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Abstract

In this work I present a multi-adaptive finite element method for initial value
problems for ordinary differential equations, including an a posteriori estimate
of the error.
The method is multi-adaptive in the sense that the resolution of the time

discretization is chosen individually for each component of the system of ordi-
nary differential equations, based on an estimation of the error.
The method has been successfully implemented in the Tanganyika library,

available for download. Included are a few example computations made with
this library, as well as instructions for downloading and using the package.
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CHAPTER 1

Introduction

Numerical methods for solving initial value problems for ordinary differential
equations have been around for a long time and the number of methods is
almost as large as the number of equations.
Common methods, such as the ones supplied with Matlab (ode45() ,

ode23() , ode113() , ode-whatever() ), are often fast, meaning that they
terminate in a short time.
These methods often provide some sort of local error control, where the

error is controlled in some way in each integration step. This, however does
not mean control of the global error. Although a tolerance is specified, it is
not related – otherwise than by some (hopefully) monotonically increasing,
and otherwise unknown, function – to the global error of the solution. The
program is thus not concerned with the actual value of the error, leaving the
user unaware of the quality of the computed solution.

In fact, it was wrong.
Bill Clinton (1998).

Using such a classical numerical solver usually means solving the problem
at a number of different tolerance levels for the local error, and comparisons
between these solutions. Error control is thus (perhaps) obtained manually.
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This manual effort should also be taken into account when comparing the effi-
ciencies of different solvers.

1.1 Quantitative Error Control

Using a posteriori estimates of the error, i.e. error estimates based on the com-
puted solution, it is possible to accurately control the size of the global error.

Finite elements present a general framework for solving differential equa-
tions, such as e.g. initial value problems for ordinary differential equations,
considered in this report. Depending on the choice of basis functions, nor-
mally piecewise polynomials of different kinds, the result is a new stepmethod
for solving the initial value problem. These methods include cG(1), cG(2),. . . ,
dG(0), dG(1),. . . .

Efficieny is obtained by adaptivity, putting the computational effort where
it is most needed. For initial value problems this usually means adjusting the
size of the timestep, thus choosing the timestep to be small where the solution
is especially sensitive to errors in the numerical method.

Proper a posteriori error control requires knowledge of the stability of the
problem. Stability properties are in general obtained by solving a so-called
dual problem. Thus, error control requires some extra effort from the solver,
which in some cases is comparable to the effort of solving the problem itself.

Work on quantitative error-control during the last ten years (see references
[1]-[10]) has resulted not only in extensive theoretical results, but also in work-
ing implementations of the methods, such as e.g. CARDS (solver of initial
value problems for ordinary differential equations – see [8]) and FEMLAB
(solver of partial differential equations).

The current approach to quantitative error control was originated with the
article by Johnson ([9]) in 1988, discussing error estimation for the dG(0) and
dG(1) methods. Error estimation for these methods are further discussed by
Estep in [5]. The cG(q) method, which is the basis for the multi-adaptive
method presented in this report, is discussed at length in [7]. A more classi-
cal approach to error analysis can be found in [11].

A comprehensive and major article on adaptive methods for differential
equations is [3]. A general and non-technical discussion on error control and
adaptivity is [6].

8
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1.2 Multi-Adaptivity

It is desirable, in short, that in things which do not primarily concern others,

individuality should assert itself.
John Stuart Mill, On Liberty (1909).

If we view a system of ODE:s as the representation of a mechanical system
and notice that different parts, components, of such a system may behave very
differently – some parts oscillating very rapidly and others slowly, perhaps
undergoing even uniform motion – we realize that different components of an
ODE-systemmay be differently sensitive to the resolution of the discretization.
There is obviously a need for multi-adaptivity, allowing individual components of
an ODE-system to use individual timesteps.

Normally, the same timestep is used for all components of an ODE-system.
The novelty of multi-adaptivity is thus allowing individual adaption of the
timesteps for the different components.

9
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k

t

Figure 1.1: These are the actual timesteps used for an example computation on a simple
two-dimensional system.
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CHAPTER 2

The Method – Multi-Adaptive Galerkin

This chapter describes the multi-adaptive method, complete with an a posteri-
ori error estimate.

The basis for the multi-adaptive method is a generalization of the continu-
ous Galerkin method, cG(q), described in e.g. [4].

2.1 Equation

The equation to be solved is

{

du
dt

(t) = f(u, t), t ∈ (0, T ],
u(0) = u0,

(2.1)

where f = (f1, . . . , fN ) is some function1depending on the solution
u = (u1, . . . , uN) and t, which may represent time.

1In order to guarantee the existence of a unique solution, it may be good to know that f is
Lipschitz continuous.

11
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2.2 Finite Element Formulation

The weak (variational) formulation of equation (2.1) reads

Find u = u(t) such that u(0) = u0 and
∫ T

0

(u̇, v) =

∫ T

0

(f, v) for all test functions v, (2.2)

where (·, ·) denotes the usual l2-inner product.
To define themulti-adaptive cG(q)method, we introduce the trial space, V N

k ,
and the test space,WN

k , of functions on [0, T ], where

V N
k = {v : vi ∈ Pqi(Iij), j = 1, . . . , Mi, vi is continuous, i = 1, . . . , N};

WN
k = {v : vi ∈ Pqi−1(Iij), j = 1, . . . , Mi, i = 1, . . . , N}.

Thus v ∈ V N
k means that all its components vi are continuous and piecewise

polynomial on the intervals {Iij}Mi

j=1, and v ∈ WN
k means that all its compo-

nents vi are in general discontinuous and piecewise polynomial (of one degree
less) on the same intervals as the corresponding trial function.
The multi-adaptive cG(q)method is then

Find U ∈ V N
k such that U(0) = u0 and

∫ T

0

(U̇ , v) =

∫ T

0

(f, v) ∀v ∈ WN
k . (2.3)

The discontinuity of the test functions means we may rewrite this as

Find {ξijk}qi

k=0 such that
∫

Iij

U̇iv =

∫

Iij

fiv ∀v ∈ Pqi−1(Iij), j = 1, . . . , Mi, i = 1, . . . , N, (2.4)

U(0) = u0 and U is continuous,

where the {ξijk} are the parameters determining the piecewise polynomials
{Ui}. Note that there are (q+1) parameters determining a polynomial of degree
q, so the index k is from zero to q.
Finding the parameters {ξijk} in agreement with eq. (2.4) yields the de-

sired solution. What remains is to find the proper discretization, {Iij}, i.e. the
timesteps {kij}. To choose the timesteps, we need an error estimate, which will
be the basis for adaptivity. By means of this error estimate, the discretization
will be chosen in a way to give a resulting final error smaller than the specified
tolerance.

