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Summary We study the performance of an algebraic multigrid (AMG) preconditioner
combined with conjugate gradient-type methods for the pressure equation in the presence
of strong discontinuity of the permeability. Such discontinuities are problematic for iterative
solvers, due to the dependence of the condition number of the discretized linear system of
equations on the magnitude of the discontinuities. We identify two separate causes of such
ill-conditioning, and assess how well the AMG preconditioner handles these. For the more
di�cult problems, we discuss techniques to modify the model to allow iterative solutions.

Introduction

Single-phase, incompressible �uid �ow in porous media is described by the equation

∇ · (Λ∇p) = q, (1)

where p is the �uid pressure, Λ is the mobility of the porous medium, and q is a source
term modeling injection or extraction of the �uid as well as the e�ect of body forces,
i.e., gravity. In general, Λ is a tensor re�ecting the medium's ability to transport �uid
in di�erent space directions, and is proportional to the permeability of the porous space.
The permeability, and hence Λ, may face signi�cant jumps of several orders of magnitude
in geological applications. This feature may have severe impact on the performance of
numerical methods for solving Equation (1), which is the topic we investigate in this
paper.

We shall assume that Equation (1) is discretized by a Galerkin �nite element method
with bilinear elements and n nodes in total. Furthermore, we let ε denote the typical
jump in Λ, meaning that we basically consider two types of geological media: one with
scaled permeability of order unity and one with scaled permeability ε.

The impact of the jump ε on the accuracy of the �nite element discretization is not critical
as long as the discontinuities are aligned with the element boundaries, which we assume
in the following [7, ch. 2.8.2]. The critical numerical impact of discontinuities in Λ is then
on the solution of the linear system Ax = b arising from Equation (1). The condition
number κ of the coe�cient matrix A will behave as κ ∼ ε−1n2/d, where d is the number
of space dimensions [7, ch. 2.10.3]. The number of iterations in iterative methods, such as
the Conjugate Gradient (CG) method, for solving Ax = b typically depends on

√
κ. By

applying a preconditioner M to the linear system, i.e., by solving M−1Ax = M−1b one can
reduce the condition number and obtain faster convergence. Using a multilevel method
as preconditioner, the condition number of the coe�cient matrix in the preconditioned
system can be made independent of n, meaning that the work associated with the iteration
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method does not increase faster than the number of unknowns in the system [6, ch. 10].
This property is important when dealing with large-scale computations.

In problems with discontinuities of size ε, the condition number of A is proportional to
ε−1, as pointed out above. To our knowledge, preconditioning techniques are not known
to remove this unfortunate dependence on ε. However, Cai et al. [1] showed that the
preconditioned Conjugate Gradient method may be insensitive to small ε values if one
ensures that the iterations are performed in a suitable subspace, which can be reached
through a starting iterate that corresponds to a harmonic function (say a constant) in
the part of the domain where the permeability is small (ε). As preconditioner, Cai et
al. applied a constant-coe�cient Laplace operator (an FFT-based solution method).

The algebraic multigrid (AMG) method has recently attracted quite some interest as
an e�cient and widely applicable preconditioner. A di�culty with standard geometric
multigrid is that it needs a hierarchy of coarse grids. This can be di�cult to construct
in problems with complicated geometries and many internal layers of materials, which is
typically the case in geological applications of Equation (1). AMG is then a promising
alternative. We assume that AMG can remove the dependence of the number of iterations
on n, but how AMG treats the dependence on ε is an open question.

There are two principal di�culties with low-permeable zones in geological applications.
One is the jump in Λ and its e�ect on linear solvers as described above. Another is that
a low-permeable zone may isolate a higher-permeable zone from the Dirichlet boundary
conditions. In the limit ε → 0 it then acts as an impermeable boundary, dividing the
original problem into two subproblems. In this limit, one of the subproblems approaches
a homogeneous Neumann problem (with Λ∇p · n = 0 on the boundary). This Neumann
problem is singular up to an additive constant, which may cause problems in the linear
solver. It is known, however, that the choice of initial iterate in practice determines this
constant when the linear system is solved by the conjugate gradient method.

