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SUMMARY

This survey paper is based on three talks given by the second author at the London Mathematical
Society Durham Symposium on Computational Linear Algebra for Partial Differential Equations in the
summer of 2008. The main focus will be on an abstract approach to the construction of preconditioners
for symmetric linear systems in a Hilbert space setting. Typical examples which are covered by
this theory are systems of partial differential equations which correspond to saddle point problems.
We will argue that the mapping properties of the coefficient operators suggest that block diagonal
preconditioners are natural choices for these systems. To illustrate our approach a number of examples
will be considered. In particular, parameter—dependent systems arising in areas like incompressible
flow, linear elasticity, and optimal control theory will be studied. The paper contains analysis of
several models which have previously been discussed in the literature . However, here each example is
discussed with reference to a more unified abstract approach. Copyright (© 2000 John Wiley & Sons,
Ltd.

KEY WORDS:

1. Introduction

It is an accepted fact that in order to properly design numerical methods for systems of partial
differential equations one has to rely on the specific properties of the underlying differential
systems themselves. In this paper we argue that the same is true for the construction of
preconditioners, i.e., we argue that the structure of the preconditioners for the discrete systems
are in some sense dictated by the properties of the corresponding continuous system. As a
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PRECONDITIONING DISCRETE SYSTEMS 1

consequence, our study here will start by discussing so—called Krylov space methods in the
setting of Hilbert spaces. The properties of these methods will then motivate the introduction
of the concept of preconditioners for general continuous differential systems. This concept will
be illustrated by various examples.

The discussion of preconditioned Krylov space methods for the continuous systems will
be the starting point for a corresponding discrete theory. We will argue that if we have
identified a proper preconditioner for the continuous problem and have a stable discretization
of the problem, then we also have obtained the basic structure for a preconditioner of the
corresponding discrete problems. In this respect the approach taken here corresponds to the
analysis already given in [2, 3]. However, here we show how a number of different problems
can be treated by the same abstract framework. Furthermore, in Section 5 we focus on the
close link between the proper choice of preconditioner and the classical variational theory of
Babuska [12, 13].

The strength of the approach taken in this paper is best illustrated by the construction
of preconditioners for parameter—dependent problems. By a systematic approach we easily
identify preconditioners which behave uniformly both with respect to these model parameters
and the discretization parameter. The list of examples studied below includes stationary
systems obtained from implicit time discretizations of the time dependent Stokes problem,
where the time step is a critical parameter. Another example we will consider is the singular
perturbation problem referred to as the Reissner—-Mindlin plate model, where the thickness
of the plate enters as a parameter. An example of an optimal control problem will also
be discussed. It is well known that the solutions of such systems depend strongly on so—
called regularization parameters, but below we show that for some problems it is possible to
design preconditioners such that the conditioning of the preconditioned systems are bounded
uniformly with respect to the regularization parameters.

For the construction of practical preconditioners for discrete systems, the computational cost
of evaluating these operators and the memory requirements of these procedures are key factors.
These issues will not be discussed in full detail in this paper. The aim of the discussions here
is to identify what we refer to as canonical preconditioners, which are block diagonal operators
suggested by the mapping properties of the coefficient operators of the systems, i.e., the blocks
will typically correspond to exact inverses of discretizations of differential operators. These
canonical operators identify the basic structure of the preconditioner. However, in order to
use this approach to construct practical and efficient iterative schemes, the different blocks of
the preconditioner have to be replaced by norm equivalent operators constructed, for example,
by domain decomposition or multigrid techniques. A brief discussion of these issues will be
included in Sections 6 and 7.

There are close similarities between the abstract approach taken in this paper and the
discussion of “operator preconditioning” given in [48]. The common ingredients are the use
of mapping properties of the underlying continuous operators and numerical stability to
derive the basic structure of the preconditioners for the finite dimensional systems derived
from the discretization procedure. A slightly alternative approach, taken for example in the
texts [37, 93], is to rely more directly on the properties of the discrete problems, and then
use a matrix—based framework to analyze the discrete preconditioned systems. Furthermore,
the survey paper [92] studies the construction of preconditioners by exploiting a multiscale
structure of the underlying function spaces.

An outline of the paper is as follows. In Section 2 we briefly discuss Krylov space methods and
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2 K.-A. MARDAL AND R. WINTHER

motivate the need of preconditioners for operators with unbounded spectrum, while in Section 3
we relate these concepts to examples of saddle point problems. Properties of some parameter—
dependent problems are described in Section 4. In Section 5 we discuss how the structure of
uniform preconditioners for stable finite element systems are related to the continuous systems,
while Section 6 is mostly devoted to the representation of the finite element operators and the
corresponding preconditioners. Finally, a number of fully discrete problems are studied in
Section 7.

2. Krylov space methods and preconditioning

Let X be a separable, real Hilbert space, with inner product (-,-) and associated norm || - ||,
and assume that A4 : X — X is a symmetric isomorphism on X, i.e.,

A A e L(X,X).
Here £(X, X) is the set of bounded linear operators mapping X to itself. In general, for an
operator A € L(X,Y) the corresponding operator norm is given by

A,T Y
Iy = sup AT
S el

The purpose of this section is to give an overview of so—called Krylov space methods for linear
systems of the form

Az = f, (2.1)

where the right hand side f € X is given. Krylov space methods are among the most
effective iterative methods for linear systems arising from discretizations of partial differential
equations. As a consequence, such methods are usually discussed for systems defined on a
finite-dimensional vector space. However, for the discussion given below, it is crucial to allow
the space X to be infinite—dimensional.

Krylov space methods are composed of simple iterations that produce a sequence of
approximate solutions {x,, }, which converges to the exact solution = as m increases. Of course,
no exact inversion of the operator A is performed, but typically one evaluation of the operator
A is required for each iteration. In some sense, the Krylov space methods can be seen as
improvements of a simple fixed point iteration of the form

Tng1 = Ty — @Az, — f),

frequently referred to as the Richardson iteration in the numerical analysis literature. Here « is
a real valued parameter which has to be properly chosen. However, the Krylov space methods
are more robust and more efficient. If the operator A and the right hand side f are given, then
the Krylov space of order m is given as

K= Kn(A, f) =span{ f, Af,..., A" f}.

The most celebrated Krylov space method is the conjugate gradient method of Hestenes and
Stiefel [47], see also [43, 45, 90], where it is assumed that the operator A is symmetric and
positive definite. In this case the unique solution 2 € X of the system (2.1) can be characterized
as

x = argmin E(y),
yeX
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PRECONDITIONING DISCRETE SYSTEMS 3

where E(y) = (Ay,y) — 2(f,y). The approximation z,, € K,, is defined as

Ty = argmin E(y).
yEKm

Alternatively, z,, € K,, solves the Galerkin system

<Axm,y>:<f,y>, Z/GKm

Furthermore, an effective computation of the sequence {z,,} is based on a recurrence relation
requiring a single evaluation of the operator A per iteration.

It is straightforward to check that z,, is the best approximation of x in K,, in the sense
that

lz —omlla= inf lz—yla,

mn

where |y||% = (Ay,y). By combining this observation with spectral theory we obtain an error
estimate of the form

[ = 2m |4 < 0m(o(A))llz = zo]la, (2.2)
where o(A) is the spectrum of A, and for any set J C R,
O0m(J) = inf sup|p(N)]. (2.3)
pepwn,l aeJ

Here
Pmi1 = {p]|pis a polynomial of degree m, p(0) =1 }.

By using this characterization it can be established that the conjugate gradient method
converges in the energy norm || - || 4, with a rate which can be bounded by the condition
number £(A) = [ Al z(x,x) - A £(x,x)- In fact, by using an exact characterization of 6, (.J)
when J is an interval in R, it can be shown that

5m(0(A)) < 2(%&&1)”, (2.4)

cf. for example [90, Theorem 38.5]. This leads to the following well-known convergence result
for the conjugate gradient method.

Theorem 2.1. Assume that A: X — X is a symmetric and positive definite isomorphism. If
the sequence {x,,} is generated by the conjugate gradient method then

[ = zmlla < 2a™ ||z — 20| 4,

where o = (y/k(A) — 1)/ (\/K(A) + 1).

A key observation is that the constant « is independent of the dimension of the space X.
Therefore, as long as the operator A can be evaluated, the conjugate gradient method can also
be used in the infinite dimensional case.

Remark 2.1. If the spectrum of A is approximately uniformly distributed in the interval
(L/I]A" Y 2(x,x): Al £(x,x)] then the upper bound given in Theorem 2.1 is indeed sharp.
However, if the operator A has a few eigenvalues far away from the rest of the spectrum, then
the estimate is not sharp. In fact, a few “bad eigenvalues” will have almost no effect on the
asymptotic convergence of the method, cf. [9, 10]. O
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4 K.-A. MARDAL AND R. WINTHER

If the operator A is indefinite, but still a symmetric isomorphism mapping X to itself, then
we can replace the conjugate gradient by the minimum residual method [14], [33], [74], [78]
[83], [84]. In this case, x,, € K (A, f) is characterized by

@ = argmin [ Ay — f|%,
yeKm
i.e., x,;, minimizes the residual. Again, the effective computation of {z,,} is based on
a recurrence relation requiring only evaluations of the operator A, and x,, is the best
approximation of z in K, in the sense that

A =)l = inf A= 0)].

Furthermore, an estimate similar to (2.2) still holds. More precisely,
[A(@ = zm)[| < 0m (o (A)[ Az — o), (2.5)

but, of course, in the indefinite case the spectrum of A, o(A), is not contained in the positive
half-line. However, the bound (2.4) can still be used to obtain a convergence estimate which
only depends on k(A), and not on the dimension of the space X. The following analog of
Theorem 2.1 is obtained.

Theorem 2.2. Assume that A: X — X is a symmetric isomorphism, and that the sequence
{zm} is generated by the minimum residual method. Then there is a constant o € (0,1),
depending only on k(A), such that

[A(@ = zm) || < 2a™[|A(z — 20)|.