12
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2.2.1 Details

The parameters {ξijk} may e.g. be the nodal values for a subdivision of the
intervals into qi subintervals. For an interval Iij , let the nodal points of an
equipartition of this interval be {tijk}qi

k=0. The corresponding nodal (Lagrange)
basis functions, {λijk : R → R}, are then defined on Iij for k = 0, . . . , qi, by

λijk(t) =
(t − tij0) · · · (t − tij,k−1)(t − tij,k+1) · · · (t − tijqi

)

(tijk − tij0) · · · (tijk − tij,k−1)(tijk − tij,k+1) · · · (tijk − tijqi
)
. (2.5)

On the interval Iij , Ui may then be written (uniquely) as

Ui =

qi
∑

k=1

ξijkλijk , (2.6)

for some values {ξijk}.
Inserting this into eq. (2.4), computing a few integrals (simple but tedious)

and solving the resulting system of linear algebraic equations, yields



















ξij1 = ξij0 +
∫

ij
wqi1(τij(t))fi(U, t)dt,

ξij2 = ξij0 +
∫

ij
wqi2(τij(t))fi(U, t)dt,

...
ξijqi

= ξij0 +
∫

ij
wqiqi

(τij(t))fi(U, t)dt,

(2.7)

where τij(t) =
t−ti,j−1

tij−ti,j−1

and the {wqk}q
k=1 are polynomial weight functions.

These are given in table 2.1 for q = 1, 2, 3.

w11(τ) = 1

w21(τ) = 1
4 (5 − 6τ) w22(τ) = 1

w31(τ) = 1
27 (37 − 96τ + 60τ2) w32(τ) = 1

27 (26 + 24τ − 60τ2) w33(τ) = 1

Table 2.1: Weight functions for the cG(q) integrals, q = 1, 2, 3.

13
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2.2.2 Even more Flexibility

Note that we could have allowed each component to be piecewise polynomial
without beforehand fixing the deqree of the polynomial on the whole of the
discretization. We could thus have allowed the polynomial degree to change
from one interval to the next. The method would then be even p-adaptive,
choosing the (in some sense) best degree of the polynomials for every single
interval Iij .

For simplicity, though, the polynomial degrees have been chosen to be {qi}
rather than {qij}. The difference would be an extra index j on q.

2.3 Error Estimation

The error estimate is obtained starting the same way as in references [1], [4]
and [10].

To estimate the error at final time T in the l2-norm, the dual problem of eq.
(2.1) is introduced. The dual problem is

{

− dϕ
dt

(t) = J∗(u, U, t)ϕ(t), t ∈ [0, T ),
ϕ(T ) = e(T )/||e(T )||, (2.8)

where e = U − u is the error, || · || is the l2-norm and J∗ is defined as

J∗(u, U, ·) =

(
∫ 1

0

∂f

∂u
(su + (1 − s)U, ·)ds

)∗

, (2.9)

i.e. J∗ is the transpose (or more generally, the adjoint) of the Jacobian of f at a
mean value of u and U .

Note now that by the chain rule,

−J(u, U, ·)(U − u) =
∫ 1

0
∂f
∂u

(su + (1 − s)U, ·)ds(u − U)

=
∫ 1

0
∂f
∂s

(su + (1 − s)U, ·)ds
= f(u, ·) − f(U, ·).

(2.10)

We may thus write

14
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||e(T )|| = (e(T ), e(T ))/||e(T )||
= (e(T ), ϕ(T ))

= (e(T ), ϕ(T )) − (e(0), ϕ(0)) +
∫ T

0
(e,−ϕ̇ − J∗(u, U, ·)ϕ)

= [(e(t), ϕ(t))]T0 −
∫ T

0
(e, ϕ̇) −

∫ T

0
(e, J∗(u, U, ·)ϕ)

=
∫ T

0
(ė, ϕ) −

∫ T

0
(J(u, U, ·)e, ϕ)

=
∫ T

0
(ė − J(u, U, ·)e, ϕ)

=
∫ T

0
(U̇ − f(u, ·) − J(u, U, ·)(U − u), ϕ)

=
∫ T

0
(U̇ − f(U, ·), ϕ)

= −
∫ T

0
(R, ϕ),

(2.11)

where R is the residual, i.e.

R = f(U, ·) − U̇ . (2.12)

Using the finite element formulation for ϕ ∈ WN
k , we continue to get

||e(T )|| = −
∫ T

0 (R, ϕ − ϕ)

= −
∑N

i=1

∫ T

0 Ri(ϕi − ϕi)

= −∑N
i=1

∑Mi

j=1

∫

Iij
Ri(ϕi − ϕi)

≤ ∑N
i=1

∑Mi

j=1 supIij
|Ri|

∫

Iij
|ϕi − ϕi|

≤ ∑N
i=1

∑Mi

j=1 Cqi
kqi

ij supIij
|Ri|

∫

Iij
|ϕ(qi)

i |,

(2.13)

where the {Cqi
} are constants.

2.3.1 The Constant Cq

Choosing the test function ϕ as the (q − 1):th-order Taylor-expansion of ϕ
around (tij + ti,j−1)/2 on Iij yields

Cq =
1

q!2q−1
. (2.14)

The proof is simple. Noting that, with

f q−1(x) = f(x0)+ f ′(x0)(x−x0)+ . . .+
1

(q − 1)!
f (q−1)(x0)(x−x0)

(q−1) (2.15)

15
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we have

|f(x) − f q−1(x)| = | 1

(q − 1)!

∫ x

x0

f (q)(y)(y − x0)
(q−1)dy| (2.16)

and thus, with x0 = (a + b)/2,

∫ b

a
|f − f q−1| = 1

(q−1)!

∫ b

a
|
∫ x

x0

f (q)(y)(y − x0)
(q−1)dy|dx

≤ 1
(q−1)!

(

∫ b

a
|x − x0|q−1dx

) (

∫ b

a
|f (q)(x)|dx

)

= 1
q! (|a − x0|q + |b − x0|q)

∫ b

a
|f (q)|

= 2(b−a)q

q!2q

∫ b

a
|f (q)|

= (b−a)q

q!2q−1

∫ b

a
|f (q)|.

