
FINITE ELEMENT CENTER

PREPRINT 2007–03

Efficient representation of computational

meshes

Anders Logg

FINITE ELEMENT CENTER

PREPRINT 2007–03

Efficient representation of computational

meshes

Anders Logg

Finite Element Center

http://www.femcenter.org/

Efficient representation of computational meshes

Anders Logg

Finite Element Center Preprint
NO 2007–03
ISSN 1653–574X

This preprint and other preprints can be found at
http://www.femcenter.org/preprints/

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES

ANDERS LOGG

Abstract. We present a simple yet general and efficient approach to representation of
computational meshes. Meshes are represented as sets of mesh entities of different topo-
logical dimensions and their incidence relations. We discuss a straightforward and efficient
storage scheme for such mesh representations and efficient algorithms for computation of
arbitrary incidence relations from a given initial and minimal set of incidence relations.
The general representation may harbor a wide range of computational meshes, and may
also be specialized to provide simple user interfaces for particular meshes, including sim-
plicial meshes in one, two and three space dimensions where the mesh entities correspond
to vertices, edges, faces and cells. Benchmarks are presented to demonstrate efficiency in
terms of CPU time and memory usage.

1. Introduction

The computational mesh is a central component of any software framework for the
(mesh-based) solution of partial differential equations. To reduce run-time and enable the
solution of large problems, it is therefore important that the computational mesh may be
represented efficiently, both in terms of the speed of operations on the mesh or access of
mesh data, and in terms of the memory usage for storing any given mesh in memory.

It is furthermore important that the data structure for the representation of the mesh is
general enough to harbor a wide range of computational meshes. This generality must also
be reflected in the programming interface to the mesh representation, to allow the imple-
mentation of general algorithms on the computational mesh. Many algorithms, such as the
assembly of a linear system from a finite element variational problem may be implemented
similarly for simplicial, quadrilateral and hexahedral meshes if the programming interface
to the mesh representation does not enforce a specific interface limited to a specific mesh
type. In particular, boundary conditions may be applied in a dimension-independent way
if one does not need to access the mesh entities of the boundary (the facets) as edges in
two space dimensions and as faces in three space dimensions.

In [9], a very general and flexible approach is taken to representation of computational
meshes. The mesh is represented as a sieve, which is in general a directed acyclic graph
with the mesh entities as points and directed edges describing how the mesh entities are
connected. In this paper, we take a slightly less general approach but reuse some of the

Date: March 29, 2007.
Key words and phrases. mesh, mesh representation, mesh connectivity, mesh entity, incidence relation,

efficient, C++, Python.
Anders Logg, Simula Research Laboratory, Martin Linges v 17, Fornebu, PO Box 134, 1325 Lysaker,

Norway. Email: logg@simula.no.
1

2 ANDERS LOGG

concepts from [9]. In particular, we will represent the mesh as a set of mesh entities (cor-
responding to the points of the sieve) and their incidence relations. We also acknowledge
the works [4, 5], where similar concepts are defined and where the importance of mesh

iterators for expressing generic algorithms on computational meshes is advocated.
The data structures and algorithms discussed in this paper are implemented as a C++

library and is distributed as part of DOLFIN, which is freely available from [8]. DOLFIN
is a C++ problem-solving environment for ordinary and partial differential equations and
is developed as part of the FEniCS project [7, 6] for the automation of computational
mathematical modeling. A Python interface to DOLFIN is also available in the form of
PyDOLFIN, generated automatically from the C++ library by SWIG [3, 2].

1.1. Design goals. When designing the mesh library, we had the following design goals
in mind for the mesh representation and its interface. The mesh representation should
be simple, meaning that the data is represented in terms of basic C++ arrays unsigned

int* and double*; it should be generic, meaning that it should not be specialized to
say simplicial meshes in one, two and three space dimensions; and it should be efficient,
meaning that operations on the mesh or access of mesh data should be fast and the storage
should require minimal memory usage for any given mesh. Furthermore, the programming
interface to the mesh representation should be intuitive, meaning that suitable abstractions
(classes) should be available, including specialized interfaces for specific types of meshes as
well as generic interfaces that enable dimension-independent programming; and it should be
efficient, meaning that the overhead of the object-oriented interface should be minimized.

1.2. Outline. In the following section, we present the basic concepts that define the mesh
representation and its interface. We then discuss the data structures of the C++ imple-
mentation of the mesh representation in DOLFIN, followed by a discussion of the algo-
rithms used in DOLFIN to compute any given incidence relation from a given minimal
set of incidence relations. Next, we demonstrate the programming interface to the mesh
library. Finally, we present a series of benchmarks to demonstrate the efficiency of the
mesh representation and its implementation followed by some concluding remarks.