Remark 2.2. Note that, in contrast to Theorem 2.1, Theorem 2.2 above includes no estimate
of the convergence rate «. In fact, in this more general setting, where the operator A has
both positive and negative eigenvalues, it is in general not straightforward to obtain a sharp
estimate for the quantity 0,,(0(A)) and hence for the constant «. However, a crude upper
bound for d,,(c(A)) can be obtained by restricting the admissible polynomials in (2.3) to even
polynomials. By using (2.4) this approach leads to the estimate

[A(z = 22m)|| < 2a™[|A(z = z0)], (2.6)

where o = (k(A)—1)/(x(A)+1). Sharper bounds for the convergence of the minimum residual
method can be obtained by taking into account the relative location of the positive and negative
parts of the spectrum of the operator A, cf. for example the text [37, Chapter 6] or [78, 83].
However, such sharper bounds will not be utilized in the discussions below. O

Remark 2.3. An alternative approach in the indefinite case is to consider the corresponding
normal system. Since A is symmetric, this system is given by

A’z = Af,

and the corresponding coefficient operator, A2, is positive definite. This system can then be
solved by the conjugate gradient method. In fact, in some sense this approach is related to the
crude upper bound for the minimum residual method given by (2.6), since this bound is sharp
for the iteration based on the normal equation if the spectrum of A2 is uniformly distributed,
cf. Remark 2.1. Therefore, for most problems the iteration based on the normal equations will
give slower convergence than the minimum residual method. This effect has also been observed
experimentally, cf. for example [2, Section 8|. O
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PRECONDITIONING DISCRETE SYSTEMS 5

Remark 2.4. For symmetric operators the condition number, x(A) = |[lAllzx,x) -
A~ £(x,x), may be characterized as

K(A) = SUPxeo(A) RY
infyeqocay Al

In particular, the condition number is independent of the choice of norm on the space X. O

Example 2.1. Integral equation.
Consider a Fredholm equation of the second kind of the form:

Aua) = ) + [ blapyulo) dy = fa),
where we assume that the kernel k is continuous and symmetric, and that the operator
A: X — X is one-to-one, where X = L2(f2). Since the integral operator is compact, it
follows by the Fredholm alternative theorem that A~ € £(X, X). Hence, the equation can
be solved by the minimum residual method, and also by the conjugate gradient method if
A is positive definite. In fact, since the operator A has the form “identity + compact” the
convergence is superlinear [97]. O

Example 2.2. The Laplace operator.

Variants of the conjugate gradient method are frequently used to solve systems which are
obtained from discretizations of second order elliptic operators. Therefore, a natural question
is how such methods can be applied to the continuous problems themselves. So let Q be
a bounded domain in R", and let H}(Q) C L?(Q2) be the Sobolev space consisting of L?
functions with a weak gradient in L? and vanishing trace on the boundary. Furthermore, let
X* = H YQ) D L*(Q) be the corresponding representation of the dual space, such that the
duality pairing is an extension of the inner product in L?(2). Hence, we have

X =H}Q) CL*(Q) c HYQ) = X",

and, in a standard manner, we define the negative Laplace operator A : X — X™* by
(Au,v) = / gradu - gradvdz, u,v€ X,
Q

cf. Figure 1.
The standard weak formulation for the corresponding Dirichlet problem is now

Au =,

where the right—hand side f € X™* is given and the unknown u € X. A Krylov space method
of the form discussed above is not well defined, since the operator A may map functions in X
out of the space, cf. Figure 1. O

The key tool in order to be able to apply Krylov space methods to problems with unbounded
spectrum like the one in Example 2.2 is to introduce a preconditioner. In general, consider the
system

Az = f, (2.7)
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6 K.-A. MARDAL AND R. WINTHER

Hj

Figure 1. The mapping property of the operator A.

where typically, A is an unbounded operator , or alternatively A € £(X,Y) with X strictly
contained in the Hilbert space Y, i.e.,

X ALyox

Remark 2.5. The assumption that X C Y is typical, but not essential. The general approach
outlined below applies to general isomorphism A € £(X,Y), where X and Y are separable
Hilbert spaces. In particular, we do allow differential systems where the spectrum of the
coeflicient operator approaches both zero and infinity. O

In many problems arising from weak formulations of partial differential equations it is
convenient to consider the space Y as a representation of the dual of X. Therefore, we will
denote Y by X*. Furthermore, in the rest of this section (-,-) is the duality pairing between
X* and X, while the notation (-,-)x is used for the given inner product on X. We will assume
that A € £(X, X*) is symmetric in the sense that

(Az,y) = (Ay,z), =z,yeX.

As we have argued above, when X* # X the Krylov space methods are in general not well
defined. The preconditioner B that we will consider for the operator A is an isomorphism
mapping X* to X. Furthermore, we assume that the preconditioner B is symmetric and
positive definite in the sense that (-, B-) is an inner product on X*. Hence, the preconditioner
is a Riesz operator mapping X* to X. As a consequence, (B~!-,-) is an inner product on X,
with associated norm equivalent to || - || x. It is a direct consequence of these assumptions that
the composition

BA: x A x* B x (2.8)

is an isomorphism mapping X to itself. Furthermore, the operator BA : X — X is symmetric
in the inner product (B7!-,-) on X. Therefore, the preconditioned system

BAz = BY, (2.9)

can be solved by a Krylov space method with a convergence rate bounded by x(BA) =
[IBA|lzcx,x)||(BA) ™| z(x,x)- Such an iteration is frequently referred to as a preconditioned
Krylov space method for the system (2.7).

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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PRECONDITIONING DISCRETE SYSTEMS 7

We should mention that even if the spaces X and X* are fixed as sets, the preconditioner
B is not unique, since the space X* may have various inner products leading to the same
topology. Different choices of preconditioners just correspond to different inner products on
X* of the form (-, B-), which are equivalent in the sense of norms. Two such preconditioners
Bi,Bsy : X* — X, which define norm equivalent inner products on X*, are frequently referred
to as spectrally equivalent. More precisely, B1 and Bs are spectrally equivalent if

CO<f781f>§<f782f>§01<f781f> fEX*u

for suitable positive constants cp,c; > 0. In this case the operator BBy !'is an isomorphism
mapping X to itself, with o(B2B1") C [co, c1].

Remark 2.6. In the construction of preconditioners for discrete problems it is crucial that
we are allowed to replace one preconditioner, or equivalently one inner product on X*, by
a spectrally equivalent operator. In other words, we utilize the fact that if k(B1.4) < oo,
and By and Bj are spectrally equivalent, then we can also conclude that x(B2.A4) < co. This
is precisely the observation we can use to replace a computationally costly, and therefore
impractical, preconditioner by an effective preconditioner. This will be explained more clearly
in the discussions of discrete problems in Sections 6 and 7. O

Remark 2.7. Assume as above that A € £(X, X*) is symmetric with respect to the duality
pairing, and that B € £(X*, X) is a corresponding preconditioner, such that (B=1.,-) defines
an inner product on X. As observed above, the coefficient operator BA € £(X, X) is symmetric
in this inner product. However, note that this operator may not be symmetric in the original
inner product (-, -) x on X. Therefore, the Krylov space iteration should be defined with respect
to the inner product (B~!-,-) on X. Furthermore, the error estimate derived from Theorem 2.2
is of the form

(BA(x — ), Alz — 2))? < 20™(BA(x — 20), Az — 20)) /2 (2.10)

for this iteration. Here the constant « € (0,1) depends on x(B.A).
Assume in addition that the operator A is positive definite (or coercive) in the sense that
there is a constant v > 0 such that

(Az,z) > 9|all%, = €X.

Then BA is a symmetric and positive definite operator with respect to the inner product
(B='.,.), and the corresponding convergence estimate for the preconditioned conjugate
gradient method derived from Theorem 2.1 takes the form

(A(z — o), (& — 2))? < 20™ (A — m0), (2 — 0)) /2, (2.11)
where a = (y/k(BA) — 1)/(y/k(BA) + 1). A nice property of this estimate is that

the preconditioner B only enters through the convergence rate «. Furthermore, both the
preconditioned minimum residual method and the preconditioned conjugate gradient method
can be implemented such that there is no need to evaluate the operator B~!. Only evaluations
of B are required.

Finally, we should note that when A is positive definite, the operator A itself defines an
inner product on X. In other words, the bilinear form (A-, -) is an inner product on X, and the
coefficient operator B.A of the preconditioned system is symmetric and positive definite with
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8 K.-A. MARDAL AND R. WINTHER

respect to this inner product. Therefore, this inner product gives rise to an alternative variant
of the preconditioned conjugate gradient method. The convergence estimate for this iteration,
derived from Theorem 2.1, is exactly of the form (2.10), but with « given as in (2.11). O

Example 2.3. The Laplace operator revisited.

Above we saw that a Krylov space method is not well-defined for the Laplace operator in
the continuous case. Let us therefore introduce a preconditioner B : H=1(Q) — H}(Q2). This
preconditioner could for example be (—A)~!, cf. Figure 2.

I H;

Figure 2. The mapping property of the composition of A and B.

It is then obvious that BA = I is an isomorphism mapping H} () onto itself. However, an
immediate consequence is that all second order elliptic operators can be preconditioned this
way. Consider for example the elliptic operator A : H} () — H~1(Q) defined by

(Au,v) = a(u,v) u,v € HH(Q),
where the bilinear form a : H}(Q) x H}(2) — R is of the form

a(u,v) = /Q(AVU) -Vudz.

Here, we assume that A = A(x) € R™*" is a symmetric and uniformly positive definite, i.e.,
there are positive constants ¢y and ¢; such that

colél? <ETA@)E < erl€)?, z€Q, R

If B=(-A)"1': H Q) — H}(Q) then the condition number of BA € L(H}(Q), H}(Q)) is
given by

— c
K(BA) = |BAll ey, ) | (BA) | 2o ay) < é

Hence, the convergence rate of the corresponding Krylov space iteration can be bounded by the
ratio ¢1/co. We should also remark that the choice of preconditioner B for this example is not
unique. Any symmetric and positive definite operator B, with the proper mapping property,
can be used. Different choices will only lead to different upper bounds for the condition numbers
k(BA).

The fact that any second order elliptic operator can be preconditioned by a corresponding
simpler operator has been utilized in a number of directions in the numerical analysis literature.
For early pioneering papers, where this idea is applied to finite difference approximations, we
refer for example to [35, 44]. O.
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PRECONDITIONING DISCRETE SYSTEMS 9

3. Saddle point problems

Our goal is to apply the theory for preconditioned Krylov space methods to examples of systems
of partial differential equations. Most of the examples we will discuss can be characterized as
saddle point systems. Therefore, we will first briefly recall parts of the Brezzi theory [27, 26]
for abstract saddle point problems.