The present paper investigates the convergence of an AMG-preconditioned conjugate
gradient-type method applied to the linear system arising from Equation (1). Our aim is to
extend common knowledge from earlier work by investigating a series of cases. We divide
the cases into two main categories: (i) compact low-permeable zones which the �uid can
�ow around, and (ii) a low-permeable layer spanning the complete domain in horizontal
direction, or otherwise isolating a high-permeable region. Case (ii) may arise in geological
applications and has the danger of leading to a not well-posed mathematical problem in
the limit ε→ 0. How does the e�ciency of the iterative method depend on ε in this case?
And how does it depend on the degree of anisotropy in Λ? Also, in more complicated
problems Equation (1) is coupled to other equations and the coe�cient matrix is likely to
become non-symmetric so that the Conjugate Gradient method cannot be applied. How
do methods for non-symmetric systems, such as the BiCGStab and GMRES methods,
behave compared to the Conjugate Gradient method in our present test problem?

Numerical experiments

The simulator is implemented in Di�pack [7], which is an object-oriented C++ �nite
element framework. Di�pack has available a number of well-tested iterative solvers which
we have modi�ed to suit our needs, for example to output local convergence results and
to recalculate the residual, which is important because the orthogonality (in A-space) of
the residual is easily lost when operating near the limits of machine precision. The latter



modi�cation is called the restarted or cyclic CG (or BiCGStab) method [6]. We have also
interfaced the Di�pack linear algebra operations with the ML [5] algebraic multigrid /
smoothed aggregation library to use as preconditioner, and to the SuperLU [3] sparse
direct solver for providing more exact solutions, independently of convergence criteria,
when needed.

For eigenvalue calculations, we have employed the eig function of Octave [4]. We have
found that for extremely small eigenvalues (near machine precision) the results are un-
reliable, hence we do not report the exact value of eigenvalues below 10−14 in the tables
that follow.

In the convergence tests, we solve (unless explicitly noted otherwise) the equivalent prob-
lem Ax = 0, instead of Ax = b, with a random initial iterate x0. Convergence of linear
solvers is in general independent of the right-hand side b as long as the initial guess con-
tains all eigenvectors of A, so the convergence measurements are valid even if the equation
is di�erent from the original (see for example [6, ch. 3.4]).1 With this choice of right-hand
side, the error norm ‖ek‖L2 is trivially available, since ek = xk. The convergence criterion
used when not otherwise speci�ed is ‖ek‖L2 < 10−20‖e0‖L2 .

Case (i) � Compact subdomains

Many applications deal with compact low-permeable subdomains, where by compact we
mean that the low-permeable region does not isolate any high-permeable region from the
Dirichlet boundary conditions. Such problems can be dealt with by performing a domain
splitting procedure, where the low-permeable regions are excluded from the domain. As-
suming that ε is su�ciently small, the pressure equation Equation (1) can be solved on
just the high-permeable region, with a no-�ow condition on the interfaces to the excluded
subdomains [8, 9]. Finally, if the pressure solution inside the low-permeable subdomains is
required, the pressure equation can then be solved on just the low-permeable subdomains,
using the high-permeable solution as boundary conditions. As shown in [8], the error intro-
duced in the �ow region by this procedure is on the order of ε, and thus quite acceptable
when ε is small. However, the domain splitting increases implementation complexity, par-
ticularly when it is required to handle unstructured grids of highly variable permeability.
As an alternative to domain splitting, we therefore look at how the whole-domain problem
is handled by AMG-preconditioned conjugate gradient-type solvers.

Figure 1 shows three di�erent cases where low-permeable subdomains are embedded in
a high-permeable domain. In case (a), a thin layer (of one element thickness) extends
almost across the domain, with a small gap. In case (b), the layer is thicker, and in case
(c) the number of thin layers is increased to 4, in e�ect increasing the distance from the
bottom of the domain to the Dirichlet conditions at the top.