2. Concepts

The mesh representation is based on the following basic concepts: mesh, mesh topology,
mesh geometry, mesh entity and mesh connectivity. Each of these concepts is mapped
directly to the corresponding component (class) of the implementation.

A mesh is defined by its topology and its geometry. The mesh topology defines how the
mesh is composed of its parts (the mesh entities) and the mesh geometry describes how
the mesh is embedded in some metric space, typically R

n for n = 1, 2, 3. A mesh topology
(Figure 1) may be specified as a set of mesh entities (the vertices, edges etc.) and their
connectivity (incidence relations). Different embeddings (geometries) may be imposed on
any given mesh topology to create different meshes, e.g., when moving the vertices of a
mesh in an ALE computation. Below, we discuss the two basic concepts mesh entity and
mesh connectivity in some detail and also introduce the concept mesh function.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 3

Figure 1. A mesh topology is a set of mesh entities (vertices, edges, etc.)
and their connectivity (incidence relations), that is, which entities are con-
nected (incident) to which entities.

2.1. Mesh entities. A mesh entity is a pair (d, i), where d is the topological dimension
of the mesh entity and where i is a unique index for the mesh entity within its topological
dimension, ranging from 0 to Nd−1 with Nd the number of entities of topological dimension
d. We let D denote the maximal topological dimension over the mesh entities and set the
topological dimension of the mesh equal to D. This is illustrated in Figure 2, where each
mesh entity is labeled by its topological dimension and index (d, i).

For convenience, we also name common entities of low topological dimension or codi-
mension. We refer to entities of topological dimension 0 as vertices, entities of dimension 1
as edges, entities of dimension 2 as faces, entities of codimension 1 (dimension D − 1) as
facets and entities of codimension 0 (dimension D) as cells. Thus, for a triangular mesh,
the edges are also facets and the faces are also cells, and for a tetrahedral mesh, the faces
are also facets. This is summarized in Table 1.

Entity Dimension Codimension

Vertex 0 D
Edge 1 D − 1
Face 2 D − 2
Facet D − 1 1
Cell D 0

Table 1. Named entities of low topological dimension or codimension.

2.2. Mesh connectivity. We refer to the set of incidence relations on a set of mesh
entities as the connectivity of the mesh. For a mesh of topological dimension D, there

4 ANDERS LOGG

Figure 2. Each mesh entity of a mesh is identified with a pair (d, i), where
d is the topological dimension of the mesh entity and where i is a unique
index for the mesh entity within its topological dimension, ranging from 0
to Nd − 1 with Nd the number of entities of topological dimension d.

are (D + 1)2 different classes of incidence relations (connectivities) to consider. Each such
class is denoted here by d → d′ for 0 ≤ d, d′ ≤ D. For any given mesh entity (d, i), its
connectivity (d → d′)i is given by the set of incident mesh entities of dimension d′.

Thus, for a triangular mesh (of topological dimension D = 2), there are nine different
incidence relations of interest between the entities of the mesh. These are in turn 0 → 0,
that is, the vertices incident to each vertex, 0 → 1, that is, the edges incident to each
vertex, . . . , D → D, that is, the cells incident to each cell.

For d > d′, the definition of incidence is evident. Mesh entity (d′, i′) is incident to mesh
entity (d, i) if (d′, i′) is contained in (d, i). Thus, the three vertices of a triangular cell form
the set of incident vertices and the three edges form the set of incident edges. For d < d′,
we define mesh entity (d′, i′) as incident to mesh entity (d, i) if (d, i) is incident to (d′, i′).
It thus remains to define incidence for d = d′. For d, d′ > 0, we say that mesh entity (d′, i′)
is incident to mesh entity (d, i) if both are incident to a common vertex, that is, a mesh
entity of dimension zero, while for d = d′ = 0, we say that (d′, i′) is incident to (d, i) if
both are incident to a common cell, that is, a mesh entity of dimension D.

