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MULTISCALE MODELING OF THE
ACOUSTIC PROPERTIES OF LUNG PARENCHYMA *

MALIN SIKLOSI!, OLIVER JENSEN?, RICHARD TEW? AND ANDERS LoGG!

Abstract. Lung parenchyma is a foam-like material consisting of millions of alveoli. Sound transmis-
sion through parenchyma plays an important role in the non-invasive diagnosis of many lung diseases.
We model the parenchyma as a porous solid with air filled pores and suggest the Biot equations as
a model for its acoustic properties. The Biot equations govern small-amplitude wave propagation in
fluid-saturated porous solids, and include the effects of relative motion between the fluid and the solid
frame. The Biot equations can be derived from a micro-structure model of the porous material and
the material parameters in the equations can be obtained from the solution of two independent micro-
structure problems, a fluid-cell problem (governed by the unsteady Stokes equations) and a solid-cell
problem. We review the homogenisation approach for media with periodic micro-structure, and solve a
fluid-cell problem numerically for an idealized two dimensional micro-scale geometry for a wide range
of frequencies. We also discuss sound speeds in lung tissue.

Résumé. ...

1. INTRODUCTION

Lung sounds provide an invaluable non-invasive technique for the assessment and diagnosis of a wide range of
pulmonary pathologies [29]. In addition to the traditional use of a stethoscope in the doctor’s surgery, acoustical
devices can be used to measure lung properties (such as volume) or to monitor a patient’s respiratory condition.
While clinicians may have a good empirical understanding of the relationship between the character of a lung
sound and the underlying pathology, less is known about the detailed physical mechanisms of sound generation
and transmission in lung tissue, and the relationship between sounds and any underlying lung diseases.

The lung is a complex organ. The airways of the lung form a bifurcating network of tubes that is embedded in
parenchyma, a foam-like material consisting of around 300 million alveoli. Diseases such as asthma, emphysema,
and COPD (chronic obstructive pulmonary disease) are associated with changes in the detailed structure of the
lung at the alveolar level. Many experimental studies have been performed on healthy and diseased lungs in
order to investigate the acoustic properties of the parenchyma and to assess to what extent it is possible to
obtain information on tissue properties from acoustic measurements. However, current theoretical models of the
acoustic properties of parenchyma are relatively simple. Further development of theoretical models therefore
has the potential to contribute to increased understanding of experimental findings.

* The first author gratefully acknowledges financial support from the Hans Werthén Foundation.
1 Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway, e-mail: malinsi@simula.no & logg@simula.no
2 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK,

e-mail: 0liver.Jensen@nottingham.ac.uk & Richard.Tew@nottingham.ac.uk
© EDP Sciences, SMAI 2007



2 englishESAIM: PROCEEDINGS

In [32], Rice suggested a model for the speed of sound in lung parenchyma which is based on the fact that
a two-phase porous medium may be considered to be an elastic continuum if the sound wavelength greatly
exceeds the pore size and if the cells do not communicate [36]. Under these assumptions the speed of sound in
the medium is independent of frequency and is given by the expression

VWood =V Kave/pave; (1)

where K. is the average bulk modulus and pg,e is the average density of the mixture. Expression (1) is often
called Wood’s formula. In [32] it is assumed that the communication between alveoli is negligible. The alveolar
diameter is about 10~* m and the speed of sound in parenchyma is of the order 30 m/s. Hence, Rice modeled
the parenchyma as a homogeneous mixture of non-communicating air bubbles, modeling the alveoli, and water,
modeling the lung tissue. For this model the speed of sound is given by equation (1) and

1
Kave = (i + (1[(@) y  Pave = ¢Pf + (1 - ¢)P37

where k and py are the bulk modulus and density of air respectively, and K, and p, are the bulk modulus and
density of the tissue. K and p, are approximated by the corresponding values for water. Also, ¢ denotes the
porosity, that is, the volume fraction of air.

Measurements of the speed of sound presented in [32] show good agreement with the sound speed predicted
by Wood’s formula for most lung volumes. However, for highly inflated lungs the measured speed of sound
is higher than predicted by Woods’ formula. Rice suggests that this can be due to the break down of the
assumption of non-communication at high lung volume. A number of studies [23,25,27,28] on healthy lungs
inflated in the range from residual volume to total lung capacity confirm that Woods’ formula gives a good
prediction of the speed of sound. In [23,27,28] human lungs are studied and in [25] pig lungs are studied.
However, in [5] Berger et al. study speed of sound in lungs from fetal sheep. In this study the speed of sound
is found to be considerably higher than estimated by Woods’ formula and strongly frequency dependent. It is
suggested that the high speed of sound is due to more communication between the alveoli in the fetal sheep
lung than in the lungs used in the other studies.