The numerical results from these three cases are shown in Table 1, for ε varying from
10−1 to 10−20. We notice that for the two thin cases, (a) and (c), the condition number
of the unpreconditioned coe�cient matrix A is bounded. This can be explained by the
fact that every node in the low-permeable subdomains Ωε is in contact with the high-
permeable region Ω0. Still, the condition number grows slowly as the e�ective distance to
the Dirichlet boundary increases. For the thick layer, case (b), the condition number of
A is not bounded as ε→ 0 (we shall look closer at this behavior in the following section),

1This may not always hold in inexact arithmetic.



Ωε

Ω0

(a)

Ω0

Ωε

(b)

Ω0

Ωε1

Ωε2

Ωε3

Ωε4

(c)

Figure 1: Three cases with compact low-permeable subdomains Ωε, of varying number and
thickness. Dirichlet boundary conditions are in all cases applied to the top of the domain,
while the other boundaries have Neumann conditions. The node positions are shown as
circles.

but the AMG preconditioner is highly e�ective for this case, and all three cases converge
at a high rate.

These tests show that unmodi�ed AMG-preconditioned conjugate gradient-type methods
are e�ective for handling compact low-permeable regions, and have the advantage of not
requiring splitting of the domain and associated regridding.

Case (ii) � Non-compact (isolating) subdomains

A di�erent situation arises when the low-permeable zone stretches across the whole do-
main, or a high-permeable region is embedded within a low-permeable zone. In the limit
of ε → 0, the problem in fact becomes unphysical, and the inside pressure is undeter-
mined. For ε > 0, however, a unique solution exists, but the extreme ill-conditioning is a
challenge to iterative solvers. Figure 2 shows three examples where such nearly isolated
high-permeable subdomains are present. These are variations of the test cases presented
previously, where isolated high-permeable regions are created by extending the layer across
the domain in (a) and (c), and by embedding an additional high-permeable region in (b).
The isolated high-permeable regions are marked Ωi>0.

The results of solving these cases are shown in Table 2. The contrast from the compact



Table 1: Results for compact low-permeable domains. The 11× 11 grid shown in Figure 1
is used. The logarithm of the condition number κ is compared for varying ε, along with
the number of iterations required by di�erent iterative solvers. Condition numbers below
10−14 are not reported exactly.

log κ(A) log κ(M−1A) CG it. BCGS it. GMRES(10) it.

ε (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

10−1 2.6 2.7 2.8 .15 .12 .35 14 14 18 8 9 12 20 20 30
10−2 3.0 3.1 3.5 .41 .14 .94 16 15 24 10 9 16 20 20 50
10−4 3.1 4.9 3.8 .49 .14 1.2 16 15 26 10 10 18 20 20 60
10−8 3.1 8.9 3.8 .49 .14 1.2 16 16 26 11 11 19 20 20 60
10−12 3.1 13.9 3.8 .49 .14 1.2 16 17 26 11 12 19 20 20 60
10−16 3.1 >14 3.8 .49 .14 1.2 16 19 26 11 13 19 20 20 60
10−20 3.1 >14 3.8 .49 .14 1.2 16 18 26 11 12 18 20 20 60

cases in the previous section is stark: Not only is the condition number of A unbounded as
ε→ 0 in all three cases (a)�(c), but the preconditioner is ine�ective in curing it. Neverthe-
less, the Conjugate Gradient method is able to handle many of these quite ill-conditioned
matrices e�ectively, until the curse of inexact arithmetic takes hold. BiCGStab performs
less well. A look at the eigenvalue distributions, shown in Figure 3, is illuminating.

We consider �rst the eigenvalues for the compact subdomains. The eigenvalues of the
original operator A is shown as a solid red line. In cases (a) and (c), these eigenvalues are
nearly independent of ε. This is to be expected, since there are no nodes in these cases
that are surrounded by a low-permeable region. In case (b), however, 27 eigenvalues are
of order ε. This is exactly the number of nodes (9× 3) that are inside the low-permeable
region Ωε. This case demonstrates the e�ectiveness of the AMG preconditioner for this
class of problems: The problematic eigenvalues are perfectly canceled in M−1A, shown in
the �gure as a solid green line.