Together, the set of mesh entities and connectivity (incidence relations) define the topol-
ogy of the mesh. Note that the complete set of incidence relations d → d′ for 0 ≤ d, d′ ≤ D
may be determined from the single class of incidence relations D → 0, that is, the vertices
of each cell in the mesh. We return to this below when we present an algorithm for com-
puting any given class of incidence relations from the minimal set of incidence relations
D → 0.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 5

2.3. Mesh functions. We define a mesh function as a discrete function that takes a value
on the set of mesh entities of a given fixed dimension 0 ≤ d ≤ D. Mesh functions are simple
objects but very useful. A real-valued mesh function may for example be used to describe
material parameters on the cells of a mesh. A boolean-valued mesh function may be used
to set markers on cells or edges for adaptive refinement. Integer-valued mesh functions may
be used to express inter-connectivity between two separate meshes. A typical use is when
a boundary mesh is extracted from a given mesh (by identifying the set of facets that are
incident to exactly one cell). One may then use a mesh function to describe the mapping
from a cell in the extracted boundary mesh (which has topological dimension D − 1) to
the corresponding facets in the original mesh (which has topological dimension D). Note
that mesh functions are discrete and are not meant to represent for example a piecewise
polynomial finite element function on the mesh.

3. Data structures

The mesh representation as described in the previous section has been implemented
as a small C++ class library and is available freely as part of the DOLFIN C++ finite
element library [8], version 0.6.3 or higher. Each of the basic concepts mesh, mesh topol-

ogy, mesh geometry, mesh entity, mesh connectivity and mesh function is realized by the
corresponding class Mesh, MeshTopology, MeshGeometry, MeshEntity, MeshConnectivity
and MeshFunction. All basic data structures are stored as static arrays of unsigned in-
tegers (unsigned int*) or floating point values (double*), which minimizes the cost of
storing the mesh data and allows for quick access of mesh data. We discuss each of these
classes/data structures in detail below.

3.1. The class Mesh. The class Mesh stores a MeshTopology and a MeshGeometry that
together define the mesh. The MeshTopology and MeshGeometry are independent of each
other and of the Mesh. Although it is possible to work with the MeshTopology and
MeshGeometry separately, they are most conveniently accessed through a Mesh class that
holds a pair of a matching topology and geometry.

3.2. The class MeshTopology. The class MeshTopology stores the topology of a mesh as a
set of mesh entities and connectivities. For each pair of topological dimensions (d, d′), 0 ≤
d, d′ ≤ D, the class MeshTopology stores a MeshConnectivity representing the set of
incidence relations d → d′. The mesh entities themselves need not be stored explicitly;
they are stored implicitly for each topological dimension d as the set of pairs (d, i) for
0 ≤ i < Nd, where Nd is the number of mesh entities of topological dimension d. Thus, for
each topological dimension, the class MeshTopology stores an (unsigned) integer Nd, from
which the set of mesh entities {(d, 0), (d, 1), . . . , (d, Nd − 1)} may be generated.

3.3. The class MeshGeometry. The class MeshGeometry stores the geometry of a mesh.
Currently, only the simplest possible representation has been implemented, where only the
coordinates of each vertex are stored. These coordinates are stored in a contiguous array
coordinates of size nN0, where n is the geometric dimension and N0 is the number of
vertices.

6 ANDERS LOGG

3.4. The class MeshEntity. The class MeshEntity provides a view of a given mesh entity
(d, i). The mesh entities themselves are not stored, but a MeshEntity may be generated
from a given pair (d, i). The class MeshEntity provides a convenient interface for access-
ing mesh data, in particular in combination with the concept of mesh iterators, as will be
discussed in more detail below. Thus, one may for any given MeshEntity access its topo-
logical dimension d, its index i and its set of incidence relations (connected mesh entities)
of any given topological dimension d′. Specialized interfaces are provided for the named
mesh entities of Table 1 in the form of the following sub classes of MeshEntity: Vertex,
Edge, Face, Facet and Cell.

3.5. The class MeshConnectivity. The class MeshConnectivity stores the set of inci-
dence relations d → d′ for a fixed pair of topological dimensions (d, d′). The set of incidence
relations is stored as a contiguous unsigned int array indices of entity indices for di-
mension d′ entities, together with an auxiliary unsigned int array offsets that specifies
the offset into the first array for each entity of dimension d.1 The size of the first array
indices is equal to the total number of incident entities of dimension d′ and the size of
the second array offsets is equal to the total number of entities of dimension d plus one.

As an example, consider the storage of the set of incidence relations 2 → 0, that is
the vertices of each cell, for the triangular mesh in Figure 3. The mesh has two entities
of dimension d = 2 and four entities of dimension d′ = 0. Furthermore, each entity of
dimension d = 2 is incident to three entities of dimension d′ = 0. The array entities is
then given by [0, 1, 3, 1, 2, 3] and the array offsets is given by [0, 3, 6].