The experimental deviations from Woods’ formula in [32] and [5], and the need to interpret measurements on
lung tissue with diseases such as asthma, emphysema and COPD that are associated with changes in the detailed
structure of the lung at the alveolar level, motivate the development of models which include more detailed
tissue mechanics. In the current work we suggest the Biot equations [6,7] as a model for the acoustic properties
of lung parenchyma. The Biot equations govern small-amplitude wave propagation in a fluid-saturated porous
elastic solid. The dynamic behavior of the porous material is described in terms of macroscopic, space-averaged
quantities, such as acoustic pressure, elastic stress, solid and fluid displacements. The Biot model yields a
frequency-dependent speed of sound.

In the Biot model, the porous material can be characterized by a number of bulk material parameters.
Accurate estimation of the material parameters from measurements is difficult and in some situations (such
as for biological tissues) measurements may be impossible. Also, some of the bulk material parameters are
frequency-dependent. For the frequency-dependent parameters, only high- and low-frequency values can be
obtained in measurements, and the values for intermediate frequencies are modeled, see Johnson et al. [19)].

However, using mathematical homogenisation, see e.g. Burridge and Keller [13] or Pride et al. [31], the Biot
equations can be derived from a model of the micro-structure of the porous material. In the micro-structure
model the motion of the air is governed by the linearized Navier—Stokes equations and the the solid frame
material is governed by linear elasticity. In [13], Burridge and Keller derived two independent micro-structure
problems, one so-called fluid-cell problem (a frequency-dependent flow problem governed by the unsteady Stokes
equations) and one so-called solid-cell problem. The solutions of these two problems yield the bulk material
parameters in the Biot equations.
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Only a few papers have addressed solving fluid- and solid-cell problems for obtaining bulk material parameters.
Zhou and Sheng, [35] solved fluid- and solid-cell problems using a finite element method for idealized micro-
structural geometries. Chapman and Higdon [14, 15] solved fluid- and solid-cell problems using a harmonic
expansion technique for idealized micro-structural geometry. Terada et al. [34] solved fluid- and solid-cell
problems in the quasi-static case using a finite element method.

In this paper we first introduce the Biot equations (Section 2). In Section 3, we review how homogenisation
can be used to derive the Biot equations following [13], and in Section 4 we demonstrate how a micro-scale
simulation can be used to obtain macro-scale properties by solving a frequency-dependent fluid-cell problem
numerically for an idealized two dimensional micro-scale geometry. In reality the parenchyma is anisotropic
and inhomogeneous, but for simplicity we here consider the Biot equations for isotropic and homogeneous
materials. In Section 5, we discuss speed of sound for Biot materials and compare with measured values for
lung parenchyma. Finally, in Section 6 we summarise our conclusions.

2. THE BIOT EQUATIONS

In [6, 7], Biot proposed a theory for the propagation of small-amplitude waves in a porous elastic solid
saturated by a compressible viscous fluid. In [8,9] the theory was extended and generalized. The book by
Allard [1] gives an excellent presentation of theory for sound propagation in porous materials including the Biot
equations. Also, the paper [18] by Johnson is highly recommended. In this section we give a short review of
relevant parts of the Biot theory. We concentrate especially on linking the different formulations of the Biot
equations that appear in the literature.

2.1. The Biot equations in the time domain

Consider a system composed of a porous elastic solid frame saturated by a viscous fluid. It is assumed that
the fluid is compressible and can move relative to the solid frame. It is further assumed that the pore size is
concentrated around its average value and that the porous material is statistically isotropic. Consider a volume
of the solid-fluid system represented by a cube of unit size. Let ¢ denote the porosity, that is the volume fraction
of fluid. The size of the unit element is assumed to be small compared to the wavelength of elastic waves, and
the size of the unit element is assumed to be large compared to the pore size. This will give limitations for the
frequencies for which the theory is valid. Let U* denote the average solid displacement vector and let U/ denote
the average fluid displacement vector. Based on the above assumptions the Biot equations are formulated as

U ?us ous Ut o . .
o o A s LU Of
g P +bF< o o ) NV?U® + (A+ N)V(V-U*) +QV(V - UY), (2a)
92U 02uf ous  ouf . R
g gl Al U Rt
P25 2o ( o o ) QV(V-U*) + RV(V - UY), (2b)

compare [6, section 6] and [7, section 4]. Here, A, N, @ and R are elastic coeflicients, see [6, section 2]. Their
values depend on the micro-structure geometry of the porous solid, the elastic properties of the solid frame
material, and the compressibility of the fluid. Also

p11 = (1= 9)ps + pa, (3a)
P12 = —Pa, (3b)
p22 = Qps + Pas (3c)

where p, is the density of the solid frame material, ps is the density of the fluid, and p, is a mass coupling
parameter, the so-called added mass, see [6, section 3]. Further, bF(w) is the frequency-dependent viscous drag
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coefficient, where b is related to Darcy’s coefficient of permeability, &, by

b= ud?/k,

and p is the fluid viscosity. F'(w) is a correction factor which is introduced to correct for the frequency dependence
of the viscous forces. It is normalized such that F'(0) = 1, and we have

F(w) ~w'? asw — oo,

see [7, section 4] and [18, p 262-265].