Next we consider the cases of non-compact subdomains, where we have seen that the
preconditioned solvers fail to converge for small ε. These are shown as dotted lines; red
for A, green for M−1A. In case (a), A has one eigenvalue of order ε. In case (c) it has
four, one for each isolated high-permeable region. Neither of these are cancelled in M−1A.
Furthermore, of the 12 problematic eigenvalues in case (b), 11 are caused by nodes inside
the low-permeable domain Ωε, and one by the embedded high-permeable domain Ω1.
This count has been veri�ed by running the experiment at di�erent resolutions. The
preconditioned operator, however, has exactly one eigenvalue of order ε. This con�rms
that there are indeed two separate issues: One is that of nodes inside low-permeable
regions, which is handled perfectly well by the AMG operator, while the other is that of
ill-posed Neumann subproblems on isolated high-permeable regions, which is not.

The Conjugate Gradient method is known to handle a small number of extreme eigenvalues
well, a phenomenon known as superconvergence [6, ch. 9.43], which explains why it is
still rather e�ective for moderate values of ε. The non-symmetric variants BiCGStab and
GMRES, meanwhile, seem to handle a single runaway eigenvalue well, but get into trouble
when there is more than one.

It is interesting to note that even in the cases where CG/BiCGStab does not converge in
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Figure 2: Three test cases where high-permeable subdomains Ωi>0 are isolated from the
Dirichlet boundary conditions by one or more low-permeable subdomains Ωε. In the limit
of ε = 0, these problems are ill-posed, but a unique solution exists for any ε > 0. All cases
have Dirichlet conditions on the top boundary. The node positions are shown as circles.

the full domain, it does exhibit fast local convergence in the connected high-permeable
region Ω0. Furthermore, in the non-connected high-permeable regions, Ωi>0, the computed
solution is constant (although not the correct constant). Local convergence is actually
signi�cantly faster in the cases where global convergence fails, but we have no cogent
explanation for this observation.

The error

So far we have looked at the properties � and thus the solvability � of the coe�cient
matrix from a solution-independent point of view. Assuming that the preconditioned
coe�cient matrix has a solvable structure (eigenvalue distribution), we now look at the
actual error in the solution. As the jumps in Λ approaches machine precision,2 we can no
longer have con�dence that even a direct solver can give an accurate solution. Another
di�culty is that of satisfying a residual-based convergence criterion for iterative solvers.
In the energy norm, values inside low-permeable zones is weighted by ε, meaning that the

2We can de�ne the machine precision limit as the ratio at which a number y becomes additive zero
with respect to a �oating-point number x, such that x + y = x. In double precision, this happens when
y/x ≤ 2−53 ≈ 1.1 · 10−16.
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Figure 3: The eigenvalues of cases (a)�(c) (top to bottom), ordered by magnitude. The x
axis is thus the index of the eigenvalue. Two di�erent values of ε are shown (left/right).
The eigenvalues of the original operator A are shown in red (squares), the preconditioned
operator M−1A in green (circles). The compact cases (from Figure 1) are solid lines (�lled
symbols), non-compact (from Figure 2) are dotted lines (open symbols).



Table 2: Results for low-permeable domains which isolate high-permeable subdomains
from the Dirichlet boundary. The 11× 11 grid shown in Figure 1 is used. The logarithm
of the condition number κ is compared for varying ε, along with the number of iterations
required by di�erent iterative solvers. Non-convergence is denoted as ���, and condition
numbers below 10−14 are not reported exactly.

log κ(A) log κ(M−1A) CG it. BCGS it. GMRES(10)

ε (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

10−1 2.7 2.7 2.9 .20 .44 .42 15 17 19 9 11 13 20 20 30
10−2 3.6 3.0 3.9 .94 1.2 1.3 17 22 31 13 14 24 20 30 100
10−4 5.6 4.8 5.9 2.9 3.3 3.3 20 24 46 13 18 53 30 40 550
10−8 9.6 8.8 9.9 6.9 7.3 7.3 31 38 120 15 20 � 110 130 �
10−12 13.6 12.8 13.9 10.9 11.3 11.3 77 87 387 28 34 � � � �
10−16 >14 >14 >14 >14 >14 >14 � � � � � � � � �

L2-error in these regions may be roughly ε−1 times greater than the error in energy norm.
This severely retards our ability to recognize when convergence has been achieved.