Figure 3. The mesh connectivity 2 → 0 (the vertices of each cell) for
this triangular mesh with two cells and four vertices is stored as two arrays
indices = [0, 1, 3, 1, 2, 3] and offsets = [0, 3, 6].

1The storage is similar to the standard compressed row storage (CSR) format for sparse matrices, except
that only the column indices need to be stored, not the values. Also note that the two arrays indices and
offsets are private data structures of the class MeshConnectivity. The user is presented with a more
intuitive interface, as will be demonstrated below.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 7

3.6. The class MeshFunction. The class MeshFunction stores a single array of Nd values
on the mesh entities of a given fixed dimension d, and is templated over the value type.
Typical uses include MeshFunction<double> for material parameters that take a constant
value on each cell of a mesh, MeshFunction<bool> for cell markers that indicate cells that
should be refined, and MeshFunction<unsigned int> to store inter-mesh connectivity or
sub domain markers.

3.7. Minimal storage. The mesh data structures described above are summarized in
Table 2. We note that the classes Mesh and MeshTopology function as aggregate classes
that collect mesh data stored elsewhere, and that no data is stored in the class MeshEntity.
All data is thus stored in the class MeshConnectivity (in the two arrays indices and
offsets) and in the class MeshGeometry (in the array coordinates). Note that one
MeshConnectivity object is stored for each pair of topological dimensions (d, d′) for which
the mesh connectivity has been initialized.

Data structure Principal data Size

Mesh MeshTopology topology –
MeshGeometry geometry –

MeshTopology MeshConnectivity** connectivities –
MeshGeometry double* coordinates nN0

MeshEntity – –
MeshConnectivity unsigned int* indices O(Nd)

unsigned int* offsets Nd + 1
Table 2. Summary of mesh data structures.

As an illustration, consider the storage of a tetrahedral mesh with N0 vertices and N3 cells
(tetrahedra) embedded in R

3. Each cell has four vertices, so the class MeshConnectivity
stores 4N3 + N3 + 1 ∼ 5N3 values of type unsigned int. Furthermore, the class
MeshGeometry stores 3N0 values of type double. Thus, if an unsigned int is four bytes
and a double is eight bytes, then the total size of the mesh is 20N3 + 24N0 bytes. For a
standard uniform tetrahedral mesh of the unit square, the number of cells is approximately
six times the number of vertices, so the total size of the mesh is

(3.1) (20N3 + 24N0) b = (20N3 + 24N3/6) b = (20N3 + 4N3) b = 24N3 b.

Thus, a mesh with 1, 000, 000 cells may be stored in just 24 Mb. Note that if additional
mesh connectivity is computed, like the edges or facets of the tetrahedra, more memory
will be required to store the mesh.

4. Algorithms

In this section, we present the algorithms used by the DOLFIN mesh library to compute
the mesh connectivity d → d′ for any given 0 ≤ d, d′ ≤ D. We assume that we are given

8 ANDERS LOGG

an initial set of incidence relations D → 0, that is, we know the vertices of each cell in the
mesh.

The key to computing the mesh connectivities of a mesh is to compute the connectivities
in a particular order. For example, if the vertices are known for each edge in the mesh
(1 → 0), then it is straightforward to compute the edges incident to each vertex (0 → 1)
as will be explained below. The computation is based on three algorithms that are used
successively in a particular order to compute the desired connectivity. As a consequence,
the computation of a certain connectivity d → d′ might require the computation of one or
more other connectivities. We describe these algorithms in detail below. An overview is
given in Figure 4

Figure 4. The three basic algorithms for computing connectivity. From
the left: Build (computing connectivity D → d and d → 0 from D → 0
and D → D), Transpose (computing connectivity d → d′ from d′ → d) and
Intersection (computing connectivity d → d′ from d → d′′ and d′′ → d′).

4.1. Build. Algorithm 1 (Build) computes the connectivities D → d and d → 0 from
D → 0 and D → D for 0 < d < D. In other words, given the vertices and incident cells of
each cell in the mesh, Algorithm 1 computes the entities of dimension d of each cell and
for each such entity the vertices of that entity. Thus, if d = 1, then the edges of each cell
and the vertices of each edge are computed.

The notation of Algorithm 1 requires some explanation. As before, we let (d → d′)i

denote the set of entities of dimension d′ incident to entity (d, i):

(4.1) (d → d′)i = {(d′, j) : (d′, j) incident to (d, i)}.