(2.17)

Another useful estimate (see the section on adaptivity below) is

∫ b

a

|f − f q−1| ≤ C̃q(b − a)q+1 sup
Iij

|f (q)|, (2.18)

where

C̃q =
1

(q + 1)!2q
, (2.19)

which is obtained as above, choosing f q−1 to be the (q − 1):th-order Taylor
expansion around the midpoint.

2.3.2 A Correction of the Error Estimate

The method to be used is not, because of the difficulty involved with solving
eq. (2.7), the true multi-adaptive cG(q)method, as will be described further in
chapter 3.
Not solving the equations properlywill introduce the discrete residual, which

should be zero if the discrete equations, i.e. (2.7), were solved properly. The fol-
lowing analysis will result in an extra term in the error estimate (2.13), includ-
ing the discrete residual together with its proper stability factor, accounting for
accumulation of errors due to a non-zero discrete residual.

Defining the discrete residual to be

16
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Rij = Ri(t) =

∫

Iij

fi − (ξijq − ξij0), j = 1, . . . , Mi, i = 1, . . . , N, (2.20)

we get for ϕi ∈ Pqi−1(Iij) and some ηij ∈ Iij ,

∫

Iij

Riϕi = ϕi(ηij)

∫

Iij

(U̇i − fi) = −ϕi(ηij)Rij . (2.21)

Thus,
∫

Iij
Riϕi differs from zero and we get an additional term in our error

estimate, continuing from eq (2.11):

||e(T )|| = −
∫ T

0 (R, ϕ)

= −
∑N

i=1

∫ T

0 Riϕi

= −∑N
i=1

∑Mi

j=1

[

∫

Iij
Riϕi −

∫

Iij
Riϕi − ϕi(ηij)Rij

]

= −∑N
i=1

∑Mi

j=1

[

∫

Iij
Ri(ϕi − ϕi) − ϕi(ηij)Rij

]

≤
∑N

i=1

∑Mi

j=1

[

Cqi
kqi

ij supIij
|Ri|

∫

Iij
|ϕ(qi)

i | + |Rij | supIij
|ϕi|

]

≈ ∑N
i=1

∑Mi

j=1

[

Cqi
kqi

ij supIij
|Ri|

∫

Iij
|ϕ(qi)

i | + |Rij | supIij
|ϕi|

]

,

(2.22)
if we choose ϕ close to ϕ.

2.3.3 Other Error Contributions

Other error contributions that are not dealt with here are quadrature errors and
numerical errors due the finite precision arithmetic.

2.4 Adaptivity

Introducing the stability function, defined by

si(t) = sij = sup
Iij

|ϕ(qi)
i |, t ∈ Iij , j = 1, . . . , Mi, i = 1, . . . , N (2.23)

and the stability factor, defined by

17
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Si(T ) =

∫ T

0

|ϕ(qi)
i |, i = 1, . . . , N, (2.24)

the error estimate (2.13) may be written in two alternative ways as

||e(T )|| ≤ ∑N
i=1

∑Mi

j=1 C̃qi
sijk

qi+1
ij supIij

|Ri|,
||e(T )|| ≤

∑N
i=1 Cqi

Si sup(0,T ) (kqi

i |Ri|).
(2.25)

The stability properties are obtained by numerical approximation (by the
multi-adaptive cG(q)method) of the solution of the dual problem.

Notice that the error contribution from the non-zero discrete residual is not
included in these expressions, since I have chosen to base the adaptivity on
the Galerkin discretizational error alone. However, the contribution from the
non-zero discrete residual is of course included in the computation of the error
estimate and thus, indirectly, also in the adaptive procedure.

Adaptivity is then based on the expression

||e(T )|| ≤ error estimate = TOL, (2.26)

where TOL is a given tolerance for the error of the solution at time t = T .

The discretization is now chosen by equidistribution of the error, both onto
the different components and onto the different intervals, i.e.

C̃qi
sijk

qi+1
ij sup

Iij

|Ri| =
TOL

NMi
. (2.27)

Alternatively, we may whish to do

Cqi
Si sup

(0,T )

(kqi

i |Ri|) =
TOL

N
. (2.28)

Knowing thus the residuals and the stability functions (or factors) we may
choose the proper timesteps. This is done in a way that is iterative in two
respects. Firstly, the timestep for an interval is chosen based on the residual in
the previous interval. Secondly, the {Mi}, are not known until the end of the
computation. The values {Mi} are then a more or less clever guess based on
a previous computation. Of course, having computed the solution, we don’t
have to guess these values to compute an error estimate.

18
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2.4.1 Moderating the Choice of Timesteps

Choosing timesteps as described in the previous section without any extra
moderation may cause problems. If the residual in one interval is small, the
timestep of the next interval will be large. A large timestep will (often) result
in a large residual, which in turn in the same way means the timestep of the
next interval will be small. There is thus a chance the timestep will oscillate if
it is only based on the residual of the last interval. What needs to be done is
to make sure the timesteps (and thus also the residuals) don’t differ too much
between adjacent intervals. This may be done in a lot of different ways, e.g.
by choosing the (harmonic) mean of the previous timestep and the value of
the new timestep, as based on the residual. (The Tanganyika library uses a
somewhat more sophisticated moderation of the timesteps.)

2.4.2 Choosing Data for the Dual Problem

According to eq. (2.8), we need to know the true error in order to solve the
dual problem. If we indeed knew the true error, we would not have to bother
with any of this, and since the true error is unknown, we have to make a clever
guess. We now discover another benefit of multi-adaptivity – it makes it easier
for us to estimate the data for the dual problem! Since we equidistribute the
error onto the different components, an estimation of the proper data for the

dual problem should be±1/
√

N ,N being the dimension, for the different com-
ponents. The signs for the different components may be obtained by solving at
different tolerance levels.
Since, however, we don’t know the stability properties of the problem until

the computation is done, we cannot expect the errors of an initial computation
to be fully equidistributed onto the different components. Hence, we cannot

expect±1/
√

N to alwayswork as data for the components of the dual problem.
Again, proper data is obtained by e.g. solving at different tolerance levels.
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CHAPTER 3

The Implementation – Tanganyika

This section describes the actual implementation of the method described in
the previous section.

3.1 Individual Stepping

The individual stepping is done according to eq. (2.7). This requires knowl-
edge about U , including the values of all other components. These values
are evaluated by interpolation (or extrapolation), according to the order of the
method, of the nearest known values of the other components. The solution of
the integral equation is done iteratively for every component.