We have looked at two variations of the simplest non-compact case, (ii-a), which is never-
theless extremely hard to solve accurately for the large isolated region. In the case denoted
�Dir-Neu�, an in�ow boundary condition is applied to the bottom edge, while the top edge
has prescribed pressure. When ε becomes small, this is an unstable (or sensitive) problem:
A �ux of the order of ε induces a pressure of the order of unity. The other case, denoted
�Dir-Dir�, is the same physical problem but mirrored along the bottom so that it extends
to twice the size in the vertical direction, with one barrier near the top and one barrier near
the bottom. Prescribed pressure is applied to both the top and the bottom boundaries,
such that a �ux equivalent to the Dir-Neu case is created. In both cases we compare the
solution found by a direct solver and the solution found by CG to the analytical solution.
BiCGStab is not included in the table, but was found to behave substantially similar to
CG.

For the Dir-Neu case, we set p = 0 at the top boundary and Λ∇p ·n = 10ε at the bottom
boundary. The analytical solution is then

p̂N(z; ε) =


1 + (9− 10z)ε 0.0 ≤ z ≤ 0.8,
ε+ (9− 10z) 0.8 < z ≤ 0.9,
(10− 10z)ε 0.9 < z ≤ 1.0.

(2)

The Dir-Dir case has prescribed pressure p = 2p̂N(0; ε) at the bottom boundary, and has
the analytical solution

p̂D(z; ε) =

{
p̂N(z; ε) z ≥ 0,
2p̂N(0; ε)− p̂N(−z; ε) z < 0.

(3)

Table 3 summarizes the present experiments. The direct solution degrades as we approach
10−16. So does the CG solution, but not worse than the direct one. In the Dir-Neu case,
the residual convergence is highly dependent on the initial iterate. The error, however, is
reduced at a similar rate for both choices of initial iterate.



Table 3: The error compared to the analytical solution, for a direct solver and for an
AMG-preconditioned Conjugate Gradient solver. For the latter, random and zero initial
iterate x0 are considered. Logarithm of the error is shown, along with the number of
iterations of the iterative solver. Non-convergence is denoted as ���.

Dir-Dir Dir-Neu

LU CG, x0 = 0 CG, x0 = rnd LU CG, x0 = 0 CG, x0 = rnd

ε log‖e‖L2 log‖e‖L2 it. log‖e‖L2 it. log‖e‖L2 log‖e‖L2 it. log‖e‖L2 it.

10−4 −11.0 −10.9 13 −11.1 14 −10.9 −10.5 11 −11.1 13
10−8 −7.1 −6.9 16 −7.0 16 −6.9 � � −7.2 15
10−12 −3.5 −3.0 20 −2.9 20 −2.9 � � −2.9 18
10−13 −2.0 −1.9 21 −2.0 21 −1.9 � � −2.0 19
10−14 −2.1 −.76 22 −.06 11 −.92 � � −.96 20
10−15 2.6 −.07 10 −.06 11 1.7 � � −.05 10
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Figure 4: LU (open symbols) and CG (�lled symbols) solutions of the Dir-Dir problem
for two values of ε. The two analytical solutions (solid line) are indistinguishable. When
ε . 10−12, the pressure constant in the central region in e�ect becomes undetermined.



We conclude that for problems with compact low-permeable regions, AMG-preconditioned
conjugate gradient-type methods are e�ective. The pressure inside the low-permeable
regions may or may not be accurate, but in either case the solver converges �ne and
any error in the pressure inside Ωε does not impact the �ow materially. For non-compact
regions, we have an unstable system which may have a large error in the embedded nearly
�pure Neumann� high-permeable regions (see for example Figure 4). Again, this has only
a negligible impact on �ow. An example of this is shown in Figure 5, where the pressure
distribution inside the (non-compact) low-permeable region does not change the �ow
at all. The main problem is then the impact it has on the convergence of the iterative
solver. One way to ameliorate the e�ect it has on convergence, if we assert that the exact
pressure solution is ill-de�ned and of little interest, is to impose a solution on it by way
of regularization.