In engineering applications, estimates of the material parameters A, N, @, R, p,, and b are typically obtained
by measurements, and the correction factor F'(w) is modeled [19]. However, mathematical homogenisation theory
gives the tools to obtain material parameters from micro-structure simulations. In the next section, we will give
a brief review of how the work by Burridge and Keller [13] can be used to obtain p,, b and F(w) by solving a
fluid-cell problem, and in Section 4 we will present a numerical example for a specific idealized micro-structure
geometry. The parameters A, N, @, and R, can be obtained by solving a solid-cell problem, but we will not
further consider the solid-cell problem in this paper.

Several different formulations of the Biot equations occur in the literature, and the relation between the
different notations can be quite confusing. Hence, before proceeding to discussing homogenisation and micro-
structure simulation, we will briefly discuss some different formulation of the Biot equations, and how these
formulations are related.

2.2. The Biot equations in the frequency domain

Due to the frequency-dependent parameters in the equations, it is most convenient and common to work
with the Biot equations in the frequency domain. Assuming that all motions are time-harmonic with time
dependence €™, that is, U® = U®e™! and U/ = Ufe™* we obtain the frequency domain formulation of (2),

—w?p11U* — w?p1oUY +iwbF(w) (U° = UT) = NV2U* + (A+ N)V(V-U*) + QV(V-U7),  (4a)
~w?p12U* — w?psUS —iwbF(w) (U* — U') = QV(V - U®) + RV(V - UY), (4b)

compare [6, section 6] and [7, section 4].

2.3. The Biot equations formulated using the viscodynamic operator

The Biot theory was introduced in [6-9]. Papers [6,7] used the notation presented above, and this type of
formulation of the Biot equations is most common in the literature today. However, in [8,9], a different notation
was used. The homogenisation results in [13] are related to the Biot equations using the formulation in [8,9],
and therefore we briefly discuss how the two different formulations are related.

The Biot equations formulated using the so called viscodynamic operator is stated in [8, eq. (2.6)]. As we
will only consider the fluid-cell problem, we just need to consider the equation corresponding to (4b), which
in [8, eq. (2.6)] is formulated as

—w?p;U* +iwY (W)W = aMV (V- U*) + MV(V - W). (5)

The relation between the two formulations is explained in [9]. In (5), w, py and U® are defined as above, and
a, M and W are related to Q, R, ¢, Uf and U*® by
w = ¢(Uf —U*), (6a)
Q=¢la—9)M, (6b)
R=¢*M, (6c)
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see [9, equation (2.8) and (3.31)]. By substituting (3) and (6) in (5) and comparing with (4b), we can make the

identification
— 1
Y(w)= el (iw(dps + pa) + bF(w)) . (7)

2.4. The Biot equations formulated using complex density coefficients

Often (4) is formulated as

—w?p11U* — w?p1o U7 = NV2U® + (A+ N)V(V - U%) + QV(V - UY), (8a)
—w?p13U° — w2 Uf = QV(V - U®) + RV(V - UY), (8b)

where the complex density coefficients are defined by

1bF (w)

P11 = p11 — ) (9a)
w
- ibF (w
P12 = p12 + w( ), (9b)
~ 1bF (w
P22 = p22 — ( ) (9¢)
w
From (7) we find
_ oY (w
P12 = opy + wﬁQ%

and one can then use the relations p11 + p12 = (1 — @)ps and p12 + 22 = ¢py to obtain p11 and pas.
In engineering applications usually the quantities static flow resistivity, ot*¢, and tortuosity, as, are used
rather than b and p,. These quantities are related by

b= O'StatiCqZSQ, (lOa)
Pa = prdlase — 1). (10D)

In [1, p. 23-24, 71-73, 127-129] the concepts static flow resistivity and tortuosity are further described and
methods for measuring these quantities are discussed. Sometimes also a complex-valued so-called dynamic
tortuosity doo(w) is used, defined by

_ibF(w)
wopy

oo (W) = Qoo

(11)

hence

p12 = — (oo (w) — 1) pso.