Algorithm 1 also uses the operation

(4.2) d
local(D,i)
−−−−−→ 0,

which denotes the set of vertex sets incident to the mesh entities of topological dimension d
of a given cell (D, i). To make this concrete, consider a triangular mesh (for which D = 2)

and take d = 1. If Vi = d
local(D,i)
−−−−−→ 0, then Vi denotes the set of vertex sets incident to the

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 9

edges of triangle number i. The set Vi consists of three sets of vertices (one for each edge)
and each set vi ∈ Vi contains two vertices. In addition, Algorithm 1 uses the operation

(4.3) index((D, j), d, vi),

which denotes the index of the entity of dimension d in the cell (D, j) which is incident to
the vertices vi.

We may now summarize Algorithm 1 as follows. For each cell (D, i), we create a set of
candidate entities of dimension d, represented by their incident vertices in the set Vi. This
operation is local on each cell and must be performed differently for each different type of
mesh. We then iterate over each cell incident to the cell (D, i) and check for each candidate
entity vi ∈ Vi if it has already been created by any of the previously visited cells, making
sure that two incident cells agree on the index of any common incident entity.

Algorithm 1 Build(d), computing D → d and d → 0 from D → 0 and D → D for
0 < d < D

k = 0
for each (D, i)

Vi = d
local(D,i)
−−−−−→ 0

for each (D, j) ∈ (D → D)i such that j < i

Vj = d
local(D,j)
−−−−−→ 0

for each vi ∈ Vi

if vi ∈ Vj

(D → d)i = (D → d)i ∪ (d, index((D, j), d, vi))
else

(D → d)i = (D → d)i ∪ (d, k)
(d → 0)k = vi

k = k + 1

4.2. Transpose. Algorithm 2 (Transpose) computes the connectivity d → d′ from the
connectivity d′ → d for d < d′. For each entity of dimension d′, we iterate over the incident
entities of dimension d and add the entities of dimension d′ as incident entities to the
entities of dimension d. We may thus compute for example the incident cells of each vertex
(the cells to which the vertex belongs) by iterating over the cells of the mesh and for each
cell over its incident vertices.

Algorithm 2 Transpose(d, d′), computing d → d′ from d′ → d for d < d′

for each (d′, j)
for each (d, i) ∈ (d′ → d)j

(d → d′)i = (d → d′)i ∪ (d′, j)

10 ANDERS LOGG

4.3. Intersection. Algorithm 3 (Intersection) computes the connectivity d → d′ from
d → d′′ and d′′ → d′ for d ≥ d′. For each entity (d, i) of dimension d, we iterate over
each incident entity (d′′, k) of dimension d′′ and for each such entity we iterate over each
incident entity (d′, j) of dimension d′. We then check if either (d, i) and (d′, j) are entities
of the same topological dimension or if (d′, j) is completely contained in (d, i) by checking
that each vertex incident to (d′, j) is also incident to (d, i), in which case (d′, j′) is added
as an incident entity of entity (d, i).

Here, d′′ must be chosen according to the definition of incidence given above. For exam-
ple, we may take d′′ = 0 to compute the connectivity D → D (the incident cells of each
cell) by iterating over the vertices of each cell and for each such vertex iterate over the
incident cells.

Algorithm 3 Intersection(d, d′, d′′), computing d → d′ from d → d′′ and d′′ → d′ for
d ≥ d′

for each (d, i)
for each (d′′, k) ∈ (d → d′′)i

for each (d′, j) ∈ (d′′ → d′)k

if (d = d′ and i 6= j) or (d > d′ and (d′ → 0)j ⊆ (d → 0)i)
(d → d′)i = (d → d′)i ∪ (d′, j)

4.4. Successive application of Build, Transpose and Intersection. Any given con-
nectivity d → d′ for 0 ≤ d, d′ ≤ D may be computed by a successive application of Algo-
rithms 1–3 in a suitable order. In Algorithm 4, we present the basic logic for a successive
and recursive application of the three basic algorithms Build, Transpose and Intersection
to compute any given connectivity.

We illustrate this in Figure 5 for computation of the connectivity 2 → 2, the incident
faces of each face, for a tetrahedral mesh. From the given connectivity D → 0, we compute
the connectivity 0 → D by an application of Transpose. This allows us to compute D → D
by an application of Intersection. The connectivity 2 → 0 (and D → 2) may then be
computed by an application of Build. We then apply Transpose to compute 0 → 2 and
finally Intersection to compute 2 → 2.