Consider the variational problem:

u=argmin F(v) subject to b(v,q) = G(q), q€Q, (3.1)
veV

where E(v) = a(v,v) — 2F (v). Here we assume that
V and @ are Hilbert spaces
F:V —-Rand G: @ — R are bounded linear functionals

a:VxV —=Randb:V x@Q — R are bilinear and bounded
a is symmetric and positive semi definite

Associated the constrained minimization problem (3.1) we consider the saddle point system:
Find (u,p) € V' x @ such that

a(u,v)  +b(v,p) (v), vev, (3.2)

=F(v
b(u, q) = G(q) 7€ Q.
By introducing operators A: V — V* and B : V — @Q* defined by

the system (3.2) can be rewritten in the form

(-0 a3 %)

Here A and B are bounded operators, B* is the adjoint of B, and V* and Q* are the dual spaces
of V and @, respectively. The two Brezzi conditions are necessary and sufficient conditions
for ensuring that the coefficient operator A4 : V x Q — V* x Q* is an isomorphism. These
conditions can be stated as follows:

There are constants a, 3 > 0 such that

a(v,v) > a|v|i, wveZ, (3.3)

where Z ={v € V|b(v,q) =0, ¢€Q}, and

inf sup _bw.a) > p. (3.4)
1€Quvev [[v[lvllalle
If these conditions holds then we can conclude that the saddle point system (3.2) has a unique
solution (u,p) € V x Q. Furthermore, under these conditions (3.2) and (3.1) are equivalent in
the sense that if (u,p) solves (3.2), then w is the unique minimizer of (3.1). For more details
we refer to [27, 26].
Next, we will consider preconditioners for saddle point problems. Recall from the general
setup above, that if 4 : X — X* is an isomorphism, then the corresponding preconditioners B

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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10 K.-A. MARDAL AND R. WINTHER

should be isomorphisms mapping X* to X. Hence, in the setting of the abstract saddle point
problem (3.2), where X =V x Q and X* = V* x Q*, the canonical choice is a Riesz operator
mapping X* to X of the form
B (M 0)
0 N)°

where M : V* — V and N : QF — @Q are symmetric and positive definite isomorphisms.

Therefore, block diagonal preconditioners are in some sense a natural choice for these problems,
cf. [46, 78, 79, 83, 84].

Example 3.1. Stokes problem.
For a domain {2 C R™ we consider the linear Stokes problem for incompressible flow given by

—Au—gradp =f in (Q,
divu =g inQ, (3.5)
u =0 on .

Furthermore, the corresponding weak formulation takes the form:
Find (u,p) € (H}(Q))™ x LE(Q2) such that

(gradu, gradv) +(p,dive) = (f,v), ve (H Q)
(divu, q) = (9,9), q € L§(Q).

Here L3 is the space of L? functions with mean value zero. This is an example of a problem
of the form (3.2). Furthermore, in this case the first condition (3.3) holds as a consequence
of Poincaré’s inequality. The second Brezzi condition, the inf-sup condition (3.4), can be

expressed as

di
inf  sup M26>0.
a€L3 ye(ayn [Vl lqllr

This estimate is for example established, under the condition that € is a Lipschitz domain in
[69]. As a consequence of the theory outlined above, we therefore conclude that the coefficient

operator
~ (—A —grad
A= (div 0 >

is an isomorphism mapping (Hg (€2))" x L3(2) onto (H~1(£2))" x L3(£2). The canonical choice
of a preconditioner is therefore given as the block diagonal operator

()

mapping the space (H~1(Q))" x L3(Q) onto (H}(Q))™ x LE(Q). Here, the positive definite
operator (—A)~! can be replaced by any spectrally equivalent operator, corresponding to
changing the inner product of the space (H~1(2))". O

Example 3.2. Mized formulation of the Poisson problem.
Let © be a domain R™ and consider the system

u—gradp =f in €,
divu =g inQ, (3.6)
u-n =0 on JQ.

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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By eliminating the vector variable u, we see that the scalar variable p must satisfy
—Ap=divf—g inQ, 0Op/on=—f-n on Q. (3.7)

The following weak formulation of the system (3.6) is again an example of a system of the
form (3.2).
Find (u,p) € Ho(div,Q) x LZ(Q) such that

(u,v) +(p,dive) = {(f,v), v € Hy(div,Q),
(divu,q) ={9,9), q € L§(2).

Here, the space Hy(div, () consists of all vector fields in (L?(Q))™ with divergence in L?().
Furthermore, the zero subscript indicates that we restrict to vector fields with vanishing normal
component on the boundary 9. This is a Hilbert space with inner product given by

(u, V) Hy (div,0) = (U, v) + (divu,divv).
The two Brezzi conditions are easily verified in this case. In particular, the coercivity condition,
(3.3), holds since |[v]jo = ||v||fy(aiv) for all divergence free vector fields, while the inf-sup
condition (3.4) in the present case follows from the corresponding condition for the Stokes
problem. As a consequence, we therefore can conclude that the coefficient operator

A= (dfv - gorad> : Ho(div, Q) x L3(Q) — Ho(div, Q)* x L2(Q),

is an isomorphism. Furthermore, for n = 3 the space Hy(div, Q2)* can be identified with
H Y cur, Q) ={f € H Q)| curl f € H'(Q) }.

The preconditioner B should therefore be chosen as a block diagonal isomorphism mapping
Ho(div, Q)* x L3(Q2) onto Ho(div, ) x L3(£2), and the canonical choice is given by

(I —graddiv)™" 0
B=B = ( " )

Here the operator I — graddiv is the operator derived from the Hy(div)—inner product. We
note that this operator is special in the sense that it acts as a second order elliptic operator
on gradient—fields, but degenerates to the identity on curl-fields. This has the consequence
that for the corresponding discrete operators, the construction of effective preconditioners for
this operator is more delicate than for a standard second order elliptic operator. Of course,
as before we are allowed to change inner products, i.e., the operator (I — graddiv)~! can be
replaced by any spectrally equivalent operator. O

Example 3.3. Alternative formulation of the Poisson equation.
We consider again the system (3.6), but now with the alternative weak formulation:
Find (u,p) € (L?(Q))" x HY(Q) N L3(Q) such that

<uv 1)> —(gradp, 1)> = <fa v>a vE (LQ(Q))na

—(u,gradq) —{pq)  qe H\(QNIZQ). (38)

By eliminating the variable u we see that this formulation is indeed equivalent to the standard
weak H?' formulation of the boundary value problem (3.7), given by

(gradp,gradq) = — (f,gradq) — (g,q), q€ H'(Q)NL3(Q). (3.9)

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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12 K.-A. MARDAL AND R. WINTHER

However, here we shall consider the system formulation (3.8). Hence, we formally consider the
same system (3.6) as in the example above, and therefore with the same coefficient operator
A, but with a different weak interpretation. In the present formulation the operator A is an
operator defined on the space X = (L*(Q))" x (HY(Q) N LZ(Q)). As above, the two Brezzi
conditions are easily verified. In fact, in this case the coercivity condition (3.3) is obvious,
while the inf-sup condition (3.4) is a consequence of Poincaré’s inequality. The present choice
of spaces leads to a canonical preconditioner B = By : X — X* of the form

5= (o ()

We therefore conclude that the operator

(I —grad
'A_(div 0 )’

is well defined on two different spaces, either
X = Hp(div,Q) x LZ() or X = (L*(Q)" x (H*(Q)NL3(Q)),

and A maps these spaces isomorphically into their dual spaces, defined by extending the L2
inner products into proper duality pairings. Furthermore, this leads to two corresponding

preconditioners:
(I —graddiv)~! 0 (I 0
Bl = < 0 I or 32 = 0 (—A)_l 5

where the operators (I — graddiv)™! and (—A)~! can be replaced by spectrally equivalent
operators. Note that the preconditioners B; and Bs are not spectrally equivalent. In fact, they
are quite different. O

Remark 3.1. Of course, the standard weak formulation of the Poisson problem, with the
scalar variable p taken in H', is the formulation (3.9), where the vector field u has been
eliminated. The system formulation (3.8) is just included above in order to illustrate that, in
general, there is a possibility of non uniqueness in the choice of preconditioner. O

In order to better understand how one single operator can allow two completely different
preconditioners, as in the example above, we will consider a more algebraic example.

Example 3.4. One operator, two different preconditioners.
Let H = (5(R?) be the Hilbert space consisting of sequences of vectors in R? with Euclidean
length in fy. Hence, x € H if x = {x;}52, with each z; € R? and > |z;|? < oo. Define an
unbounded block diagonal operator A on H by
Ay
A= Az

where each block A; is a 2 x 2 matrix of the form

(1 a
A]_(aj 0)

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Here a; are positive real numbers such that 1 = a1 < a2 < ... and lim;_ a; = co. The

eigenvalues of A are
1+./1+ 4&?
Aj=—>"—""—

2

We will consider block diagonal preconditioners for the operator A of the form B = diag(B;)
where each block is of the form:

Bi 0
Bj—(oj v , 6j,’}/j>0.

— £o0 as a; — 00.

Hence, for each j we need to study 2 x 2 matrices of the form

neG 6D

for a € [1,00). The operator B will be a preconditioner if B.A is a bounded operator on X,
with a bounded inverse. Hence, we need to study the eigenvalues of the blocks BA for different
choices of 3 and . One possibility is to choose § = 14}7 and v = 1. This gives

1 1 _a_
B= (1‘6‘12 (1)> and BA = <1‘Z‘12 1J6a2> with eigenvalues A(a) — +1 as a — oo.

We can therefore conclude that the corresponding operator B = B; is a preconditioner.
An alternative, non-spectrally equivalent preconditioner, is obtained by taking § = 1 and

vy = ﬁ, which gives
B:(1 ?) andBAz( ! g)
0 1+a2 1+a?

Hence, the eigenvalues satisfy

LEy/l+2 1445
Ma) = — as a — 0o,

2 2

and therefore this choice defines another preconditioner B = 5. As above, we note that the two
preconditioners are not spectrally equivalent. In fact, the operator B2B3; 1is a block diagonal
operator where each 2 x 2 block is of the form

(1 0 ><1+a2 0) (1+a2 0 >
1 = 1
0 Tra? 0 1 0 T+a?

and therefore BBy ! has eigenvalues which approach both zero and infinity as a — co. O

Remark 3.2. The example above should be seen a warning. As we have discussed above, cf.
Remark 2.6, a key tool in constructing practical preconditioners, based on the identification
of the canonical ones, is to utilize the fact that if k(B1.A) < oo, and By and By are spectrally
equivalent, then we can also conclude that x(B2.A) < co. On the other hand, it is not true that
if both x(B1.A) < 0o and k(B2.A) < oo then By and By have to be spectrally equivalent. This
is exactly what Example 3.4 shows. O

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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14 K.-A. MARDAL AND R. WINTHER

4. Parameter—dependent problems

Many systems of partial differential equations depend crucially on small (or large) parameters.
In order to develop computational procedures which are robust with respect to these
parameters it is natural to consider preconditioners which are uniformly well-behaved. Below
we consider three model problems which depend on small parameters, namely the so—called
time dependent Stokes problem, the Reissner—Mindlin plate model, and an optimal control
problem.