3. RELATING THE MICRO-SCALE MODEL TO THE BIOT PARAMETERS

Mathematical homogenisation can be used to derive the Biot equations from a model of the micro-structure
of the porous material, see e.g. Burridge and Keller [13] or Pride et al. [31]. In [13], two independent micro-
structure problems are derived, one so-called fluid-cell problem and one so-called solid-cell problem, whose
solutions yield the bulk material parameters in the Biot equations. The elastic parameters A, N, @ and R are
obtained by solving the solid-cell problem, and p,, b and F(w) are obtained by solving the fluid-cell problem.
Below, we will briefly review the homogenisation approach used in [13]. In the next section we will present a
numerical solution of a fluid-cell problem for a specific micro-structure geometry.
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3.1. The micro-scale model

Consider again the system composed of a porous elastic solid frame saturated by a viscous fluid. Denote the
solid region D, and the fluid region Dy. Assume that h denotes a length which is characteristic for the pore
size, and that H denotes a typical macroscopic length for the problem. We assume that the material is fine
grained, that is, the ratio h/H is small. We will denote this ratio by ¢,

e=h/H, e<1.

We will consider motions of the fluid and solid which are small enough to be governed by the linearized Navier—
Stokes equations and the equations of linear elasticity respectively. The Navier—Stokes equations linearized
around a background state of constant pressure and density and zero velocity are

% — KV ¥, (12a)
ov -
& = —pI + pDV¥, (12¢)

see e.g. Pierce [30, section 1.5 and 10.1-2; note the use of eq. (1-5.3c)]. Here, p denotes the pressure perturbation
relative to the constant background state, v denotes the velocity, ps denotes the constant background fluid
density, p denotes the fluid viscosity, and x denotes the bulk modulus of the fluid. The linear operator D is
defined such that

1
V-DVV =V + gV(V V).

The equation of motion for the solid is

0*u

Ps oz = V.T, (13)

where u denotes the displacement of the solid, ps denotes the solid density and 7T is the solid stress tensor. We
introduce a linear operator C that relates 7 to Vu defined such that

# = ECVil. (14)

Hence C is defined by

v(V-®) . Va+(Ve)T

(V= (14+v)(1—2v) 2(1+v)

see e.g. [3, pp. 12-20]. Above, FE and v denote the Young’s modulus and Poisson’s ratio of the solid, respectively.
At the boundary 0D, = 0Dy, we have continuity and force balance, that is,

ou

g and n-6=n-7 ondD;=0D,, (15)

\N/':

where n is the unit normal to 0Dy = 0D, pointing into the solid.
We now collect the equations for the fluid, (12), the equations for the solid, (13), (14), and the boundary

conditions, (15). We assume that all motions are time-harmonic with time dependence e™?, that is, p = pe'“?,
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v =vet & =oe™t, i =ue™?, and T = Te™*, and arrive at the micro-scale model
iwpv=V -0, in Dy, (16a)
o =—pl+pDVv, in Dy, (16Db)
iwp = —kV -V, in Dy, (16¢)
v = iwu, on Dy = 0D, (16d)
n-oc=n-T, on 0Dy = 9Dy, (16e)
~wpu=V-T, in Dy, (16f)
7 = CVu, in D;. (16g)

3.2. The homogenisation method

In [13], the two-scale method of homogenisation, [4,20,33], is used to derive equations governing the gradual
variation of space averaged quantities such as acoustic pressure, elastic stress, solid and fluid displacements from
the micro-scale model (16). The average is taken over the micro-scale variations. In the method, it is assumed
that for all properties of the porous system, that is, v, o, p, u, and 7, the variations at the micro-scale and
macro-scale can be separated. This is done by expressing the space dependence of the solid displacement in the
form

u=u(x,y)
and similarly for the other variables. Here x is the ordinary position vector, and y is the position vector in a
stretched coordinate system

y=¢ 'x.
Hence, the first argument in u(x,y) accounts for the slow macro-scale variations, and the second argument
accounts for the rapid micro-scale variations. Here we assume that the micro-scale variations are periodic
functions of y. It is further assumed that the two sets of variables are independent, and that derivatives can be
separated into one macro-scale component and one micro-scale component,

Vu=Vyu+ sflvyu.

It is also assumed that each property of the porous material can be expanded in an asymptotic power series in
g, that is,
u(x,y,e) = up(x,y) +euy (x,y) + e2ua(x,y) + O(?). (17)

In the Biot regime, the character of the micro-scale flow changes from being dominated by viscous effects
(Poiseuille flow) in the low frequency range to being dominated by inertial effects in the high frequency range.
This is captured in the homogenisation process by the assumption that the Reynolds number appropriate for
the micro-scale flow, h2wp¢/p, is of order unity.

By substituting all these assumptions in (16) and matching terms multiplying the same power of &, a number
of relations are obtained. These relations correspond to the behavior of the system in the limit when € — 0.
By applying an averaging procedure to some of these relations (in order to average out the y dependence) the
Biot equations are obtained.