4.5. Memory handling. For each of Algorithms 1–3, memory usage may be conserved
by running each algorithm twice; first one round to count the number of incident entities,
which allows the static data structures discussed above to be preallocated, and then another
round to set the values of the incident entities. Furthermore, memory usage may be
conserved by clearing incidence relations that get computed as byproducts of Algorithms 1–
3 when they are no longer needed.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 11

Figure 5. Computing connectivity 2 → 2 (the faces incident to any given
face) by successive application of Transpose, Intersection, Build, Transpose
and Intersection.

Algorithm 4 Connectivity(d, d′), computing d → d′ by application of Algorithms 1–3

if Nd = 0
Build(d)

if Nd′ = 0
Build(d′)

if d → d′ 6= ∅
return

if d < d′

Connectivity(d′, d)
Transpose(d, d′)

else

if d = 0 and d′ = 0
d′′ = D

else

d′′ = 0
Connectivity(d, d′′)
Connectivity(d′′, d′)
Intersection(d, d′, d′′)

12 ANDERS LOGG

5. Interfaces

In this section, we briefly describe the user interface of the DOLFIN mesh library. We
only describe the C++ interface, but note that an (almost) identical Python interface is
also available.

5.1. Creating a mesh. A mesh may be created in one of three ways, as illustrated in
Figure 6. Either, the mesh is defined by a data file in the DOLFIN XML format2, or the
mesh is defined vertex by vertex and cell by cell using the DOLFIN mesh editor, or the
mesh is defined as one of the DOLFIN built-in meshes. Currently provided built-in meshes
include triangular meshes of the unit square and tetrahedral meshes of the unit cube.

// Read mesh from file

Mesh mesh0("mesh.xml");

// Build mesh using the mesh editor

Mesh mesh1;

MeshEditor editor;

editor.open(mesh1, "triangle", 2, 2);

editor.initVertices(4);

editor.addVertex(0, 0.0, 0.0);

editor.addVertex(1, 1.0, 0.0);

editor.addVertex(2, 1.0, 1.0);

editor.addVertex(3, 0.0, 1.0);

editor.initCells(2);

editor.addCell(0, 0, 1, 2);

editor.addCell(1, 0, 2, 3);

editor.close();

// Create simple mesh of the unit cube

UnitCube mesh2(16, 16, 16);

Figure 6. A DOLFIN mesh may be defined either by an XML data file,
or explicitly using the DOLFIN mesh editor, or as a built-in predefined
mesh. The last two arguments in the call to MeshEditor::open() specify
the topological and geometric dimensions of the mesh respectively.

5.2. Mesh iterators. Mesh data may be accessed directly from the mesh, but is most
conveniently accessed through the mesh iterator interface. Algorithms operating on a
mesh (including Algorithms 1–3) can often be expressed in terms of iterators. Mesh it-
erators can be used to iterate either over the global set of mesh entities of a given topo-
logical dimension, or over the locally incident entities of any given mesh entity. Two

2A conversion script dolfin-convert is provided for conversion from other popular mesh formats
(including Gmsh and Medit) to DOLFIN XML format.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 13

alternative interfaces are provided; the general interface MeshEntityIterator for itera-
tion over entities of some given topological dimension d, and the specialized mesh iterators
VertexIterator, EdgeIterator, FaceIterator, FacetIterator and CellIterator for
iteration over named entities. Iteration over mesh entities may be nested at arbitrary depth
and the connectivity (incidence relations) required for any given iteration is automatically
computed (at the first occurrence) by the algorithms presented in the previous section.

A MeshEntityIterator (it) may be dereferenced (*it) to create a MeshEntity,
and any member function MeshEntity::foo() may be accessed by it->foo(). A
MeshEntityIterator may thus be thought of as a pointer to a MeshEntity. Similarly, the
named mesh entity iterators may be dereferenced to create the corresponding named mesh
entities. Thus, dereferencing a VertexIterator gives a Vertex which provides an interface
to access vertex data. For example, if it is a VertexIterator, then it->point() returns
the coordinates of the vertex.

The use of mesh iterators is demonstrated in Figure 7, for iteration over all cells in the
mesh and for each cell all its vertices as illustrated in Figure 8. For each cell and each
vertex, we print its mesh entity index. We also demonstrate the use of named mesh entity
iterators to print the coordinates of each vertex.