For each of these examples the goal is to produce preconditioners B for the coefficient
operator A which results in iterations which converge uniformly with respect to the parameters,
i.e., the condition number k(B.A) should be uniformly bounded. A key tool for achieving this
is to introduce proper parameter—dependent spaces and norms, such that the corresponding
operator norms of the coefficient operator is bounded uniformly with respect to the parameters.
We start this discussion by considering an elementary example.

Example 4.1. Reaction—diffusion equation.
Consider the boundary value problem

—EAutu=f inQ, ulpg=0, (4.1)

where € > 0 is a small parameter. This equation is often referred to as a reaction diffusion
equation. From energy estimates we see that a natural norm for the solution u is

lull e sy = (lullf + € || grad ull) 2,

where here, and below, we use || - ||s to denote the norm in H*(2). What is the correct norm
for f, || fll2, such that we get a sharp bound of the form

lullz2ne gz < cllflle,
and where the constant ¢ is independent of €¢? Note that we formally have
u=(I— €2 A)flf and that Hu”i%eHé =((I - € A)u,u),
where (-, -) is the duality pairing between H~!(Q) and H{ (). Therefore,
[ullFane gy = (I = € A)u,u) = (I — € A) 7 f, f)
(= @A) (T = @A) L)+ E(—A)NT — A L, (- A)7Lf)
= 1foll§ + € 2((=A) " f1, f1) = lfollg + e 2 1 2]1%4,
where
fo=(I—=EA)f and fi=—-EAI—-EA)
Note that fo + fi = f. In fact,

(I—e)7H = b [l + e Al
fo€L?, fLeH!
Furthermore, if we define an e-dependent norm on f by
IFIEe =T = A) 71 f),
then
lullzne mg = [1f e

Hence, in this sense the elliptic operator (I — €2 A) is norm preserving. O

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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PRECONDITIONING DISCRETE SYSTEMS 15

The example above motivates us to introduce the notions of intersections and sums of Hilbert
spaces, cf. [19, Chapter 2]. If X and Y are Hilbert spaces, then XNY and X +Y are themselves
Hilbert spaces with the norms

l2llxny = (21% + [1213)"/2

and

lollxy = _inf - (l=ll% + lylI5)"/>.
= Yy
zeX,yey

Furthermore, if X NY is dense in both X and Y then (X NY)* = X* + Y* and
(X +Y) = X*NY* Finally, if T is a bounded linear operator mapping X; to Y; and
Xs to Ys, respectively, then

T e E(Xl NXo, Y1NYs)NL(X7 + X2, Y1 + Yz)
In particular, we have the bounds

171 £(xynx2,vanva)s 1T x4 X2 viave) < max([| 7| £x, vi)s 1Tl 2(x2.v2))- (4.2)

We refer to [19, Chapter 2| for these results.

Assume that X and Y are real, separable Hilbert spaces with Y C X. Hence, by scaling the
norms properly, we can assume that |ly||x < ||y|ly for all y € Y. For each € > 0 consider the
spaces X Ne-Y given by

I2lkne.y = 2% + € 12115

The space X Ne-Y is equal to Y as a set. However, the norm approaches || - || x as € tends to
zero. On the other hand consider the space Y 4 ¢! -X with norm given by

o3 eix = _inf g} + el
= Y
rzeX,yeY

This space is equal to X as a set, but the corresponding norm approaches | - ||y as e tends to
Zero.

Let X, be the space X, = L?(Q) Ne-H}(Q). If the duality pairing is an extension of the L?
inner product, then X = L?(Q)+¢ 1 -H~1(Q2). Hence, as € tends to zero, the norms on both X,
and X approach the L? norm. Furthermore, || f||%. is equivalent to ((I —e? A)~1f, f). Hence,
the spaces X, and X}, and their norms, are exactlgz the proper tools to obtain e-independent
estimates for the reaction—diffusion equation (4.1).

Next, we study three examples of saddle point problems which all depend on a small
parameter.

Example 4.2. The time dependent Stokes problem.
Consider the linear time dependent Stokes problem given by:

uy — Au —gradp = f in QxRT,
divu =g inQxRT,
u =0 ondQ xR,
u =ug onx{t=0},

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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16 K.-A. MARDAL AND R. WINTHER

for  C R™. Various implicit time stepping schemes lead to boundary value problems of the
form
(I - A —gradp =f inQ,
divu =g in Q, (4.3)
v =0 onJdQ,

where € € (0, 1] is the square root of the time step. This is a linear saddle point system with

coefficient operator
I—-eA —grad
A= < div 0 ) ’

where A, : HE () x L3(Q2) — H~Y(Q) x L*(Q) is defined by
(Ac(u,p), (v,0)) = (u,v) + € (grad u, gradv) + (p, divv) + (¢, divu), (v,q) € Hy(Q) x L*(9).

Note that here the symbol (-, -) is used to denote both duality pairings and L? inner products.
We would like to define A, on a proper space X, such that we obtain bounds on the norms of
Ac and A- !, independent of €. Recall that for e = 0 the operator

(I —grad
Ao = (div 0 )

is bounded from Hy(div,Q) x LZ(Q) into Hy(div,Q)* x L3(Q). Let X. = (Hp(div,Q) N
€-H(Q)) x L3(Q), and X} = (Ho(div,Q)* + e 1 -H1(Q)) x L3(2). Note that the space
X, is equal to H} () x L*(Q) as a set, and therefore A, is well-defined on X.. It is also easy
to see that || Acllz(x. x+) is bounded independently of €. To check that the same is true for the
inverse, we have to verify the two Brezzi conditions, (3.3) and (3.4), with appropriate constants
independent of e.

However, the coercivity condition (3.3) holds with constant o« = 1, while the inf-sup
condition (3.4) follows since

(q,divv) (q,divv)

sup ——— > sup .
veH} HU”H(div)me»Hl vEH} 2| g1

We conclude that a uniform preconditioner therefore should be a positive definite mapping B,
mapping X isomorphically onto X.. Hence, the canonical choice is an operator of the form

_ o2 AV
B.=B,. - ((I graddé)v e A) ?) 7

where the operator (I —graddiv —e? A)~! : Hy(div, Q)*+e 1 -H Q) — Ho(div,Q)Ne-HL(Q)
can be replaced by any operator which is spectrally equivalent to this operator, uniformly in
€.

Recall that the operator Ay is also bounded from (L?(2))" x (H(2) N LZ(Q)) into its dual
space. Hence, it seems that the operator A, can also be defined on another space, where the
velocity is allowed to be in (L*(Q) Ne HY(Q))™. Then the proper norm for the scalar variable
should be ( >

q,divov
sup ———— = |lgradql[re e g1 ~ [lgll g1 L2,
vE(HL™ vl L2ne m
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where ~ is used to indicate a possible equivalence of norms which needs to be checked. Note
that for each fixed € > 0 the norm ||- || g1 41 12 is equivalent to the L? norm, but it approaches
the H' norm as € tends to zero. In agreement with this discussion, define the space

Yo = (L*(Q) Ne-Hg ()" x (H'(Q) N L§(Q) + e -L3(9),
and let Y.* be the corresponding representation of the dual space given by
YO = (LXQ) + e - HTH Q)" x (H'(Q) N L3(2)" Ne-L(Q).

The only real difficulty in establishing that A : Yo — Y is an isomorphism, with [|Acl| (v, v)
and || AZ1|£(v+,y.) bounded uniformly in €, is to establish the inf-sup condition

a4
sup (q,divv)

ZB”q”Hl-‘re*l L2, qeL(2)a
ve(HF)™ HU”LzﬂeHl

for a suitable positive constant 3, independent of e. Alternatively, this can be written as a
generalized Poincaré inequality of the form

lall e 2z < 7 graddll g1 m-1,  q € L. (4.4)

Consider the Stokes problem (3.5) with g = 0, and let T € L((H ()", L3(2)) be the
mapping given by T'f = p. Note that if grad : (L?(Q))" — (H~(Q))" is the weakly defined
gradient operator, then T o gradq = ¢ for all ¢ € L?(9).

If we assume that the Stokes problem admits H?2-regularity, which will hold if Q is convex
or has smooth boundary, cf. [34], then T € L(L*(Q), H*(2) N LZ()). Hence, using (4.2) we
can conclude that

| Tl z(zoqet -1 (I AL2) +e1 L2) < B, (4.5)

where 7! = max(||T||z(12,m1n12), 7|l z(z-1,L2))- Furthermore, we then have

HQHH1+5*1 L2 = HTograquHurefl 2 < 5_1” grSLdeHLQJrf1 H-1

which is exactly the desired bound (4.4). For reasonable non-convex domains with non-
smooth boundaries, the uniform inf-sup condition (4.4) still holds, but the proof has to be
altered [67, 82].

From the mapping property of the operator A, € L(Y,,Y.), we conclude that a uniform
preconditioner for A, is alternatively given by

B (I —-€A)TT 0
Be - 32,6 - < 0 (—A)_l + 62]

Discrete preconditioners along these lines for the problem (4.3), and generalizations, have been
suggested in [23, 29, 38, 36, 37, 58, 59, 66, 71, 91]. O

Example 4.3. The Reissner-Mindlin plate model.
This example is based on the presentation given in [2]. The study of elastic deformations of a
clamped thin plate leads to the optimization problem

min E(o,u),
(pu)e(HY)2x Hy (@)

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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18 K.-A. MARDAL AND R. WINTHER

where the energy functional is given by

B(G.) = 5 [ {(C80): (€0) + 210 — graduf’}o

— / gudx.
Q

Here the domain Q@ C R2, and £¢ denotes the symmetric part of grad¢. The parameter
t € (0,1] is the thickness of the plate, the function g represents a transverse load, while C is a
uniformly bounded and positive definite operator mapping symmetric matrix fields into itself.
The corresponding equilibrium system takes the form

—divCEP +t72(¢ — gradu) = 0,
t2(—Au+dive) =g,
Plaa =0, ulsa =0,
or alternatively, with ( = —t=2(¢ — gradu):
—divCES — ¢ =0,
—div( =g,
—¢ +gradu — t3¢ = 0.