The order of the stepping follows one simple principle;

the last component steps first.

It is the fact that the equations are not solved simultaneously that results in
non-zero discrete residuals.
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3.1.1 Organization, Book-Keeping

Doing the stepping individually rather than stepping all components together
requires some book-keeping, keeping track of the positions of all components
and which one is to step next.

The individual stepping is done according to figure 3.1 below. The imple-
mentation pretty much follows this scetch.

informationpositions                                                           interaction

Figure 3.1: This is how the individual stepping is done. The different components
tell/send their respective positions and in turn they get their interactions
with (forces from) the other components. Thus, just as in nature itself,
progress is made by the exchange of information, small pieces of informa-
tion (gravitons or perhaps femions).

3.2 Quadrature

The integrals of eq. (2.7) are evaluated by Gaussian (Gauss-Legendre) quadra-
ture.
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Since the order of the weight functions for the integrals of a cG(q) method
are (q−1), we expect the total order of the integrands to be of order q+(q−1) =
2q − 1 (and even more if f is of quadratic or higher order). It would thus be
wise to use quadrature that is exact at least for polynomials of order 2q − 1,
which is exactly the case for Gaussian quadrature with q nodal points.
Thus, midpoint quadrature for cG(1), two-point Gaussian quadrature for

cG(2) and so on.

3.3 The Program

The method has been implemented as a library, called Tanganyika. To use the
library functions, all one needs to do is to

#include <tanganyika.h>

in one’s C/C++ program. For more details, refer to the Tanganyika User Manual
included in Appendix B. For even more details (all!) download the source code
– see chapter 6.

3.3.1 Language

The language of the Tanganyika library is C++, although its interface is pure
C. An object-oriented programming language such as C++ is obviously well-
suited for such a program like the Tanganyika library, viewing the different
objects as classes; Solution, Component, Element, etc.

3.3.2 Modularity

A nice feature of the C++ programming language is the use of class derivation
and inheritance, enabling a modular implementation of the different methods.
Implemented in the current version (1.0) of the library are cG(1), cG(2) and
cG(3), but the implementation of another method, such as e.g. dG(0), would
require only the implementation of a new subclass, specifying only what differs
from the already existing methods. (This would in reality mean perhaps 50
lines of code.)
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CHAPTER 4

Results

In this chapter I present the results from a few computations made with the
Tanganyika library.

4.1 A First Simple Example

As a first simple example, consider the following system of equations:







u̇1 = u2,
u̇2 = −u1, in (0, T ]

u(0) = (0, 1).
(4.1)

The solution is of course u(t) = (sin(t), cos(t)). The equations are solved
by the multi-adaptive cG(1) method with tolerance 8 · 10−4 and T = 50. (The
tolerance was actually chosen to be .001. The resulting error estimate was,
however, 8 · 10−4.) The true error is, according to figure 4.1, 6.8 · 10−4 and the
component errors are 5.3 · 10−4 and 4.2 · 10−4 respectively.
Note the behaviour of the multi-adaptive method, choosing different

timesteps for the two methods. The timesteps are chosen on basis of the resid-
uals and stability functions. These are shown, together with the resulting
timesteps, in figure 4.1. Note also the approximate equidistribution of the error.
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Figure 4.1: The solution of the simple harmonic oscillator problem, the errors and the
timesteps respectively.
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Figure 4.2: Residuals, stability functions and timesteps for the two components of the
harmonic oscillator problem, shown for the interval (0, 20).

4.2 Wave Propagation in an Elastic Medium

As a second example, consider wave propagation in an elastic medium, rep-
resented by a number of masses connected with springs according to figure
4.3.
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Figure 4.3: A system ofN masses and N + 1 springs.

The proper equations are easily obtained fromNewton’s second law of mo-
tion.















































ẍ = Ax, where

A =
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(4.2)

This may also be thought of as a FEM space discretization of the wave equa-
tion.

With initial conditions corresponding to all but one masses being at rest
at t = 0, we expect a propagation of the timesteps. At the beginning all but
one mass are at rest, so the timesteps for these masses may be large. As the
oscillations of a mass increase, the corresponding timesteps should decrease
and oscillate. This is also the case according to figure 4.4.
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Figure 4.4: Solutions for components 1,5 and 10 of a system consisting of 10 masses and
11 springs, together with their respective timesteps, solved atTOL = 5·10−4

with the multi-adaptive cG(1)method.

4.3 Gravitation

As a third example, consider a system of three bodies (planets) in a somewhat
complicated situation where one of the planets is in orbit around a larger one,
and a third even smaller planet comes in making sort of a weird sling-shot
around the smaller planet.

The forces involved are 1/r2 and for a certain choice of initial conditions,
the solution is as depicted in figure 4.5 below for TOL = .001, solved with the
multi-adaptive cG(2)method.
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Figure 4.5: Orbits for the three planets. The circles drawn represent the planets at time
t = T .
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Figure 4.6: Stability functions for the x-components of the three planets.

As one might expect, the three bodies are differently sensitive to the resolu-
tion of the discretization. This is also evident in figure 4.7, where are drawn the
timesteps for the components corresponding to the x-coordinates of the three
planets. (The problem is in two dimensions so there is a total number of 12
components.) In this figure are also the number of timesteps used for the dif-
ferent components. The larger planet, corresponding to components 1,2,7 and
8, obviously doesn’t require as many steps as the two smaller ones. The largest
number of steps is, according to this figure, needed to resolve the y-velocities of
the smallest planet, which is not too strange, considering the main acceleration
is in the y-direction at the critical point.
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Figure 4.7: Timesteps (left) and the number of timesteps (right) for the 12 different com-
ponents of the three-body problem.

It is obviously crucial for the timesteps (of the involved components) to be
small just when the smallest planet makes the sling-shot. This is realized in the
adaptive algorithm by an extremely large value of the stability functions for
the involved components, as was shown in figure 4.6.

4.4 The Lorenz System

As a fourth and final example, consider the Lorenz system given by the equa-
tions
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ẋ = σ(y − x), t ∈ (0, T ],
ẏ = rx − y − xz, t ∈ (0, T ],
ż = xy − bz, t ∈ (0, T ],

x(0) = x0, y(0) = y0, z(0) = z0,

(4.3)

where σ = 10, b = 8/3 and r = 28, and (x0, y0, z0) = (1, 0, 0).