// Iteration over all vertices of all cells

unsigned int D = mesh.topology().dim();

for (MeshEntityIterator cell(mesh, D); !cell.end(); ++cell)

{

cout << "cell index = " << cell->index() << endl;

for (MeshEntityIterator vertex(cell, 0); !vertex.end(); ++vertex)

{

cout << "vertex index = " << vertex->index() << endl;

}

}

// Iteration over all vertices of all cells

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

cout << "cell index = " << cell->index() << endl;

for (VertexIterator vertex(cell); !vertex.end(); ++vertex)

{

cout << "vertex index = " << vertex->index() << endl;

cout << "vertex coordinates = " << vertex->point() << endl;

}

}

Figure 7. Iteration over all vertices of all cells in a mesh, using the gen-
eral iterator interface MeshEntityIterator and the specialized iterators
CellIterator and VertexIterator.

14 ANDERS LOGG

Figure 8. Iteration over all vertices of all cells in a mesh. The order of
iteration is decided by the definition of the mesh, or alternatively, the UFC
ordering convention [1] if the mesh is ordered. Meshes may be ordered by a
call to Mesh::order().

5.3. Direct access to mesh data. In addition to the iterator interface, all mesh data
may be accessed directly. Thus, one may obtain an array of the vertices of all cells in
the mesh directly from the mesh topology, and one may obtain the vertex coordinates of
the mesh directly from the mesh geometry. This illustrated in Figure 9 where the same
iteration as in Figure 7 is performed without mesh iterators.

5.4. Mesh algorithms. In addition to the computation of mesh connectivity as discussed
previously, the DOLFIN mesh library provides a number of other useful mesh algorithms,
including boundary extraction, uniform mesh refinement, adaptive mesh refinement (in
preparation), mesh smoothing, and reordering of mesh entities.

Figure 10 demonstrates uniform refinement and boundary mesh extraction. When ex-
tracting a boundary mesh, it may be desirable to also generate a mapping from the entities
of the boundary mesh to the corresponding entities of the original mesh. This is the case
for example when assembling the contribution from boundary integrals during assembly of
a linear system arising from a finite element variational formulation of a PDE. One then
needs to map each cell of the boundary mesh to the corresponding facet of the original
mesh. Note that the cells of the boundary mesh are facets of the original mesh. In Fig-
ure 11, we demonstrate how to extract a boundary and generate the mapping from the
boundary mesh to the original mesh. The mapping is expressed as two MeshFunctions, one
from the vertices of the boundary mesh to the corresponding vertex indices of the original
mesh and one from the cells of the boundary mesh to the corresponding facet indices of
the original mesh.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 15

MeshTopology& topology = mesh.topology();

MeshGeometry& geometry = mesh.geometry();

unsigned int D = topology.dim();

for (unsigned int cell = 0; cell < topology.size(D); ++cell)

{

cout << "cell index = " << cell << endl;

MeshConnectivity& connectivity = topology(D, 0);

unsigned int* vertices = connectivity(cell);

for (unsigned int i = 0; i < connectivity.size(cell); ++i)

{

unsigned int vertex = vertices[i];

cout << "vertex index = " << vertex << endl;

cout << "vertex coordinates = " << geometry.point(vertex) << endl;

}

}

Figure 9. Iteration over all vertices of all cells in a mesh and direct access
of mesh data corresponding to the iteration of Figure 7 and Figure 8.

// Refine mesh uniformly twice

mesh.refine();

mesh.refine();

// Extract boundary mesh

BoundaryMesh boundary(mesh);

// Refine boundary mesh uniformly

boundary.refine();

// Save boundary mesh to file

File file("boundary.xml");

file << boundary;

Figure 10. Uniform refinement, boundary extraction and uniform refine-
ment of the boundary mesh using the DOLFIN mesh library. Note that the
extracted boundary mesh is itself a mesh and may thus itself be refined.

6. Benchmark results

In this section, we present a series of benchmarks to illustrate the efficiency of the mesh
representation and its implementation. The new mesh library, which is available as part
of DOLFIN version 0.6.3 and higher, is compared to the old DOLFIN mesh library which

16 ANDERS LOGG

MeshFunction<unsigned int> vertex_map;

MeshFunction<unsigned int> cell_map;

BoundaryMesh boundary(mesh, vertex_map, cell_map);

Figure 11. Extraction of a boundary mesh and generation of a pair of
mappings from the vertices of the boundary mesh to the indices of the cor-
responding vertices of the original mesh and from the cells of the boundary
mesh to the indices of the corresponding facets of the original mesh.

is a fairly efficient C++ implementation, but which suffers from object-oriented overhead;
all mesh entities are there stored as arrays of objects, which store their data locally in each
object (including mesh incidence relations and vertex coordinates).