3.3. The fluid-cell problem

The viscodynamic operator Y (w), and thereby the parameters p,, b and F(w), are related to the space
average over the micro-structure of the displacement of fluid relative to solid, see (5) and (6a). The fluid-cell
problem is a flow problem at the micro-scale which can be used to compute Y (w).

Let us first define w(x,y), the displacement of the fluid relative to the solid (at the micro-scale), by

vo(x,y) = iw (u(x) + w(x,y)),
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where vy and ug are the first order terms in the expansions of the fluid velocity and solid displacement respec-
tively, see (17). In the homogenisation procedure a set of equations for w is obtained. It is formulated as the
unsteady Stokes equation for w to be solved on a unit cube in the micro-scale,

—wiprw(x,y) — iw,&V?,w(x, y) + Vypi(x,¥) = Vx - 00(x) + w?psug(x), in Dy, (18a)
Vy -w(x,y) =0, in Dy, (18b)
W(Xa y) = 07 on 6Df = 8DS, (180)

with the additional boundary condition that there should be periodicity across the unit cube, compare [13, eq.
(13)-(15), note the sign error in (15a)]. Here, o is the first-order term in the expansion of the fluid stress tensor,
and p; is the O(g) term in the expansion of the fluid pressure. Also, i = uH?/h%. Note that the right-hand
side of (18) is independent of y while the left-hand side of (18) depends both on x and y. As y accounts
for variations on the rapidly varying micro-scale, and x accounts variations on the slowly varying macro-scale,
and these two scales are assumed to be separated, the right-hand side can be regarded as a uniform forcing
when (18) is solved.
Since (18) is linear in w, the solution can be expressed as

W(Xv Yy, w) = W(Xv Yy, w) (vx e (X) + (.L)pruO(X)) (19)

where W (x,y,w) is a matrix. W;; can be obtained by solving (18) with the right-hand side term V - o7¢(x) +
w?prug(x) replaced by a unit vector in the y; direction.
We now take the space average of (19) and obtain

W,w) = () (Vx - 00(x) + wpp0(x) (20)
Here, we have restricted our interest to macroscopically uniform media, that is assuming that the average W is
independent of x. Under the assumption that the matrix W(w) is invertible, we can now rewrite (20) as

1

—wprug(x) + W (w)W(x) = Vi - 0o(x). (21)

Equation (21) corresponds to (5) and we can make the identifications ug = U® and

The term Vy - og(x) can be identified with the right-hand side of (5). However, this is more involved and for
details we refer to [13].

4. NUMERICAL SOLUTION OF A FLUID-CELL PROBLEM

We now consider a two-dimensional idealized micro-scale geometry, as illustrated in Figure 1. Each micro-
scale cell is assumed to be quadratic, with sides having physical length h. The cells are separated by infinitely
thin walls, and are connected to each other by an opening in the middle of each wall. Our goal in this section
is to compute the viscodynamic operator Y (w) corresponding to this geometry.

4.1. Non-dimensionalisation

In order to make the parameter dependence clear, we non-dimensionalise (18) by introducing dimensionless
variables

_ . _pmH ooH . py
’ uo_ya b1 = K‘,é’ 0o = P ) p_p77
s

w>
I

- w -
) W:X7 W =

3]
<>
I
T <
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FI1GURE 1. Left; A 2D idealized micro-scale geometry. Each micro-scale cell is quadratic. The
cells are separated by infinitely thin wall, and connected by an opening in the middle of each
of the walls. Right; The geometry of a single cell. The sides of the quadratic cell are of unit
length in the (g1, §2)-coordinate system. Centered around the middle of each wall is an opening
of width 2a. The dashed lines indicate lines of symmetry.

where ¢ is a length characteristic of the amplitude of fluid and solid displacements. The length H is related to
Kk, w and ps by
K
H? = —
psw2
that is, H corresponds to the wavelength of waves balancing fluid compressibility with solid inertia. The scaling
for y is chosen such that y = 1 at x = h, hence, a micro-cell is of unit length in the y coordinate system. In

the rescaled variables, equation (18) can be expressed as

1 1
—W — VW + ;vypl = zvj 60+, in Dy, (22a)
Vg W =0, in Dy, (22b)

w =0, on 0Dy, (22¢)

and in addition we have periodicity, that is W(g1 + 1,92) = W (41, J2) and W (41,92 + 1) = W(J1, §2). Also

W
h2wpy’

o=

an inverse Reynolds number that is formally assumed to be of order unity.
In the transformed variables, the equation corresponding to (20) is

— = 1
p
After transforming back to original variables and rearranging we obtain

—wPppuo(x) + pW (@W(K) = Vi 09(x),

which corresponds to (21). Hence
— 1

Y(w) = —ipwa_ (w).
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4.2. Numerical solution