This system can be given the following weak formulation:
Find (¢, u, ) € (H}(Q))? x HE(Q) x (L*(Q))? such that

(CEP,Ep) — (¢, p —gradv) = (g,v), (¥,v) € (HF(Q))? x H} (),
—(¢—gradu,n) —t*(¢,n) =0, ne(L*(Q))>

This system can formally be written in the form

10) 0
At U - g )
¢ 0
where the coefficient operator, A;, is given by
—divCE€ 0 -1
Ay = 0 0 —div

-1 grad —t2]

The case t = 0 can be seen as an interpretation of the biharmonic problem, i.e., the limit case
as the thickness of the plate tends to zero. Note that in this case the operator A is a saddle
point operator of the form studied above, and hence the Brezzi theory can be applied. It is
not hard to see, cf. [2], that

(n, v — gradv)
sup T ~ [l g-1(aiv)-
woyemdy2 st 1Yl + [lv]lm

Here the symbol ~ is used to indicate equivalence in norms, and the space H~!(div, () is

H(div, Q) = {n e (H}(Q))*| divn e H (@)},
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with norm given by
1717+ @iy = 07— + | dival ..

Therefore, the operator Ag can be seen to be a bounded operator from Xo = (H})? x H}(Q) x
H~1(div,Q) into its L?-dual given as X; = (H 1(Q))? x H1(Q) x Hy(rot,Q), and with
bounded inverse. Here rot denotes the differential operator mapping an R? vector field n into
the scalar field rotn given by rotn = dym — dyn2. Furthermore, the space Hy(rot, §2) is given
by

Hy(rot, Q) = {n € (L*())?| rotn € L*(Q), Prn = 0on 00 },
where Prn denotes the tangential component of 7 on the boundary. Observe that in this case
we do not have that Xy C X, since

Hy(rot, Q) C (L*(Q)* ¢ H™(div, Q).
In fact, the coefficient operator Ay has a spectrum which approaches both zero and +oo, cf.
Remark 2.5.
The canonical operator mapping Hy(rot, ) onto H~1(div,) is the differential operator
Dy = I + curlrot,

where curlv = (—0yv, 9;v). Therefore, the canonical preconditioner for this biharmonic system
takes the form

A1 0 0
By = 0 (—A)_l 0
0 0 Dy

We note that the two first diagonal blocks are compact operators, corresponding to elliptic
solution operators, while the third block is a differential operator.
For ¢ > 0 the function spaces are modified such that

X = (Hy (@))% x Hg(Q) x (H™'(div, Q) Nt - (L*(2))?)
and its L?-dual
X7 = (HHQ)? x HHQ) x (Ho(rot, Q) + ¢ - (L2(Q))?).

It can be checked that A; € £(X;, X;) and A; ' € L(X}, X;) are both bounded uniformly in
t for t € [0,1]. Therefore, a corresponding uniform preconditioner takes the form

(—A)~!L 0 0

B: = 0 (=AY 0],
0 0 Dy
where the operator D, is a suitable isomorphism mapping Hy(rot, Q) + ¢t~ - (L?(Q))?
onto H~'(div,Q) Nt - (L*(R2))?, and with proper operator norms of D; and D; ' bounded
independently of ¢. So for t = 0 the differential operator D, given above has the correct
mapping property. For ¢ > 0 the operator
Dy =T+ 1 —t*)curl(l —t*A) ' rot

can be used. We note that for any ¢t > 0, D; € L((L*(2))%, (L*(22))?), but with increasing
operator norm as t approaches zero. However, the norms of D, and D, ! are uniformly
bounded in L£(Hy(rot, Q) + ¢t~ - (L2(Q))?, H=1(div,Q) Nt - (L?(2))?) and L(H!(div,Q) N
t-(L2(2))2, Ho(rot, Q) +t~1 - (L?(Q))?), respectively. We refer to [2] for more details. O
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Example 4.4. An optimal control problem.
Let Q C R™ and for a given function y4 € L*(Q2) let

1 2
Eé(z,v)zgfﬂ(z—ydyda:—l—%/v2da:.

Q

Consider the following optimal control problem:

(y,u) = argmin FE.(z,v) (4.6)
(z,v)€EH' X L?

subject to the elliptic constraint

z— Az

’U7
20 (4.7)

0.

Here € € (0, 1] is a regularization parameter. A weak formulation of the equilibrium system for
this problem takes the form:
Find (y,u,\) € H}(Q) x L?(2) x H(Q) such that

(y,z) + (A, 2) + (grad A\, grad z) = (yq, 2), z € HY(Q),
e2(u,v) — (\,v) =0, v e L*(Q), (4.8)
(y, ) + (grad y, grad p) — (u, ) =0, p€ HY Q).
Here the unknown A € H(2) corresponds to a Langrange multiplier.
Solution algorithms for variants of the system (4.8) have been studied by various authors,
cf. for example [20, 68, 70, 80]. The discussion here follows closely the approach taken in [80].
The coefficient operator of the system (4.8) takes the form:

I 0 I-A
A = 0 &1 -I ). (4.9)
I-A —I 0

Note that this operator is on saddle point form. Furthermore, for any fixed € > 0 it can easily
be seen that A, is a bounded operator from the space H'(2) x L?(Q2) x H*(2) to the dual
space H1(Q)* x L2(Q) x HY(Q)*, where H!(Q)* is the dual space of H'(Q) with respect to the
L? inner product. However, the corresponding norm on A-* will blow up as € tends to zero.
In order to avoid this blow up, we have to introduce e-dependent spaces and norms. For each
€ > 0 we define the space X, by

X, = (L2(Q) N2 -HYQ)) x e L*(Q) x (e -L2(Q) ne V2. HY(Q)).

It is easy to see that the bilinear forms defining the variational problem (4.8) are all uniformly
bounded in these weighted norms. To show that the inverse, A-! also admits the correct
bounds, we need to show that the coercivity condition (3.3) and the inf-sup condition (3.4)
holds uniformly in e. To show condition (3.3) we need to establish that there is an o > 0,
independent of €, such that

1211 + € [[o]]* = a(ll2l* + ¢ || grad [|* + € [[]|*)
for all (z,v) € HY(Q) x L?(9) satisfying the constraint
(z, ) + (grad z, grad pu) = (v, ) p € H'(Q).
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Here and below || - || denotes L? norms. In fact, since the constraint implies that || grad z||? <
llollllz|, we can easily conclude that the coercivity condition holds with av = 1/2.
The inf-sup condition (3.4) in the present context reads

(2, 1) + (grad z, grad 1) — (v, 1) -2 2 -1 2\1/2
sup > Ble “||lp||” +e€ grad u
oot ez IR + e grad 2+ 2 ogpy1/2 = P Il + e lirad el

for all u € H(Q), where the positive constant /3 is required to be independent of e. However,
by choosing v = —e 21 and 2z = ¢! i we obtain

sup (z.p) + (grad z,grad p) — (v, p) e p? + e gradp]* + 2 ||u]?
et Lz (1217 + ellgrad 2] + e o]2)1/2 = (e72 [|ull> + = [ grad pl|* + €2 [|ul|*)*/?
L e ?pll? + et | grad p?

> (—=) :
V27 (€72 [|p]|? + et | grad p|?)1/2

So the uniform inf-sup condition holds with constant § =1/ V2.
Let X be the associated representation of the dual space X, given by

X* = (L2(Q) 4+ e V2. HYQ)*) x e - L2(Q) x e-L*(Q) + /2 - H (Q)*.

Then it follows from the bounds above that the operators A, and AZ! are uniformly bounded
in L(X, X?) and L£(X[, X.), respectively. Note that the canonical block diagonal operator
mapping X, to X is of the form

I—eA O 0
0 T 0
0 0 e 2(I—e€A)

Therefore, a uniform block diagonal preconditioner for the operator A, takes the form

(I —eA)™t 0 0
B. = 0 21 0 . (4.10)
0 0 I —-eA)!

The analysis given in this example indicates that for the corresponding discrete problems
proper uniform preconditioners should be composed from standard elliptic preconditioners
and proper scalings. This hypothesis will be confirmed by our discussion below. O

Remark 4.1. In the above optimal control problem we managed to identify proper weighted
Sobolev spaces such that the optimal control problem actually was an isomorphism. In general,
it might not be easy to identify such spaces. Therefore, in [70], a different approach was taken.
They demonstrated, by using weighted Sobolev spaces derived from abstract conditions, that
the eigenvalues of the preconditioned system will be clustered in an interval close to zero and in
two bounded intervals that do not approach zero. Moreover, the interval close to zero contains
relatively few eigenvalues. Under such circumstances Krylov solvers such as the conjugate
gradient method and the minimum residual method are known to be very efficient [9, 10, 70].
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5. A general approach to preconditioning finite element systems

Up to this point we have only discussed how to precondition continuous systems of partial
differential equations. In particular, we have focused on how to precondition various parameter—
dependent problems uniformly with respect to the parameters. Most of the examples we have
discussed are saddle point problems. Therefore, our main tool has been the Brezzi theory
for saddle point problems outlined in Section 3, and the introduction of proper parameter—
dependent spaces and norms discussed in the beginning of Section 4. Of course, our real goal
is to study preconditioners for discrete versions of systems of partial differential equations. In
this section we argue that:

e if we have identified the correct preconditioner for the continuous problem, and
e if we have applied a stable finite element discretization to this system,
= then we know the basic structure of a preconditioner for the discrete problem.

This approach will lead to preconditioners such that the condition numbers of the
preconditioned systems are bounded uniformly with respect to the discretization parameter.
Furthermore, for parameter—dependent problems of the form studied in the previous section
we obtain condition numbers for the preconditioned system which are bounded independently
of both the discretization parameter and the model parameters. In order to achieve our goal
we have found it convenient to utilize the general variational theory developed by Babuska
[12, 13]. This theory is not restricted to saddle point problems.

As we have indicated above, the general procedure just outlined, based on the mapping
properties of the coefficient operator, will only identify a canonical block diagonal
preconditioner, i.e., a preconditioner which might be rather costly to evaluate and therefore
not efficient. As a consequence, to construct a practical preconditioner we usually need to
replace the different blocks of the canonical preconditioner by more cost efficient operators
with equivalent mapping properties. Typically these operators will be constructed by domain
decomposition methods, multigrid methods or similar techniques. These issues will be further
discussed in Sections 6 and 7.