The solution at TOL = 2.5 · 10−5 and T = 10 is shown in figure 4.8, to-
gether with the timesteps used for the computation. The “chaotic”, flipping,
behaviour of the Lorenz system is not evident in this figure, since T is too
small. The purpose of this example is however not to illustrate certain charac-
teristics of the Lorenz system, but to illustrate the use of multi-adaptivity for
the three components.
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Figure 4.8: At the left is the solution of the Lorenz system, solved with the mulitadap-
tive cG(1) method at TOL = 2.5 · 10−5 and with final time T = 10. At the
right are the timesteps used for the computation.

Below in figure 4.9 is given the behaviour of one of the stability functions.
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Figure 4.9: The figure shows the stability function s = s(t) for the y component of the
Lorenz system. The other two components are similar to this one.

4.5 True Error vs. the Error Estimate

In this section, we return to the first simple example, the harmonic oscillator,
and compare the true error to the error estimate. Ideally the true error is smaller
than and close to the error estimate. Is this the case for the multi-adaptive cG(q)
method proposed in this work?

To check the reliability of the solver, the solution of eq. (4.1) was com-
puted with T = 100 at a large number of tolerances. The results are given
for cG(q), q = 1, 2, 3, in figure 4.10.
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Figure 4.10: True error vs. error estimate for multi-adaptive cG(1), cG(2) and cG(3)
respectively. Solid lines indicate the ideal maximum size of the true error.

As can be seen the true error is smaller than and close to the error estimate
for the three methods. For this specific problem at these specific tolerance lev-
els, the error for the cG(1)method is mostly discretizational error (arising from
the finite element discretization of the error), whereas for the cG(3)method the
error is mostly mostly computational (arising from a non-zero discrete resid-
ual). For the cG(2) method the situation is somewhere in between. This ex-
plains the different variances in error–tolerance correlations for the three meth-
ods.
Notice also how sharp the error estimate is, especially for the cG(1)method.

Again, this is due to the fact that at this tolerance level, most of the error is the
usual finite element discretizational error for the cG(1)method.
For comparison, the same computations were performed with the often
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used MATLABODE-solver, ode45() . As can be expectedwith a solver lacking
global error control, the tolerance is only nominal, in the sense that its correla-
tion to the true error is unknown.
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Figure 4.11: True error / tolerance vs. tolerance for MATLAB:s ODE-solver ode45() .

The above comparisons between true error and error estimate were made
for a simple 2-component linear system. We conclude this section by showing
the results for a computation on the following nonlinear problem:































u̇1 = u1,
u̇2 = u2 + u1u1,
u̇3 = u3 + u1u2,
u̇4 = u4 + u1u3 + u2u2,
u̇5 = u5 + u1u4 + u2u3,

u(0) = (1, 1, 1
2 , 1

2 , 1
4 ).

(4.4)
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The solution is (obviously) u(t) = (et, e2t, 1
2e3t, 1

2e4t, 1
4e5t).

A comparison between true error and error estimate is given in figure 4.12
for the multi-adaptive cG(1)-method. Also for this nonlinear problem, the true
error is smaller than and close to the error estimate, as desired.
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Figure 4.12: True error vs. error estimate for the multi-adaptive cG(1)-method. The
solid lines indicate the ideal maximum size of the true error.

Finally, notice that these results were all obtained automatically, the only
data specified being the equation (including initial data) and the tolerance. The
equations were then solved automatically, including the solution of the dual
problem – which was automatically generated by numerical differentiation of
the given equation – and error estimation, giving a resulting final error smaller
than the given tolerance.
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CHAPTER 5

Conclusion

As was shown in the previous section, the correlation between error and error
estimate is as desired for the three methods – at least for simple model prob-
lems.
Multi-adaptivity is thus a reality and the method is already implemented –

in the Tanganyika multi-adaptive ODE-solver library. This library (at least the
current version, 1.0) was written primarily with the intention to be a working
implementation of the multi-adaptive method, secondarily with the intention
to be a general, fast and reliable ODE-solver. Although the current implemen-
tation is indeed general and reliable, it is still not fast and effective enough,
mainly because of the large amount of work needed to solve the dual problem.
This has nothing to do with the multi-adaptivity itself. It is a consequence of
the generation and full solution of the dual problem. There are cures for this
and in future versions, more focus will be on speed and effectivity. The main
focus, however, will always be on proper error control.

The facts all contribute only to setting the problem,

not to its solution.
Ludwig Wittgentstein, Tractatus Logico-Philosophicus (1909).
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CHAPTER 6

Download

The program is available for download – as is this report – at

http://www.dd.chalmers.se/˜f95logg/Tanganyika/

Included in the package is the Tanganyika library containing the actual solver
together with Antananarive, an X-interface for the library. The programwill run
under any (not too antique) UNIX system, such as Linux, SunOS, Solaris, . . . .
You will also need GTK, the Gimp ToolKit, for the X-interface. GTK is available
for download at

http://www.gtk.org/

The program is distributed under the GNU General Public License (GPL).
(See Appendix A.)
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APPENDIX A

Notation

In this chapter, I explain the notation used in this report.
Unfamiliar expressions should in general be explained when first intro-

duced. Since, however, it is not always clear which expressions are familiar
and which are not, I include the following list of notation:

FEM
the finite element method, which is the basis for the multi-adaptive cG(q)
method proposed in this report

cG(q)
a Galerkin method with continuous piecewise polynomials of order q

multi-adaptivity
adaptive error control, where the discretizations are chosen individually
for the different components [of and ODE-system]

Tanganyika
besides being a geographical location in the south of Africa, Tanganyika
is the name of themulti-adaptive ODE-solver library, based on this report

Antananarive
this is the X-Windows interface for the Tanganyika library
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dual problem
an auxiliary problem that has to be solved in order to get an estimation
of the error

u
the solution, in this case of the initial value problem (2.1)

U
the finite element approximation of the solution u

t
independent variable, often thought of as the time

T
the end-value of t

N
the number of dimensions (components) of the ODE-system

Mi

the number of intervals for the subpartition of (0, T ] for component i

V N
k

the trial space for our finite element formulation

WN
k

the test space for our finite element formulation

ϕ
the solution of the dual problem

e
the error of our approximate solution, i.e. (U − u)

J
the Jacobian of f in eq. (2.1)