One such scheme applies a small modi�cation to Equation (1), in order to stabilize it
when it would otherwise be ill-conditioned. The modi�ed equation is

∇ · (Λ∇p)− δp = q, (4)

where δ is a small parameter, possibly varying in space. The e�ect of this modi�cation
is to impose an additional restriction on an otherwise underdetermined problem, pulling
it towards the lowest-norm solution. We let δ be 10−5 in the isolated regions Ωi>0 and 0
outside, and look at the eigenvalue distribution of the preconditioned system in Table 4.
While the condition number of A is still unbounded for case (b), the preconditioner is
now e�ective in bounding the condition number of the problem, although at a rather high
value (on the order of δ−1). Comparing with Table 2, we see that this stabilizing term is
about equivalent, in terms of condition number, to limiting ε to 10−5�10−7, depending on
the number of isolated domains. However, we see that BiCGStab still struggles in case
(c), when there are multiple extreme eigenvalues, like we observed previously in Table 2.
By increasing δ we can make BiCGStab converge, at the cost of further loss of accuracy.

The two techniques � ε-limiting and regularization � have fundamentally di�erent goals:
With the former, we allow some extra �ow in order to stabilize (and thus get a reasonably
accurate approximation of) the pressure; with the latter, we sacri�ce the accuracy in
pressure inside the low-permeable regions in order not to disturb the �ow. A more drastic
way of achieving accurate �ow at the expense of pressure accuracy is to make the isolated
high-permeable regions less permeable, thus entering into the compact problem domain,
which we have seen is handled very well by the AMG preconditioner. Which approach is
preferable depends on the application.

Miscellaneous results

We have assumed convergence to be independent of the resolution n, owing to known
properties of the multigrid preconditioner. These properties may not hold, however, when
M ≈ ∇ · Λ∇, which we use here in order to remove the ε-dependence of the condition
number κ, instead of the more well-studied Laplace operator M∆ ≈ ∇2. There are also
questions of the in�uence of anisotropy, triangular elements, 3D problems, et cetera. While
the scope of this paper does not allow a full investigation of these questions, we have
gathered a number of suggestive results in Table 5. The main impression is that these
variants, while they may increase the condition number and iteration count, do so in
a limited way. (Note that the jump in condition number in case V is explained by the



Table 4: Results for the regularized equation, where δ = 10−5 is applied to the isolated
permeable region(s) Ωi>0.

log κ(A) log κ(M−1A) CG it. BCGS it.

ε (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

10−1 2.7 2.7 2.9 .20 .44 .06 15 17 19 9 11 13
10−2 3.6 3.0 3.9 .94 1.2 .42 17 22 31 10 14 25
10−4 5.6 4.8 5.9 3.9 3.2 3.3 19 24 49 12 17 59
10−8 7.7 8.5 7.9 5.0 6.4 6.5 31 37 81 15 21 �
10−12 7.7 12.5 7.9 5.0 6.4 6.6 56 29 94 14 20 �
10−16 7.7 >14 7.9 5.0 6.4 6.6 56 30 95 14 21 �
10−20 7.7 >14 7.9 5.0 6.4 6.6 47 37 100 16 19 �

Table 5: Results for miscellaneous variations of the compact case (i). I�the base case,
II�triangular elements, III�anisotropic in low-permeable region, Λx = 100Λy, IV�
anisotropic in high-permeable region, Λx = 100Λy, V�biquadratic elements with 2×
resolution, VI�5× resolution, VII�3D. In all cases, ε = 10−12.

log κ(A) log κ(M−1A) CG it. BCGS it.