Let X be a real, separable Hilbert space and a : X x X — R is a bounded and symmetric,
but not necessarily coercive, bilinear form satisfying an inf-sup condition of the form

. a(z,y)
inf sup ——————
eeX yex |2/ xllyllx

We let C, > 0 be the bound on the bilinear form a, i.e.,

>~ > 0. (5.1)

la(z,y)| < Callz]xllyllx 2,y € X. (5.2)
For a given f € X™* consider the variational problem: Find € X such that
a(z,y) = (f.y) yeX, (5.3)
or equivalently
Az = f,

where (-, -) is the duality pairing between X* and X, and A : X — X* is given by
(Az,y) =a(z,y) x,y€X.
The following theorem is established in [12, 13].
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Theorem 5.1. The variational problem (5.3) has a wunique solution. Furthermore, the
coefficient operator A satisfies the bounds

[Allzx,x) € Cay  and || A7 | gxex) <775

Remark 5.1. The theory developed in [12, 13] is more general than indicated above, since
no symmetry of the bilinear form a is required. In fact, even different test and trial spaces are
allowed. However, in the present paper we will only use this result in the symmetric setting. O

Example 5.1. The mized Poisson problem.
Consider the mixed weak formulation of the Poisson problem:
Find (u,p) € Ho(div,Q) x LZ(Q) such that

(u,v) + (p,divv) = (f,v), v € Ho(div,Q),
(divu,q) ={g,9), q€L§Q).
We have seen in Section 3 that existence and uniqueness of solutions of this problem follow

from the Brezzi theory. However, we could also have used Theorem 5.1 above. To see this, let
X = Hy(div, Q) x L3(£2). This is a Hilbert space with inner product

(5.4)

(@, y)x = (u,v) + (dive, dive) + (p, q)
for x = (u,p) and y = (v, q). Define a bilinear form on X by
a(z,y) = (u,v) + (p,dive) + (div u, g).

Then the problem (5.4) corresponds to the variational problem (5.3). Furthermore, it is
straightforward to check that the bilinear form a is bounded on X. Therefore, it only remains
to check that the general inf-sup condition (5.1) holds for the bilinear form a. However, since
we have already seen that the Brezzi conditions (3.3) and (3.4) hold, this will be a consequence
of Theorem 5.2 below. O

In fact, all saddle point problems studied in Section 3 can be seen as examples of problems
of the form (5.3) with an associated bilinear form a satisfying the conditions (5.1) and (5.2).
To see this, consider an abstract saddle point problem of the form studied in Section 3:

Find (u,p) € V' x @ such that

aop(u,v) +b(v,p) = F(v), veV,
b(u, q) = G(q), q€Q,
where we have changed notation slightly by replacing the bilinear form a in (3.2) by ag. Let

us assume that the bilinear forms ag and b are both bounded and satisfy (3.3) and (3.4). Let
X be the Hilbert space X =V x @ with inner product

(5.5)

<x7y>X = <U,’U>V + <paq>Qa
and define the bilinear form a : X x X — R by
CL(.I, y) - ao(u, 1}) + b(’U,p) =+ b(ua q) (56)

Here x = (u,p) and y = (v, q). We then have the following theorem.
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Theorem 5.2. Assume that the bilinear forms ag and b are both bounded and satisfy (3.3)
and (3.4). Then the corresponding bilinear form a, defined by (5.6) on X =V x Q, is bounded
and satisfies (5.1).

This result, which basically follows from the fundamental theory of [12, 13, 27], is well-
known, see for example the discussion in the introduction of [39]. However, as a service to the
reader, we include a sketch of a proof in the present setting.

Sketch of a proof of Theorem 5.2. It is straightforward to check that the boundedness of
ap and b, implies that also the bilinear form a is bounded on X. Hence, it only remains
to establish the inf-sup condition (5.1). As a first step in this direction we establish that
(ap(v,v) + HBUHQQ*)l/2 is a norm, equivalent to || - ||y, on V. Here, the operator B € L(V, Q")
is defined by (Bwv, q) = b(v, q) for v € V and g € Q. Therefore, (5.1) will follow if we can show
that there are constants c1, c2 > 0 such that for each z = (u,p) € X, wecan find y = (v,q) € X
such that

lollx < erllzllix and  a(z,y) > eaao(u, u) + | Buld- + Ipll3): (5.7)

For x = (u,p) € X given and for any ¢ > 0, define y = (v,q) € X by
v=u-+tw, q=-—-p+tRoBu,

where w € Z+ satisfies RgBw = p. Here Rg : Q* — @ is the corresponding Riesz operator.
It can now be checked that the positive parameter ¢ can be chosen such that (5.7) holds, and
this will complete the proof. O

Let us return to the variational problem (5.3). Define B : X* — X as the Riesz operator

Note that
(BAz,y)x = (Az,y) = a(z,y) = (z,BAy)x,

so BA is a symmetric operator mapping X to itself as a consequence of the symmetry of the
bilinear form a. Furthermore, from (5.2) we obtain

(BAvy)x _ - la(z.y)

IBAl£(x,x) = sup = sup 2 <o
sex |7l xlyllx  zex [lzllxllyllx
and from (5.1)
B B
H(BA)_IHZ(lx x) = inf [BA=]x = inf sup (BAz,y)x = inf sup a(z,y) >~ >0.
’ veX lzllx  eexyex [@llxllyllx  sexyex [zl xllylx

In other words, B is a preconditioner for A and the condition number of the preconditioned
operator BA satisfies x(BA) < C, /7.

Next, we consider the discrete versions of (5.3) obtained from finite element discretizations.
So let {Xp}, with each X; C X, be a family of finite element spaces indexed by the
discretization parameter h, and consider the corresponding discrete variational problems: Find
xp € Xj, such that

alzp,y) ={f,y) y€ Xp orequivalently Apzp = f, (5.8)
where (-,-) denotes the duality pairing between X and X}, and Ay, : X, — X/ is given by
<Ahfl;,y> :a((E,y) Z,y EXh'
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Since, a is not positive definite it is not clear that this discretization is stable, in fact the
system can even be singular. The stable discretizations are characterized by a discrete inf-sup
condition corresponding to (5.1). Hence, we assume that there is a constant 7, independent
of h, such that
a(x
inf sup (z.9)

AR s, (5.9)
e€Xn yex, 17l x|lyllx

This condition does not follow from the corresponding condition for the continuous case.
However, for saddle problems, where the bilinear form is given of the form (5.6), then it
follows from Theorem 5.2 that the bound (5.9) will follow from the standard discrete versions
of the Brezzi conditions (3.3) and (3.4).

As in the continuous case we define the preconditioner By, : X;; — X}, by

<Bhf7 y>X = <f7 y> AS Xh-

The same arguments as in the continuous case show that By Ay, : X — X}, is symmetric (with
respect to (-,-)x) and that

IBrAnllcixn,xn) < Car and  [(BrAn) " locxn,xn <715

such that x(BpAp) < Cy/v1. So we have confirmed the claim that for stable discretizations
of the variational problem (5.3), the structure of the preconditioner for the discrete problems
follows from the structure of the preconditioner in the continuous case. Furthermore, the inner
product, (-,-)x on X} is only determined up to equivalence of norms, uniformly in h. As we
shall see below, this observation can be utilized to introduce various preconditioners for the
discrete finite element systems.

Remark 5.2. The bound on the condition number, x(By.Ar) < C,/v1, obtained above, only
depends on the upper bound (5.2) restricted to the subspace X, and the discrete inf-sup
condition (5.9). In fact, this observation also applies to mesh dependent bilinear forms and
mesh dependent norms. Assume that we consider the discrete problem (5.8), where the bilinear
form a = aj, depends on h, and that the bilinear form a; satisfies an upper bound of the form

lan(z,y)| < Callzllx, [yl x,

for a suitable mesh dependent norm || - ||x, on Xp, derived from an inner product (-,-)x
Furthermore, assume that the corresponding discrete inf-sup condition

he

inf sup _an(@.y) >7 >0

2€Xnyex, 1] x, [yl x,

holds. If we define a preconditioner By, : X — X by

<Bhf7 y>Xh = <fa y>7 Yy e Xha

then the same arguments as above shows that x(BpAy) < C,/v1. Therefore, if the upper
bound C,, and the inf-sup constant v; can be taken to be independent of h, then we can
conclude that x(BpAy) is bounded independently of h. Note, that since we do allow mesh
dependent bilinear forms and mesh dependent norms, this approach applies, in particular, to
nonconforming finite element methods, i.e., to the cases when X}, is not a subspace of X. O
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6. The building blocks of the discrete preconditioners

We have seen above that the individual blocks of the canonical preconditioners for linear
systems arising from discretizations of partial differential equations are naturally associated
with the proper function spaces for a well-posed weak formulation of the problem. The function
spaces HY(Q), H(curl,Q), and H(div,{2) appears frequently in weak formulations of various
systems of partial differential equations. As a consequence, the canonical preconditioners for
these systems will be block diagonal operators, where the corresponding blocks are exact
inverses of the operators I — A, I + curlcurl, and I — grad div, derived from the inner products

(u,v) + (grad u, gradv), (u,v) + (curlu,curlv), (u,v) + (divu,divv).

More precisely, for proper stable finite element discretization of these systems we need efficient
preconditioners for the discrete operators corresponding to I — A, [ +curl curl, and I —grad div,
since such preconditioners will be the building blocks for the preconditioners of the complete
systems. Furthermore, in many parameter—dependent problems, weighted inner products of
the form

(u,v) + €% (gradu, gradv), (u,v) + e*(curlu, curlv), (u,v) + e*(divu, div v).

may occur, where ¢ > 0 is a small parameter. Therefore, we need preconditioners for the
discretizations of the operators I — €2 A, I + €?curlcurl, and I — €2 grad div which are well
behaved uniformly in both the discretization parameter and the parameter e.

Of course, there is a large collection of literature on how to construct efficient preconditioners
for discrete versions of these operators, and we only mention a few here. Multigrid and domain
decomposition preconditioners for elliptic problems, like I — A, have been studied by many
authors, consider for example [24, 28, 45, 85] and references given there. Many of these
algorithms, like the multigrid V-cycle algorithm, will in fact adapt naturally to reaction—
diffusion operators of the form I — €2 A, while special attention to the parameter dependency
in these constructions is given in [21, 30, 31, 72]. In contrast to this, the operators I 4 curl curl,
and I — graddiv are not elliptic operators. As a consequence, some extra care has to be
taken to construct preconditioners for these operators. For example, the most straightforward
generalizations of the elliptic multigrid algorithms may not work, cf. [32]. However, one remedy
to compensate for the lack of ellipticity in these algorithms is to replace the simplest diagonal
smoothers by suitable block diagonal smoothers, cf. for example [3, 4, 5]. Another approach is to
use a proper Helmholtz decomposition to construct appropriate smoothers, cf. [50, 51, 94, 95],
and also [6, Section 10], or to use the Helmholtz decomposition more indirectly as in [49]. In
particular, the preconditioners proposed in [5] are shown to be robust with respect to € when
applied to the operators I + €2 curlcurl, and I — €2 grad div.