The fluid cell problem (22) with the right-hand side replaced by the unit vector F = (1,0)T was solved
using complex P, — P; Taylor-Hood! finite elements, that is, the velocity was discretized using (complex)
piecewise quadratic polynomials and the pressure was discretized using (complex) piecewise linear polynomials.
The solution was computed on a 128 x 128 triangular mesh (resulting in a system with 297,478 unknowns)
using DOLFIN/FFC [17,21,22,26]. The parameter values p = 1.7 - 10~°Pas, p, = 103kg/m?, h = 10~*m,
ps = 1.3kg/m? were used.  The solution W(Ji,92,w) was computed for a wide range of frequencies, w €
(10s=%,107s71). For low frequencies, the flow is smooth and viscous, while for higher frequencies the viscous
effects decrease, see Figure 2, 3.

The average w(w) is defined as the integral of W (41, 92, w) over the fluid region of the unit cube multiplied by
the volume fraction of fluid in the unit cube, see [13]. As the solid walls for the current geometry are infinitely

thin, we arrive at
_ 92=0.5  pf1=1
w(w) = < ) / / W (91, 2, w)dgrdye. (24)
y2270 5J91=

Due to the symmetry of the flow, we have Wa(w) =

Two entries in the matrix W( ) can now be computed using the relation (23) (recall that the right-hand side
has been replaced by the unit vector F = (1,0)7). We obtain

Wi =1 (w), Wa =0.

The remaining two entries can be computed by solving the fluid-cell problem with the right-hand replaced by
the unit vector G = (0,1)”. However, due to the symmetry of the geometry we find

W12 =0, WQQ = El (w),

and we arrive at -
W(w) = w1 (w)1,
where [ is the identity matrix. Hence, in this case the viscodynamic operator Y (w) is a scalar,

Y(w) = —z'pfw@;l(w). (25)

Using (24) and (25), we can compute Y (w). In Figure 4, the modulus and the phase of Y (w) is plotted as a
function of w for different values of a, the size of the openings between the cells. As expected from (7), Y (w)
asymptotes towards a real, positive value as w — 0, and for large values of w, Y (w) is linear in w with a purely
imaginary constant of proportionality.

5. SPEED OF SOUND

In this section we will first derive an expression for the speed of sound in Biot materials, in terms of the bulk
material parameters discussed in Section 2. We will then specifically study speed of sound in the parameter
ranges valid for lung parenchyma. We find that due to the characteristics of the parenchyma, it is relatively easy
to obtain estimates of the elastic parameters A, N, @ and R (which however also can be obtained by solving
the solid-cell problem). We then discuss how speed of sound depends on the parameters related to fluid motion
in the porous material, p,, b and F(w) (which via the viscodynamic operator Y (w) can be obtained by solving
the fluid-cell problem), and use parameter fitting to show that the Biot model yields a frequency dependence
of the speed of sound which is in qualitative agreement with the measurements in [5].

1The Taylor-Hood element is a standard finite element that fulfills the Babuska—Brezzi condition necessary for convergence
(see [2,11,12]).
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FIGURE 2. Above, the real part of W is plotted for w = 10s™! (top) and w = 10°s~! (bottom).
This quantity corresponds to the instantaneous displacement field at ¢ = 0. In both cases,
a = 0.2. The above plots were obtained on a 40 x 40 triangular mesh (a finer 128 x 128
triangular mesh was used when computing Y (w)). The rightward pointing arrows along parts
of the cell boundary is due to that the plot program plots an arrow directed along the positive
71 axis for zero-valued points.
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FiGURE 3. To further clarify the difference in the character of the displacement field in the
low- and high-frequency range, we above plot the norm of the real part of W for w = 10s7!
(top) and w = 10%~! (bottom). In both cases, a = 0.2, and the plots were obtained on a
128 x 128 triangular mesh.
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FIGURE 4. Modulus (top) and phase (bottom) of the viscodynamic operator Y as function of
the frequency w for different values of @ = 0.1,0.2,0.3,0.4.
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5.1. Speed of sound for Biot materials

Three different kinds of waves can propagate in a Biot material, two compression waves and one shear wave,
see [6]. The two compression waves are denoted the slow and the fast wave respectively. The fast compression
wave corresponds to sound propagation. In order to obtain the wave propagation speeds for the compression
waves, we follow [6] and apply the divergence operation to (8). We obtain

—w? (pr1e + prae) = V? (Pe + Qe) , (26a)
—w? (ﬁlge + ﬁzge) =Vv? (Qe + Re) , (26b)

where e = V- U?®, e =V -U/ and P = A+ 2N. We make the ansatz

e = Cpe'?, (27a)
€ = Cyeld?, (27b)
The wave speed of these waves is
V=w/q.
Substituting (27) into (26) gives
P—zpn Q—zp12 ) ( C1 >
~ ~ =0, 28
< Q —2p12 R — zpa Cs (28)

where z = V2. Equation (28) have a non-trivial solution only if the matrix determinant is equal to zero. This
gives a quadratic equation for z,