R
the residual, i.e. (f(U, ·) − U̇)

kij

the size of the j:th timestep for component i, i.e. the length of the interval
Iij
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Cq, C̃q

numerical constants appearing in the error estimates

R
the discrete residual, i.e. the residual of the discrete equations obtained
from the finite element formulation of the continuous problem

si

the stability function for component i, a function obtained from the so-
lution of the dual problem, describing the local stability properties for
component i

Si

the stability factor for component i, a number obtained from the solu-
tion of the dual problem, describing the the global stability properties
for component i

TOL
the tolerance, i.e. a beforehand specified upper bound for the error of the
solution
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B.1 Introduction

The Tanganyika library is a multi-adaptive solver of initial value problems for
ordinary differential equations. The method used for solving the equations is
a variant of the cG(q), q = 1, 2, 3, finite element method.
The solver is adaptive in the sense that the size of the timesteps is chosen

small enough to give an error smaller than the given tolerance, equidistributing
the error onto the different intervals. The solver is multi-adaptive in the sense
that the timesteps are chosen individually for the different components.
For further details on the solver, download the report A Multi-Adaptive

ODE-Solver from

http://www.dd.chalmers.se/˜f95logg/Tanganyika/

The Tanganyika X-interface, Antananarive, is just that, an X-windows in-
terface for the Tanganyika Library.

B.2 Download

To download the Tanganyika library and X-interface, goto

http://www.dd.chalmers.se/˜f95logg/Tanganyika/ ,

click the link named Download and follow further instructions on this page.
You will then receive the whole package, containing everything you need

– almost. In addition you must also have GTK, the Gimp ToolKit, installed on
your system. (GTK is used by the X-interface for drawing the buttons.) If you
just want to use the library and if you can do without the buttons, you don’t
need GTK. However, if you do want the X-interface and you don’t have GTK,
download GTK from

http://www.gtk.org/

and install it according to the instructions.

B.3 Installation

If you haven’t realized that until now, you should be on a Unix system (Linux,
SunOS, Solaris,. . . ). For the following instructions, it is assumed that com-
mands are typed to a shell ( /bin/bash , /bin/sh , /bin/tcsh , . . . ), i.e. prob-
ably in an xterm. Commands are written as
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>> command

Note that you shouldn’t type the ’>> ’! Oh well, you probably know all this
but just in case you’re one of our sysadmins at dd.chalmers.se . . . ; )

1. Unpacking. The first thing you need to do is to unpack the Tanganyika
source code. To do this, type

>> unzip tanganyika-1.0.zip

or the corresponding command for uncompression if you choose to down-
load another format.

This will create a directory (with a couple of sub-directories) named

Tanganyika-1.0/

2. Configuring. Edit the file defs in the Tanganyika-1.0 library for the
variables to match your system. It should probably look something like
this:

CC =g++
LINK =g++

INCLUDE_PATH =-I/usr/include -I/usr/include/g++
LIBRARY_PATH =-L/usr/lib

as it does on my Linux 2.0 or

CC =g++
LINK =g++

INCLUDE_PATH =-I/opt/gnu/include
LIBRARY_PATH =-L/opt/gnu/lib -R/opt/gnu/lib

as it does on Sun Solaris 2.6 at dd.chalmers.se .

3. Compiling. Compile the library and the X-interface by typing

>> make
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in the Tanganyika-1.0/ directory. The library and the X-interface will
now compile. (If not, something went wrong and hopefully you know
how to deal with it.)

This will also generate the file .antananariverc in your home direc-
tory.

4. Running the demo. Check if you managed to compile the library cor-
rectly by typing

>> ./demo

in the Tanganyika-1.0/bin/ directory. This should result in some text
output ending with something like

Message: Computing error estimate...
Message: ...done!
Message: Error estimate: 7.526e-04 <= TOL = 1.000e-03

Message: Error estimate small enough, so I’m done.
Message: Saving...
Message: ...done!

and data stored in the file tst.data , together with a MATLAB .m file.

You may also want to run the X-interface by typing

>> ./antananarive

in the same directory.

5. Completing the Installation. Complete the installation by putting the
generated files wherever you want them. Youmay want to do the follow-
ing (assuming the current directory is the Tanganyika-1.0/ directory):

• Place the X-interface. Type e.g.
>> cp bin/antananarive /usr/local/bin

or

>> cp bin/antananarive /usr/bin

• Place the library header file. Type e.g.
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>> cp include/tanganyika.h /usr/include

• Place the library. Type e.g.
>> cp lib/libtanganyika.a /usr/lib

Notice that you probably cannot do this otherwise than as superuser
(root)!

B.4 The Tanganyika Library

This is a tutorial for the Tanganyika library, version 1.0.

B.4.1 What it does

This library provides functions for solving initial value problems for systems
of ordinary differential equations. The method used is a multi-adaptive finite
element method, which is described in detail in the report A Multi-Adaptive
ODE-solver.

B.4.2 How to use it

In your C(++) program, include the library by doing

#include <tanganyika.h>

What will then be included is the following:

#ifndef TANGANYIKA_H
#define TANGANYIKA_H

#define TAN_METHOD_CG1 1
#define TAN_METHOD_CG2 2
#define TAN_METHOD_CG3 3

#define TAN_OUTPUT_DEVNULL 0
#define TAN_OUTPUT_COUT 1
#define TAN_OUTPUT_CERR 2
#define TAN_OUTPUT_COM 3

#define TAN_FORWARD_PROBLEM 1
#define TAN_DUAL_PROBLEM 2
#define TAN_ERROR_ESTIMATE 3

bool InitializeSolution (double * dInitialData,
double dStartTime,
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double dEndTime,
double dTolerance,
double ( * fFunction)
(double * U, double t, int iIndex),
int * iMethods,
int iSizeOfSystem,
int iMessageOutput,
void ( * Progress) (double dProgress),
bool bErrorEstimation);

void ClearSolution();
bool Solve ();
bool Save(const char * cFileName);

#endif

What the different functions do should be quite clear from their names.
Below follows a description of the different functions.

B.4.3 InitializeSolution()

Use this function to tell the library what to solve. The data passed to this func-
tion are described below.

1. dInitialData should be a valid pointer to a block of doubles, specify-
ing the initial data for the problem, i.e. e.g.

double * dInitialData = new double[2];

dInitialData[0] = 0.0;
dInitialData[1] = 1.0;

2. dStartTime should be a double specifying the time, t, at the beginning
of the solution. (You probably want to pass 0 for this argument.)