We will not carry out a more detailed discussion of the preconditioners associated with the
spaces HY(Q), H(curl,Q), and H(div,Q) here. Instead, we briefly discuss the representation
of the discrete differential operators, and their preconditioners, as matrices. In order to make
this discussion as simple as possible we restrict ourselves to the finite element representation
of the operator I — A and its preconditioners, but our conclusions also hold for other operators
like for example I 4 curlcurl, and I — grad div.

So let a = a(u,v) be the bilinear form

a(u,v) = (u,v) + (grad u, grad v) = / uv 4 gradu - grad v dx
Q
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defined on the space H'(Q) x H'(£2). We consider a finite element discretization of the problem
—Aut+u=f, inQ OJyu=0, ondf,

where 0,, denotes the normal derivative on the boundary 0f2. Hence, for a given finite element
space V;, C HY(Q), the finite element approximation uj;, € V}, solves the discrete system

alup,v) = (f,v), v & V.
Frequently, in the finite element literature, this problem is written as Apu, = f, where the
operator Ay, : Vi, — V7 is defined by
(Apu,v) = alu,v), u,v € Vj,.
Here, as above, (-,-) denotes the duality pairing between V,* and V;,.

Remark 6.1. It is probably more common in the finite element literature to identify V}, and its
dual space. Hence, Ay, is an operator mapping V;, into itself, and (-, -) should be interpreted as
the inner product on L?(Q2). However, for the discussion below it seems favorable to distinguish
between V;, and its dual space V,*. O

The operator Aj, € L(V4, Vy") introduced above depends on the finite element space V},, but
is independent of any basis in this space. Another representation of the discrete differential
operator, which is needed for computations, is the corresponding stiffness matrix,

Ap :R" — R", given by (Ap);; = a(oj,di),

where {¢; };?:1 is a basis for the finite element space V},. This matrix obviously depends on the
choice of basis for the space V3. Furthermore, since the basis functions ¢; usually have local
support, the stiffness matrix will be sparse.

It is instructive to clarify the relation between the stiffness matrix Aj and the operator Ay,.
We define two “representation operators,” mp, : Vj, — R™ and py, : V¥ — R"™, by

v="> (mv);ds, (unf); = (), v € Vi, f eV
J
We refer to the vectors mpv and upv as the primal and dual representations. Note that
(mnu) - (pnv) = Y (mnu); (v, 65) = (u,v)
J
SO 7r,:1 is the adjoint of up and ,u,:l is the adjoint of mp, i.e., 77,:1 = pj and u,:l = .
Furthermore, for any v € V;, we have
(1 (Anv))i = (Anv, ¢i) = alv, ¢i) = Y _(Tav)ja(e;, ¢i) = (Anmrv);.
J
Hence, ppAp = Apmy, i.e., the diagram

-Ah

Vw — V7
| Iz
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commutes. Alternatively, the stiffness matrix is given by
Ap = ppApmy, = pn Ani,.
We should observe here that if Ij, : V}, — V}" is the Riesz operator given by
(Inv,w) = (v,w)r2, v,wE Vy,
then the corresponding stiffness matrix, usually referred to as the mass matrizx, is
,uhlmr,:l # the identity matrix.

In fact, (uhlhwgl)iyj = (¢;, i) 2. In particular, its inverse ﬂ'hu;l, representing the operator
I,;l : Vi — Vj,, is in general not sparse.
We remark that the square of the stiffness matrix is given by

Ai = ,uhAhw,;l,uhAhwgl #+ ,uhAiﬂ',:l.
Hence, A7 is not a sparse representation of A?. Instead the matrix
1. 1 -1 -1 _ 2 -1
Apmppy, Ap = pp Ay, (mnpy, ) Apy, - = pn Ay,

represents A,%. This observation is relevant for Krylov space methods, since it shows that if the
stiffness matrix is used to represent the operator Aj; then, independent of the conditioning of
the operators, such iterative schemes will always ”require” a preconditioner, which transforms
the dual representation of the residual to a corresponding primal representation. In other
words, we need an operator which maps the residual as an element of V}* into V},.

Consider now a general finite element system of the form

Anxn = fn,

where the coefficient operator A, maps the finite element space Xj into X, and let
By : X; — X, be a preconditioner as discussed in the previous section. Assume further
that we want to approximate the solution x;, by applying a Krylov space method to the
preconditioned system

BrAnzn = Bp fh-

In agreement with the discussion above we assume that the operator Aj, is represented by a
sparse square stiffness matrix A, = uhAmr;l mapping the primal representation of a function
x € X, into the dual representation of Apx € X;. Therefore, in order for the preconditioned
coefficient operator, Bp.Aj, to be cheaply computed, the preconditioner B, should have the
property that the primal representation of Bjf can be cheaply computed from the dual
representation of f € X, i.e., the operator ﬂ'hBhu;l : R — R" can be cheaply evaluated.
The operator thhA;ﬂr;l : R™ — R™ is then computed by

_ . A o Bapy
mnBpApmy, b o primal repr. = dual repr. —" primal repr.

In fact, this diagram should be seen as a discrete, and computational, version of the diagram
(2.8) which expresses the mapping properties of the corresponding continuous operators.
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7. Preconditioning discrete saddle point problems

In this final section of the paper we consider a few examples of discrete linear systems
arising from stable discretizations of systems of partial differential equations of the form
discussed above. In each example our goal is to construct preconditioners which give rise
to condition numbers for the preconditioned systems which are bounded independently of the
discretization parameter, and to present some numerical experiments which show the effect of
the constructions. Of course, by now our strategy for the construction of such preconditioners
is clear. As was done in Sections 3 and 4, we first identify the canonical block diagonal
preconditioners for the corresponding continuous systems. Then, according to the conclusions
of Section 5, the discrete preconditioner should simply be a corresponding discrete analog
of this operator. However, for computational efficiency the exact inverses appearing in the
canonical preconditioners should be replaced by proper cost effective, and norm equivalent,
operators of the form discussed in Section 6.

The general approach we have taken in this paper is that we utilize the close connection
between the discrete systems and the corresponding continuous counterparts to construct
preconditioners. Before we consider some examples of discrete systems below, we should
mention that many papers on preconditioning differ from the presentation given here in
the sense that the discrete problems are analyzed more directly in a matrix framework, cf.
for example [15, 36, 37, 55, 78, 83, 84, 93]. Furthermore, in this paper we have restricted
the discussion to positive definite preconditioners, since such operators appear naturally as
a consequence of the mapping properties of the coeflicient operator of the corresponding
continuous problem. However, many alternative techniques exist, where the preconditioners
are more general operators.

A technique which may be quite effective for certain saddle point problems is so—called
constraint preconditioning, where the preconditioner is also indefinite. In particular, this
approach has been applied successfully to saddle point systems where the (1,1) block
corresponds to a zero order differential operator. Consider a variational problem of the form
(3.1). The idea is to build a preconditioner for the corresponding saddle point system from
a simplified variational problem with the same constraint as the original problem. Therefore,
the practical application of this approach is limited to problems where it is possible to find
such simplified systems which can be inverted by a fast algorithm. As a consequence of the
construction, the coefficient operator for the preconditioned system will be invariant on the
constrained set. Furthermore, since the saddle point system is positive definite on the subspace
associated the constraint, it is possible to use the standard conjugate gradient method as an
iterative solver for the preconditioned system, and the convergence properties of this iteration
will be determined by the behavior of the preconditioned operator restricted to this subspace.
Indefinite preconditioners of this type are for example proposed in [11, 76], and a general
discussion of constraint preconditioning is given in [15, Section 10].

Block triangular preconditioners for saddle point operators has also been discussed by
many authors. A special example of such a preconditioner is the so—called Bramble—
Pasciak transformation introduced in [22], see also [93, Chapter 9]. Here, the saddle point
system is transformed into a positive definite system by a triangular transformation, and,
as a consequence, the system can be solved by the standard conjugate gradient method.
For certain problems this approach is very effective, but a possible difficulty is that the
method requires a proper choice of a critical scaling parameter to obtain a positive definite
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operator. Another motivation for studying block triangular preconditioners is the desire to
generalize, and therefore to improve, block diagonal preconditioners. Of course, a negative
effect of this approach for symmetric problems of the form studied in this paper is that the
symmetry, in general, will be lost. However, for generalized saddle point problems, which are
nonsymmetric, these preconditioners have proved to be rather effective. We refer for example
to [15, 16, 18, 17, 37, 57, 56, 60, 73] for various studies of such problems.

The list of examples of systems of partial differential equations discussed below is by
no means complete. The construction of preconditioners and effective iterative methods are
discussed for many other problems in the literature. One example, which formally seems very
close to the mixed formulation of the Poisson problem, studied in Example 3.2 above and
Example 7.3 below, is the Hellinger—Reissner mixed formulation of linear elasticity. However,
for this problem the construction of a stable pair of finite element spaces has proved to be
surprisingly hard. An analysis of preconditioners in the two dimensional case is done in [75, 96],
based on the stable finite element spaces proposed in [8]. The main challenge in this study,
successfully handled in [75, 96], is to construct preconditioners for a proper analog of the
operator I — graddiv applied to piecewise polynomial spaces of symmetric matrix fields of
at least cubic order. For the corresponding problem in three space dimensions it seems that
similar finite element discretizations, based on a strong symmetry constraint, are too complex,
cf. [1]. Therefore other approaches, like the weak symmetry approach, cf. [7] and references
given there, should be preferred. For such methods the construction of preconditioners should
be more straightforward, since all that will be required are several copies of standard H(div)
preconditioners. However, to the authors’ knowledge, no such numerical studies have been
reported so far.

An important class of linear systems are the systems that arise during Newton, or inexact
Newton, iterations of nonlinear systems of partial differential equations. For such problems,
preconditioning the family of linear systems arising during the iteration is often crucial. The
text [37] is devoted to fast iterative solvers and preconditioners for discrete Navier—Stokes
problems. Another study which fit into this category is [54], where numerical schemes for the
nonlinear harmonic map problem are investigated.

Finally, we mention that preconditioners for bidomain systems are discussed in [62, 88, 87],
while preconditioning and scattered data interpolation are investigated in [61]. Preconditioners
for the Babuska Langrange multiplier method are analyzed in [46], and some linear systems
arising from Runge-Kutta discretizations of parabolic equations are considered in [63, 86].

We start our study of examples of discrete systems by returning to Stokes problem.