The four test cases that are examined are the following: (i) CPU time and (ii) memory
usage for creation of a uniform tetrahedral mesh of the unit cube, (iii) iteration over all
vertices of all cells of the uniform tetrahedral mesh of the unit cube, and (iv) uniform
refinement of the uniform tetrahedral mesh of the unit cube.

In summary, the speedup was in all cases a factor 10–100 and memory usage was re-
duced by a factor of 10. The speedup and decreased memory usage is the result of more
efficient algorithms and data structures, where all data is stored in large static arrays and
objects are only provided as part of the interface for simple access to the underlying data
representation, not to store data themselves. Another contributing factor is that the old
DOLFIN mesh library precomputes certain connectivities (including the edges and faces of
each cell) at startup, whereas this computation is carried out only when requested in the
new DOLFIN mesh library, either as part of the iterator interface or by an explicit call to
Mesh::init().

7. Conclusions

We have presented a simple yet general and efficient representation of computational
meshes and demonstrated a straightforward implementation of this representation as a set
of C++ classes that correspond to the basic concepts of the mesh representation. The
implementation is available freely as part of DOLFIN [8]. Work is currently in progress to
implement adaptive mesh refinement and partition of meshes for parallel computation as
part of the DOLFIN mesh library.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 17

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6N u m b e r o f c e l l s1 0 � 41 0 � 31 0 � 21 0 � 11 0 01 0 1
CPUti me/ s

C r e a t i n g u n i t c u b e m e s hO l d m e s hN e w m e s h

Figure 12. Benchmarking the CPU time for creation of a uniform tetra-
hedral mesh of the unit cube for the new mesh library vs. the old DOLFIN
mesh library.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0N u m b e r o f c e l l s x 1 e + 502 04 06 08 01 0 01 2 01 4 0
M emorysi ze/MB

M e m o r y u s a g eO l d m e s hN e w m e s h

Figure 13. Benchmarking the memory usage for creation of a uniform
tetrahedral mesh of the unit cube for the new mesh library vs. the old
DOLFIN mesh library.

18 ANDERS LOGG

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6N u m b e r o f c e l l s1 0 � 4
1 0 � 3
1 0 � 2

1 0 � 1
CPUti me/ s

I t e r a t i o n o v e r m e s h e n t i t i e sO l d m e s hN e w m e s h

Figure 14. Benchmarking the CPU time for iteration over the vertices of
each cell for the new mesh library vs. the old DOLFIN mesh library.

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6N u m b e r o f c e l l s1 0 C 21 0 C 11 0 01 0 11 0 21 0 3
CPUti me/ s

U n i f o r m m e s h r e f i n e m e n tO l d m e s hN e w m e s h

Figure 15. Benchmarking the CPU time for uniform refinement of the unit
cube for the new mesh library vs. the old DOLFIN mesh library.

EFFICIENT REPRESENTATION OF COMPUTATIONAL MESHES 19

References

[1] M. Alnæs, H.-P. Langtangen, A.Logg, K.-A. Mardal, and O. Skavhaug, UFC, 2007. URL:
http://www.fenics.org/ufc/.

[2] D. M. Beazley, SWIG : An easy to use tool for integrating scripting languages with C and C++,
presented at the 4th Annual Tcl/Tk Workshop, Monterey, CA, (2006).

[3] D. M. Beazley et al., Simplified Wrapper and Interface Generator, 2006. URL: http://www.swig.
org/.

[4] G. Berti, Generic programming for mesh algorithms: Towards universally usable geometric compo-

nents, in Proceedings of the Fifth World Congress on Computational Mechanics,Vienna University of
Technology July, 2002.

[5] , GrAL - the grid algorithms library, Future Generation Computer Systems, 22 (2006).
[6] T. Dupont, J. Hoffman, C. Johnson, R. C. Kirby, M. G. Larson, A. Logg, and L. R.

Scott, The FEniCS project, Tech. Rep. 2003–21, Chalmers Finite Element Center Preprint Series,
2003.

[7] J. Hoffman, J. Jansson, C. Johnson, M. G. Knepley, R. C. Kirby, A. Logg, L. R. Scott,

and G. N. Wells, FEniCS, 2006. http://www.fenics.org/.
[8] J. Hoffman, J. Jansson, A. Logg, and G. N. Wells, DOLFIN, 2006. http://www.fenics.org/

dolfin/.
[9] D. A. Karpeev and M. G. Knepley, Flexible representation of computational meshes, submitted

to ACM Trans. Math. Softw., (2005).