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

I 3.1 13.9 3.8 .49 .14 1.2 16 17 26 11 12 20
II 3.3 13.2 4.1 .89 .41 1.4 19 18 33 19 11 27
III 3.1 12.1 3.8 .49 .80 1.3 17 28 26 10 20 21
IV 4.8 >14 4.9 2.0 1.8 2.1 54 50 63 40 35 50
V 12.7 13.7 12.5 1.1 1.0 1.4 30 35 28 18 22 19
VI 13.1 >14 >14 .62 .33 .33 18 22 33 12 13 20
VII 4.1 14.0 13.1 .50 .17 1.3 17 18 34 10 12 23

additional nodes inside the thin layers in (a) and (c), making these cases more similar to
case (b).) The only exception is when the high-permeable material is made anisotropic.
However, this happens already at ε = 1 (not shown in the table), i.e., even when the
permeability is constant. Anisotropy is a known di�cult case for multilevel methods,
which may be treated by techniques such as semicoarsening [10] or line-smoothing [2].
Hence, the main conclusions from previous sections remain unchanged, although the exact
limits of convergence may change.

Finally, we look at the result of setting the initial iterate to a harmonic function inside
the low-permeable regions. In [1], Cai et al. argue that a harmonic function inside the
low-permeable region stays in the subspace where it does not see the e�ect of ε, when
an inverse Laplace operator is used as preconditioner, and hence that convergence is
independent of ε as long as the starting iterate is chosen correctly. Table 6 shows the
convergence results for three di�erent choices of starting iterate, using unpreconditioned
CG, CG preconditioned with an inexact AMG inverse of the Laplace operator, and the
AMG approximation of the actual operator. We note that the unpreconditioned case
is insensitive to whether the starting iterate is random or constant, except in the case
where that constant is 0 (which is the correct solution). The AMG approximation of the



Table 6: Number of iterations to solve Ax = 0 to tolerance ‖e‖L2 < 10−10 for case (i-b).
Unpreconditioned CG, inexact Laplace-preconditioned CG, and CG preconditioned by
the inexact operator A are tested with di�erent starting iterates x0. These are: Random
everywhere; random in Ω0 and zero in Ωε (including boundary); and random on Ω0 and
a non-zero constant in Ωε.

None AMG/Laplace AMG

ε rnd rnd|0 rnd|C rnd rnd|0 rnd|C rnd rnd|0 rnd|C

10−1 81 80 81 25 22 22 8 8 8
10−2 132 125 129 34 31 31 9 8 9
10−4 227 185 227 49 43 43 9 9 9
10−8 376 267 373 77 65 65 10 10 10
10−12 552 51 551 106 91 91 12 11 12
10−16 727 51 725 132 114 112 11 11 13
10−20 901 52 899 161 138 138 10 12 13

actual operator, meanwhile, converges quickly whatever starting iterate is used. As for
the inexact Laplace operator, we see that it converges faster when a harmonic function is
used, but it is not fully independent of ε. This may be because the AMG Laplace inverse
is not a good enough approximation to keep the iterates con�ned to the desired subspace.

Conclusion

We have investigated the performance of conjugate gradient-type iterative solvers, pre-
conditioned by an algebraic multigrid method, on the pressure equation with highly dis-
continuous permeability. Our results show that this combination is very e�ective when
dealing with the common case of compact low-permeable subregions, relieving the need to
perform complicated domain splitting operations to deal with such regions numerically.
Furthermore, we show results for a class of problems which can not be handled by the do-
main splitting technique, namely that of high-permeable regions which are isolated from
the Dirichlet boundary by one or more low-permeable regions. This class of problems
causes signi�cant problems, both in accuracy and in convergence, as the permeability
jumps approach the limits of machine precision. We have brie�y discussed di�erent sta-
bilization schemes and compared their various trade-o�s. Depending on whether we are
primarily interested in accuracy in the �ow solution or in the pressure solution, di�erent
stabilization techniques are needed.

The �ndings in this paper are important for e�cient numerical solution of large-scale
porous media �ow problems, in particular because the tested challenging geometric con-
�gurations mimic features that are often encountered in real-world geological applications.
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(a) Pressure, compact case (i) (b) Pressure, non-compact case (ii)
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Figure 5: Pressure and �ow in and around a very nearly impermeable obstacle. The calcu-
lated solution of the thick-obstacle case, (i-b) and (ii-b) in �gures 1 and 2, for ε = 10−20,
is shown. The �ow is calculated from the relation v = −Λ∇p, and is indistinguishable for
the two cases.
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