(P11f22 — Pia)z” — (Ppoa + Rp11 — 2Qp12)z + (PR — Q%) = 0. (29)

Solving (29) yields

V2 _ A+ VA2 — 4(p11pa2 — p1o) (PR — Q%) (30)
fast,slow 2(p~11522 _ 5%2) ?
where the positive sign gives the wave propagation speed of the fast wave and

A = Ppas + Rpi1 — 2Qp12.

5.2. Parameter ranges valid for lung parenchyma

From a number of so-called gedanken experiments, Biot derived expressions for the elastic constants P, @
and R as functions of ¢, k, K, K and N,

(=)= ¢~ Kp/K)Ks + ¢KKp /i 4

r= 1—¢— Ky/K, + K./ 3 (312)
_ (-9 - Ki/K,)pK,

62_17(257I(b/1(3+(Zﬂ:{s/ﬁ7 (31b)

R P K, (31c)

T 16— Ky/K, + 0K, /K’

see [10] or [1, p. 118-122]. Here K} is the bulk modulus of the solid frame at constant fluid pressure, and N is
the shear modulus of the frame. As approximations for K}, and N we use measured values of the bulk modulus
and shear modulus for human lungs, see Lai-Fook and Hyatt [24] where it is investigated how these values varies
with lung volume and age. We use K;, = 10* Pa and N = 102 Pa.
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In the parenchyma, we have a porous solid with gas-filled pores. As a solid is much stiffer than a gas, that
is K > k, the expressions for P, () and R can be simplified to

P= §N+Kb+ (1;@25, (32a)
Q=(1-9)x, (32b)
R = ¢k, (32¢)

see [1, p. 122-124].

We will now discuss the relation between the speed of sound for a Biot material and the speed of sound
predicted by Woods’ formula, for details see [18]. In the limit |doo(w)| — o0, it is straightforward to show that
the expression for the wave speed of the fast wave, (30), simplifies to

H

Vg = ———,
st (1= ¢)ps + dps

(33)

where
Ko+ (9K /k — (1+¢)) Ky
1_¢_Kb/Ks+¢Ks/’%
A large value of | (w)| is characteristic for a situation where the fluid motion relative the solid is very restricted.
This is always the case in the low frequency limit, w — 0. It also the case if the viscous drag coefficient b has
a high value. In these two cases, the relative motion is restricted by large viscous forces. The fluid can also be
locked to the solid by a large inertial effect, that is a high tortuosity a..
Parenchyma is a material with a weak frame, that is

4
H=P+2Q+R= +5 N

Ky, N < k, K.

In this limit, the speed of sound Vi.g given by (33) asymptotes towards Wood’s formula, (1). Expressions for
the deviation from Wood’s formula due to the finite stiffness of the frame are given in [18, p. 271].

To summarise, for a material with a weak frame, the speed of sound is always close to the value predicted
by Wood’s formula in the low frequency limit. If the fluid motion relative to the solid is very restricted (as e.g.
in the model with non-communicating air bubbles, [32]) the speed of sound will be constant, independent of
frequency. Otherwise the speed of sound will be frequency dependent.

We now use equation (30) to demonstrate how the speed of sound varies depending on the parameters o
and a. We use (32) for P, @ and R, and approximate the correction factor F(w) using the Johnson model,

static

o Apppa?
Flw) = \/1 - Zw¢2(a-static)2A27

see Johnson et al. [19] or e.g. Géransson [16] and references therein for an exhaustive discussion of this model.
Here, A is the so-called viscous characteristic length, a parameter introduced in [19].

In Figure 5, the speed of sound is plotted for various combinations of values of o and . In all cases
we have used kK = 1.5 - 10°Pa, ¢ = 0.75 and A = 1.25- 10~ *m. Information on A for parenchyma was not
available, therefore we have here used a typical value for polymer foam. As expected, the speed of sound in the
low frequency limit w — 0 is independent of the values of o%*2"¢ and a.. As the frequency increases, the speed
of sound increases, and the exact form of the graph depends on the values of o%*4¢ and a.,. We note that in
the example with a very high value for the static flow resistivity, o5'4¢ = 10%kg /m3s, the speed of sound stays
very close to the low frequency value for all the frequencies displayed in Figure 5.