3. dEndTime should be a double specifying the time, t, at the end of the
solution, such as e.g. 10 .

4. dTolerance should be a double specifying the tolerance for the l2-norm
of the error at the end of the solution. The library will try to solve the
equations with an error that is smaller than this tolerance.

5. fFunction should be a pointer to a function specifying the equations,
being
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u̇(t) = f(u, t), u(t) ∈ R
N , (B.1)

i.e. e.g.

double f(double * U, double t, int iIndex)
{

switch(iIndex){
case 0:

return ( U[1] );
case 1:

return ( sqrt(U[1]) + U[0] );
default:

return 0.0;
}

}

In this example, the name of the function (that must be declared with the
parameter list as above) is f , so the reference that should be passed to
InitializeSolution() is simply the name of the function, i.e. f .

6. iMethods should be a valid pointer to a block of ints, specifying the
methods to be used for the different components. Valid values are

TAN METHODCG1,
TAN METHODCG2and
TAN METHODCG3.

7. iSizeOfSystem should be an integer specifying the size of the system,
i.e. the number of equations.

8. iMessageOutput should be an integer specifying the desired type of
output from the library during solution. Valid values are

TAN OUTPUTDEVNULL,
TAN OUTPUTCOUT,
TAN OUTPUTCERR,
TAN OUTPUTCOM.

These will set the adress of output from the program.
TAN OUTPUTDEVNULLmeans no output will be written.
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TAN OUTPUTCOUTmeans output will be to standard output.
TAN OUTPUTCERRmeans output will be to standard error.
TAN OUTPUTCOMmeans output will be to standard output, in a special
format that may be interpreted by e.g. the Tanganyika X-interface. With
this output set, the current status of the program will be written to stan-
dard output as

STAT iStatus ,

where iStatus is one of

TAN FORWARDPROBLEM,
TAN DUALPROBLEMor
TAN ERRORESTIMATE,

indicating what is going on.

9. Progress should be a pointer to a function that will be passed the
progress of the computation, the progress being a number between 0 and
1. This might be useful for updating e.g. progress bars. (The Tanganyika
X-interface does not use this for updating the progress bars. Instead the
progress is parsed from the output.)

The function should be declared as

void FunctionName(double dProgress)
{

// Code goes here
}

10. bErrorEstimation should be true or false , telling whether or not
an error estimate should be computed. If false , no dual problem will
be solved and the given tolerance will only be nominal in the sense that it
won’t (necessarily) be close to the true error. However, a smaller nominal
tolerance will (probably) mean a smaller error.

InitializeSolution() will return true upon successful initialization
of the solution and false if something went wrong, i.e. if e.g. the data passed
was illegal. (A negative tolerance or whatever.)

B.4.4 ClearSolution()

Call this function to free all memory used by the library.

11



AMulti-Adaptive ODE-Solver

B.4.5 Solve()

Call this function to solve the equations, after having done
InitializeSolution() . The return value will be true or false depend-
ing on whether or not the computation was successful.

B.4.6 Save()

Call this function to save data from the computation in MATLAB format. This
will generate two files. One filename.m file and one filename.data file,
where filename is the filepath specified by cFileName . The first of these
is called from MATLAB by typing the name of the file (excluding the .m ex-
tension), which will load the data stored in the second one into the proper
variables.

B.5 The Tanganyika X-interface, Antananarive

This is a tutorial for Antananarive, the Tanganyika X-interface, version 1.0.

B.5.1 Introduction - What is this program anyway?

This program is an interface for the Tanganyika multi-adaptive ODE-solver li-
brary. All it does is to call the library functions to generate a program from
given user data. This program is then compiled using g++ or whichever com-
piler you prefer. (This may be changed in the “settings...” menu or in the
.antananariverc file in your home directory.)

The compiled program will output data to files (file path specified in the
”options...” menu) in Matlab format. Two files will be generated; one .data
and one .m . Data from the solution is stored (ASCII) in the first of these files.
Typing the filename in Matlab will call the .m-file, reading all data properly
from the .data -file.

The compiled programmay be run either from this program (the Tanganyika
X-interface, version 1.0) or manually from a shell. If you run the compiled pro-
gram from this program, you get the benefit of parsed output as messages and
progress bars. (The Tanganyika X-interface will read output from the gener-
ated program at standard output.)
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B.5.2 Using the program - Step by Step

All you have to do is to press

open - (edit) - (save) - make - solve

in that order. Below follows a more detailed description.

1. Open a .xt -file, specifying the system of ordinary differential equations,
by pressing the ”Open...” button and then choosing a .xt -file. (The suffix
is not really important so there may be xt-files without the .xt -suffix.)

2. Edit the equations by pressing the ”edit” button. The contents of the
opened file will then be editable in the text window. Of course you don’t
have to edit the file if you don’t wanna change anything, but remember
to save the file before moving on to compiling the program, as the pro-
gram will be generated from the file and not from the contents of the text
window. For information on the syntax, see the section below, ”.xt -file
syntax”.

3. Save the changes if you made any by pressing the ”save...” button and
then typing/choosing a file name. Note that the .xt -suffix will not be
added automatically.

4. Generate the program and compile it by pressing the ”make” button. A
.C -file will then be generated in the working directory specified in the
”settings...” menu. This file is then compiled and the output program
will be filename.bin , also in the working directory.

5. Solve the equations by pressing the ”solve” button. This will run the
generated program and parse its output to update the progress bars and
typing status of the solution. By the way, the upper of the two progress
bars is for the forward solution (the solution of the equations you speci-
fied) and the one below is for the solution of the dual (backward) problem
that is solved to estimate the error of the solution.

B.5.3 Settings

Working directory
This is where the .C and .bin files will be generated.
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Compiler
This is the name of the (C++) compiler present in your system.

CFLAGS
These flags are passed to the compiler, specifying e.g. code optimizations.

INC PATH
This is where the compiler will look for include files.

LIB PATH
This is where the compiler will look for libraries (lib * -files).

B.5.4 Options

Start Time
Well,..., this is the start time, the value of t at the beginning.

End Time
And this would then be T , the value of t at the end of the solution.

Tolerance
This is the value of the tolerance for the l2-norm error of the solution at
t = T .

Output filename
This is the file in the current working directory where the generated pro-
gram will store the solution.

