 8, 551—
561.

Dayan, P. and L. F. Abott (2001). Theoretical Neuroscience. Cambridge,
MA: MIT Press.

Destexhe, A., Z. F. Mainen, and T. J. Sejnowski (1994). An efficient method
for computing synaptic conductances based on a kinetic model of recep-
tor binding. Neural Comput 6, 14-18.

Destexhe, A., Z. F. Mainen, and T. J. Sejnowski (1998). Kinetic models
of synaptic transmission. In C. Koch and 1. Segev (Eds.), Methods in
Neuronal Modeling. Cambridge, MA: MIT Press.

Diesmann, M. and M.-O. Gewaltig (2003). Nest: An environment for neural
systems simulations. In T. Plesser and V. Macho (Eds.), Beitrdge zum
Heinz-Billing-Preis 2001, Forschung und wissenschaftliches Rechnen, pp.
43-70. Gottingen: Gesellschaft fiir wissenschaftliche Datenverarbeitung
mbH.

Diesmann, M., M.-O. Gewaltig, and A. Aertsen (1999). Conditions for sta-
ble propagation of synchronous spiking in cortical neural networks. Na-
ture 402, 529-533.

Emri, Z., K. Antal, and V. Crunelli (2003). The impact of corticothalamic
feedback on the output dynamics of a thalamocortical neurone model:

The role of synapse location and metabotropic glutamate receptors. Neu-
roscience 117, 229-239.

Finney, R. L. and G. B. Thomas (1994). Calculus (Second ed.). New York:
Addison-Wesley.

Hansel, D., G. Mato, C. Meunier, and L. Neltner (1998). On numerical sim-
ulations of integrate-and-fire neural networks. Neural Comput 10, 467
483.

Heggelund, J. J. Z. . P. (2001). Muscarinic regulation of dendritic and ax-
onal outputs of rat thalamic interneurons: A new cellular mechanism for
uncoupling distal dendrites. J Neurosci 21, 1148-1159.

110 REFERENCES

Hugenard, J. R. and D. A. McCormick (1992). Simulation of the currents
involved in rhythmic oscillations in thalamic relay neurons. J Neurophys-
10l 68, 1373-1383.

Lambert, J. D. (1991). Numerical methods for ordinary differential systems.
Chichester: John Wiley & Sons.

Lapicque, L. (1907). Recherches quantitatives sur 1 excitation electrique des
nerfs traitee comme une polarization. J Physiol Pathol Gen 9, 620—-635.

Mathews, J. H. (1987). Numerical methods: For computer science, engineer-
ing, and mathematics. London: Prentice-Hall.

McCormick, D. A. and J. R. Hugenard (1992). A model of the electrophyso-
logical properties of thalamocortical relay neurons. J Neurophysiol 68,
1384-1400.

Rotter, S. and M. Diesmann (1999). Exact digital simulation of tim-invariant
linear systems with application to neural modeling. Biol. Cybern. 81,
381-402.

Shelley, M. J. and L. Tao (2001). Efficient and accurate time-stepping
schemes for integrate-and-fire neuronal networks. J Comp Neurosci 11,
111-119.

Sherman, S. M. and R. W. Guillery (2001). Ezploring the Thalamus. New
York: Academic Press.

Sherman, S. M. and C. Koch (1998). Thalamus. In G. M. Shepherd (Ed.),
The synaptic organization of the brain (Fourth ed.). New York: Oxford
University Press.

Smith, G. D., C. L. Cox, S. M. Sherman, and J. Rinzel (2000). Fourier anal-
ysis of sinusoidally driven thalamocortical relay neurons and a minimal
integrate-and-fire-or-burst model. J Neurophysiol 83, 588-610.

Smith, G. D. and S. M. Sherman (2002). Detectability of excitatory versus
inhibitory drive in an integrate-and-fire-or-burst thalamocortical relay
neuron model. J Neurosci 22, 10242-10250.

Sterling, P. (1998). Retina. In G. M. Shepherd (Ed.), The synaptic organi-
zation of the brain (Fourth ed.). New York: Oxford University Press.