In measurements presented in [5], the speed of sound through lungs of fetal sheep was found to be much higher
than predicted by Wood’s formula. Also, the speed of sound was strongly frequency dependent. Qualitative

static
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FIGURE 5. Speed of sound as function of frequency in Biot materials for some different values
of static flow resistivity and tortuosity; o%t¢ = 10%kg/m3s, a,, = 100 (solid line), ostatic =
10%kg/m3s, ao, = 1.2 (dashed line), 05t24¢ = 10%kg /m3s, ao, = 1.2 (dash-dotted line), o5tatc =
10*kg/m?s, ae = 100 (dotted line). In all cases k = 1.5-10°Pa, ¢ = 0.75 and A = 1.25-10"*m.

Volume of air [ml] Speed of sound [m/s]
500 Hz 5000 Hz

40 33.6 68.5
60 29.8 63.0
80 27.7 57.4
120 27.7 51.5
180 25.5 47.7
240 27.7 42.1

TABLE 1. Data obtained from [5, Figure 5].

agreement with these findings can be obtained using the Biot model. In [5], lungs from fetal sheep where excised
without allowing air to enter the liquid-filled lungs. After withdrawing fetal liquid from the lungs, the lungs
had an average weight of 151.4 g. Air was then injected in the lungs, and the frequency dependence of the
speed of sound was measured with the lungs filled with 40, 60, 80, 120, 180 and 240 ml of air respectively. The
tissue density was assumed to be 1 ml/g. The results of these measurements are presented in [5, Figure 5]. By
measurements in that figure, we obtained values for the measured values of speed of sound at 500 Hz and 5000
Hz, see Table 1. The porosity of the lungs can be computed from the information about lung weight and volume
of air in the lungs. The parameters o4 o . A were fitted to the measured values using one iteration of the
Gauss-Newton method from the starting guess o5%#4¢ = 4. 10%kg/m3s, ao = 23, A = 1.25 - 10~*m, arriving at
the values o5'¥¢ = 5.25 . 10%kg/m3s, as = 26.5, A = 4.02 - 10~*m. In Figure 6, the speed of sound for the
fitted parameter values are plotted. The sound speed increases with frequency but falls with lung inflation.

6. CONCLUSIONS

Current modeling of the acoustic properties of the parenchyma is based on the assumption that the air motion
between the alveoli is negligible [32]. The parenchyma is considered as a homogeneous mixture of air and lung
tissue, and the speed of sound can then be computed from the average parenchyma density and the average bulk
modulus of the mixture. The speed of sound is independent of frequency and is given by the so-called Wood’s
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FIGURE 6. Speed of sound for varying porosity corresponding to the measurements in [5]. The
fitted parameter values o*a4¢ = 5.25 . 10°kg/m3s, ao = 26.5, A = 4.02 - 10~*m are used.

formula (1). The predicted speed of sound has been confirmed in several experimental studies on human lungs
in volume ranges from residual volume to total lung capacity [23,25,27,28]. However, for high lung volumes
the measured speed of sound in horse lungs is considerably higher than predicted by this theory [32]. Also, in
a recent study on lungs from fetal sheep, the measured speed of sound is considerably higher than predicted
by Wood’s formula and also strongly frequency dependent [5]. In [32] it is suggested that the deviation from
Wood’s formula is due to increasing communication between alveoli as lung volume increases, and in [5] it is
suggested that fetal sheep might have a relatively open alveoli structure.

In this paper we suggest the Biot equations as a model for the acoustic properties of lung parenchyma. In
the Biot model, effects of motion of fluid relative to the porous solid frame are included. We have reviewed
how homogenisation can be used to derive the Biot equations from a model of the micro-structure of a porous
material. The bulk material parameters in the Biot equations related to motion of fluid relative to solid can
be obtained by solving a flow problem at the micro-scale, the fluid-cell problem. We have solved a fluid-cell
problem numerically for an idealized micro-structure geometry for a wide range of frequencies.

The speed of sound in a Biot material is highly dependent on the micro-structure. Parenchyma is a porous
material with a weak frame. For materials with a weak frame and a micro-structure where the fluid motion
relative the solid frame is very restricted, the speed of sound is close to Wood’s value for all frequencies. For
materials with a weak frame and a micro-structure where the fluid motion relative the solid frame is less
restricted, the speed of sound is close to Wood’s value for low frequencies and increases with frequency. By
parameter fitting we have shown that the Biot model yields a frequency dependence of the speed of sound which
is in qualitative agreement with the measurements in [5]. Hence, the Biot equations provide a theory which can
explain the different types of variations of speed of sound that have been obtained in measurements.

In future research we plan to use micro-structure simulations to investigate how changes in the detailed
structure of the parenchyma associated with diseases affect wave propagation properties.

The first author would like to thank Dr Nils-Erik Horlin and Prof Gunilla Kreiss for interesting discussions and valuable
comments and Prof Peter Goransson for providing software for computation of wave speeds.
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