B.5.5 .xt -file syntax

• You have to specify four things:
The size of the system: N = ?
Initial data: U[i] = ?
Equations: F[i] = ?
Methods: M[i] = ?

• All data must end with a semicolon (; ).

• %at the beginning of a line means a comment, i.e. this line will not be
interpreted.

• Indices begin with 0!
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• Specification of equations must be C syntax. You may thus not write

F[5] = U[2] * U[1]ˆ2 + sqrt(abs(U[3]));

Instead you must write

F[5] = U[2] * pow(U[1],2) + sqrt(fabs(U[3]));

• Methods are specified as integers 1, 2 or 3 for

cG(1): continuous first-order Galerkin,
cG(2): continuous second-order Galerkin and
cG(3): continuous third-order Galerkin,

respectively.

Here follows a simple example (for a simple harmonic oscillator):

%
% This is an example
%

% size of system
N = 2;

% initial data
U[0] = 0;
U[1] = 1;

% equations
F[0] = U[1];
F[1] = -U[0];

% methods
M[0] = 1;
M[1] = 2;

B.5.6 Download, Updates, Further Information

This program is available for download at
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http://www.dd.chalmers.se/˜f95logg/Tanganyika/

together with the Tanganyika library. At this site is also available in postscript
format the report A Multi-Adaptive ODE-Solver.
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B.6 GNU General Public License

These programs (both the Tanganyika library 1.0 and the Tanganyika X-interface)
are distributed under the GNU General Public license, GPL, included below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copie s
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guar antee your freedom to share and change
free software--to make sure the software is free for all its u sers. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software i s covered by the GNU Library General
Public License instead.) You can apply it to your programs, t oo.

When we speak of free software, we are referring to freedom, n ot price. Our General Public Licenses
are designed to make sure that you have the freedom to distrib ute copies of free software (and
charge for this service if you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free program s; and that you know you can do
these things.

To protect your rights, we need to make restrictions that for bid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions trans late to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whet her gratis or for a fee, you must give
the recipients all the rights that you have. You must make sur e that they, too, receive or can get the
source code. And you must show them these terms so they know th eir rights.

We protect your rights with two steps: (1) copyright the soft ware, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make c ertain that everyone understands that
there is no warranty for this free software. If the software i s modified by someone else and passed
on, we want its recipients to know that what they have is not th e original, so that any problems
introduced by others will not reflect on the original author s’ reputations.

Finally, any free program is threatened constantly by softw are patents. We wish to avoid the danger
that redistributors of a free program will individually obt ain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear t hat any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which con tains a notice placed by the
copyright holder saying it may be distributed under the term s of this General Public License. The
"Program", below, refers to any such program or work, and a "w ork based on the Program" means
either the Program or any derivative work under copyright la w: that is to say, a work containing the
Program or a portion of it, either verbatim or with modificat ions and/or translated into another
language. (Hereinafter, translation is included without l imitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modificat ion are not covered by this License; they are
outside its scope. The act of running the Program is not restr icted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program ’s source code as you receive it, in
any medium, provided that you conspicuously and appropriat ely publish on each copy an
appropriate copyright notice and disclaimer of warranty; k eep intact all the notices that refer to this
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License and to the absence of any warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a cop y, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any port ion of it, thus forming a work
based on the Program, and copy and distribute such modificat ions or work under the terms of
Section 1 above, provided that you also meet all of these cond itions:

a) You must cause the modified files to carry prominent notic es stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, tha t in whole or in part contains or
is derived from the Program or any part thereof, to be license d as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interact ively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice an d a notice that there is no warranty
(or else, saying that you provide a warranty) and that users m ay redistribute the program under
these conditions, and telling the user how to view a copy of th is License. (Exception: if the
Program itself is interactive but does not normally print su ch an announcement, your work
based on the Program is not required to print an announcement .)

These requirements apply to the modified work as a whole. If i dentifiable sections of that work are
not derived from the Program, and can be reasonably consider ed independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sect ions as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire w hole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or co ntest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on th e Program with the Program (or with
a work based on the Program) on a volume of a storage or distrib ution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on i t, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above pr ovided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-re adable source code, which must
be distributed under the terms of Sections 1 and 2 above on a me dium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing sourc e distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for softwa re interchange; or,

c) Accompany it with the information you received as to the of fer to distribute corresponding
source code. (This alternative is allowed only for noncomme rcial distribution and only if you
received the program in object code or executable form with s uch an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the sourc e code for all modules it contains,
plus any associated interface definition files, plus the sc ripts used to control compilation and
installation of the executable. However, as a special excep tion, the source code distributed need not
include anything that is normally distributed (in either so urce or binary form) with the major
components (compiler, kernel, and so on) of the operating sy stem on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offer ing access to copy from a designated
place, then offering equivalent access to copy the source co de from the same place counts as
distribution of the source code, even though third parties a re not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Pr ogram except as expressly provided
under this License. Any attempt otherwise to copy, modify, s ublicense or distribute the Program is
void, and will automatically terminate your rights under th is License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.
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5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefor e, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing o r modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based o n the Program), the recipient
automatically receives a license from the original licenso r to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are n ot responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of pa tent infringement or for any other
reason (not limited to patent issues), conditions are impos ed on you (whether by court order,
agreement or otherwise) that contradict the conditions of t his License, they do not excuse you from
the conditions of this License. If you cannot distribute so a s to satisfy simultaneously your
obligations under this License and any other pertinent obli gations, then as a consequence you may
not distribute the Program at all. For example, if a patent li cense would not permit royalty-free
redistribution of the Program by all those who receive copie s directly or indirectly through you,
then the only way you could satisfy both it and this License wo uld be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceab le under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this sectio n has the sole purpose of protecting the
integrity of the free software distribution system, which i s implemented by public license practices.
Many people have made generous contributions to the wide ran ge of software distributed through
that system in reliance on consistent application of that sy stem; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is bel ieved to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricte d in certain countries either by patents or
by copyrighted interfaces, the original copyright holder w ho places the Program under this License
may add an explicit geographical distribution limitation e xcluding those countries, so that
distribution is permitted only in or among countries not thu s excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or n ew versions of the General Public
License from time to time. Such new versions will be similar i n spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If th e Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for perm ission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software F oundation; we sometimes make
exceptions for this. Our decision will be guided by the two go als of preserving the free status of all
derivatives of our free software and of promoting the sharin g and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDETHE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TOIN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATABEING RENDERED
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INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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