Example 7.1. Stokes problem.
We recall the Stokes problem in Example 3.1, where the coefficient operator

_ (—A —grad
A= (div 0 )
is a mapping from (Hg(Q))" x L3(Q) onto (H~1(Q))" x L3(). Stable finite element
discretizations of this problem are for example discussed in the texts [26, 42]. If V}, and Qp,

are proper finite element spaces such that Vj, x Q, C (H}(Q))™ x L3(2), then stability will
follow from an inf-sup condition of the form

(q,divv)

inf sup ————— > (>0 (7.1)
a€Qn vev,, [0l ar [l L2 ’
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h 2 T[22 275 [ 2%
k(BnAn) || 133 | 135 | 13.6 | 13.7

Table I. Condition numbers for the preconditioned Stokes system.

where the constant ( is independent of h. Various preconditioners for the corresponding
discrete problems are analyzed in [37] and references given there. Here we just present some
simple numerical results obtained by using the Taylor-Hood element on a unit square domain
Q) in two space dimensions. Hence, the space V}, consists of continuous piecewise quadratic
vector fields and @), of continuous piecewise linear scalar fields with respect to a triangulation
Ty, of Q. Here, and below, h indicates the mesh size associated with the triangulation 7. From
Example 3.1 we know that the discrete preconditioner should be of the form

_ (A7t 0
Bh - ( O (Ih)fl 9
In Table I the condition number of the preconditioned system is shown. Corresponding
numerical experiments by using a multigrid preconditioner combined with the minimum
residual method typically result in reduction of the norm of the preconditioned residual

(Bry, ) by a factor 10* in less than 20 iterations. Similar experiments can be found in
[37, 64, 78].

Example 7.2. Stabilized Stokes problem.

Due to the inf-sup condition (7.1) a number of simple pairs of finite element spaces will not be
stable for the Stokes problem. For example, if both spaces V}, and @) are taken to be spaces
of piecewise linear functions with respect to the same triangulation then this pair is in general
not stable. However, in order to overcome this problem it has been proposed to perturb the
problem from an incompressible flow into a “moderately compressible flow” by modifying the
divergence constraint, divu = 0, into an equation of the form divu+e? Ap = 0. Here ¢ > O is a
small parameter which will be related to the discretization parameter h. We refer for example
to [25, 41, 53, 52] for a discussion of stabilization techniques. The coefficient operator of the

perturbed system is of the form
~ (—A —grad
A= <div e A ) '

It is straightforward to check that this operator is an isomorphism mapping (Hg(£2))" x
(L3(Q)Ne HY(Q)) into the corresponding dual space (H~1(Q))" x (L3(Q) +¢ 1 HY(Q)*), with
corresponding operator norms bounded independently of €. Therefore, at the continuous level,
a uniform preconditioner is given of the form:

5= (0 oda):

Consider a discretization of this problem with finite element spaces V;, and @ such that
Vi x Qn C (Hg(Q)™ x (H*(Q) N L3(2)). Assume that both the velocity space V}, and the
pressure space (Jj are spanned by continuous piecewise polynomials, and that the space of
piecewise linear vector fields are contained in V. Then it follows from the inf-sup condition
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a\h 2T [22][27 21
002 40 | 56 | 7.0 | 7.7
k(BonAar) | 004 55 | 7.7 | 9.8 | 11.2
008 || 7.4 | 12.4 | 16.7 | 20.0
002 39 | 57 | 7.1 | 7.8
k(BanAar) | 004 31 | 48 | 65 | 7.5
0.08 || 245 | 3.9 | 58 | 7.1

Table II. Condition numbers for the preconditioned stabilized Stokes operator with different
stabilization parameter € = ah?.

in the continuous case that the spaces V}, and @}, satisfy a modified inf-sup condition of the

form (g, div o)
q,divo
sup ————= > Billgllz> — Bah| grad gz, q € Qn,
vevi vl

where the constants (3 and (2 are independent of h. By using this condition we can obtain
stability of the method in the norm of (H2(92))" x (L3(Q2) Ne H(Q)), as long as the parameter
€ is proportional to h. More precisely, if we assume that €2 = ah?, where the positive constant
« is independent of h, then the stability constant will be independent of A, but of course
dependent of a. As a consequence, for such choices of e discrete preconditioners of the form

Boy = ((—th)l 0 6(2) Ah)l)

will in fact be uniform preconditioners. Furthermore, if a standard inverse property of the form
| gradglz2 < ch™ gl L2

holds, then the preconditioners B, ; and By} are spectrally equivalent, uniformly in A, but
depending on «.

In Table II we give the condition numbers of the preconditioned operators By pAc p and
Be,nAc p, for different values of the proportionality constant «.. The stabilized Stokes problem
is discretized on different refinements of the unit square and using piecewise linear continuous
finite elements for both velocity and pressure. Homogeneous Dirichlet conditions are assigned
for the velocity. The condition numbers in Table II show a slight increase as the mesh is refined.
Still there is a clear sign that the increase is about to level off, even for these rather coarse
meshes.

Example 7.3. The mized Poisson problem.
Recall the mixed formulation of the Poisson problem discussed in Example 3.2. The coefficient

operator
(I —grad
A= (div 0 ) (7.2)

is an isomorphism mapping Ho(div) x L into its dual space, such that in the continuous case
the preconditioner takes the form

I —graddiv)™t 0
B= ( . 7.3
Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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h 1 [2T[22[273 2+
w(An) || 825 | 15.0 | 29.7 | 59.6 | 119
k(BrAp) || 1.04 | 1.32 [ 1.68 | 2.18 | 2.34

Table III. Condition numbers for the coefficient operator and the corresponding preconditioned
operator for the mixed Poisson problem using the Raviart-Thomas element.

Well known stable finite element spaces Vj, x Qp, C Ho(div) x L3 are for example the Raviart-
Thomas spaces or Brezzi—-Douglas—Marini spaces in two space dimensions and the spaces of
the two Nedelec families in three dimensions. We refer to [26] for details. Hence, to construct a
discrete preconditioner By, the main challenge is to construct a preconditioner for the discrete
analog of the operator I — grad div, corresponding to the bilinear form

(u,v) + (divu, div v).

Here (-,-) denotes the corresponding L? inner product. The construction of such
preconditioners was discussed in [3, 4, 5, 50, 49, 94]. In Table IIT we show the condition number
of the coefficient matrix (7.2) when the problem is discretized with the lowest order Raviart—
Thomas element and the condition number of the preconditioned coefficient matrix when a
multigrid method is used to precondition the corresponding discrete operator I — grad,, div.
These results are taken from [3], where more details are given. O

Remark 7.1. We recall that in the continuous case the mixed Poisson problem also allowed
a second preconditioner B = B3 of the form

B=B, = (é (_A0)1>'

This is based on the fact that the continuous system is well posed in (L?(Q2)" x H*(2). However,
for most standard stable finite element spaces for this problem, the pressure space @y, is not
a subspace of H'. Therefore, since the discrete Laplace operator is not defined in an obvious
way, it does not seem appropriate to consider a discrete analog of the preconditioner By for
these spaces. However, it is possible to define a nonconforming discrete Laplace operator on
@, and use a preconditioner for this operator to construct a discrete variant of Bs. In fact,
this is exactly what is done in [77]. Furthermore, in the construction of preconditioners for
discrete versions of the time-dependent Stokes problem, studied below, such operators will
indeed enter. O

Example 7.4. A Mazwell problem.
Let  c R? with boundary 9. In connection with models based on Maxwell’s equations one
may encounter boundary value problems of the form

curlcurlu = f in €,

uxn = 0 ondf. (7.4)

Here n is the outwards-pointing unit normal on 0f2, such that the boundary condition simply
means that the tangential components of the vector field v must vanish on the boundary. In
fact, there is no uniqueness of solution of the system (7.4), since any vector field of the form
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u = gradgq, for ¢ € H}(Q), will be a solution of the corresponding homogeneous problem.
Furthermore, the problem (7.4) cannot be solved for a general right-hand side f, since, if u is
a smooth solution then

(f,gradq) = (curlcurlu, gradq) =0, ¢ € Hy(9Q), (7.5)

where here, and below, (-,-) denote L? inner products. The system (7.4) will have at most one
solution if we add the extra requirement that (u, grad ) = 0 for all ¢ € H}(£2), or equivalently,
we require that divu = 0. Furthermore, if w is such a smooth solution, where the right—hand
side f satisfies (7.5), then u will solve the system

curlcurlu — graddive = f in €,
divu = 0 in€Q, (7.6)
uxn = 0 ondQ.

The new coefficient operator, curl curl — graddiv, is simply the vector Laplace operator. By
introducing a new variable, p = divu, the system (7.6) can be given the following weak
formulation:
Find (u,p) € Ho(curl, Q) x H(Q) such that
(curlw, curlv) — (grad p,v) = (f,v), v € Hp(curl,Q),
—(u,gradq) — (p,q) =0, g€ Hj().
If we assume that the domain is contractible, then this system will have a unique solution. In

fact, this system is just a special case of the Hodge-Laplace problem discussed in [6, Section
7]. The coefficient operator of this system, formally given as

_ (curlcurl —grad
A= (e ).

(7.7)

is an isomorphism of Hy(curl,2) x Ha(£) onto the corresponding representation of the dual
space, defined by an extension of the L? inner product. Therefore, the canonical preconditioner
is the operator of the form

0 (—a)™

In order to construct a stable pair of finite elements for the system (7.7) some care has to
be taken, since there is a delicate balance between choice of finite element subspaces V}, of
Hy(curl, Q) and Q, of H(€2). However, as explained in [6], there are a number of stable finite
elements. In Table IV we show the condition numbers of the preconditioned matrix on various
refinements of the cube © = [0, 7]3 using the first family of Nedelec elements of order zero for
the unknown vector field, combined with continuous piecewise linears functions for the scalar
field. Here, we taken the preconditioner By, to be the discrete analog of B, i.e., exact inverses of
discrete differential operators are used. Therefore, the fact that the observed condition numbers
k(BrAp) are nearly independent of h reflects that they are all close to k(B.A). However, to
check the robustness of this preconditioner we have also tested the same preconditioner for
a corresponding problem with a mildly varying coefficent M. More precisely, we consider the
system with coefficient operator of the form:

B ((I—|— curl curl) =t 0 >

r+5 z Ly
curl(M curl) — grad 10
Ay = ( (div ) g] ) , where M (z,y,z) = z 10 + cos(z) %x
- 1 1 ;
15Y 15T 10 + sin(y)
Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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h 12 [ 1/4 ] 1/6 | 1/8
w(BnAp) || 171 ] 1.73 | 1.75 | 1.76
k(BrAnrp) || 10.9 | 125 | 13.0 | 13.2

Table IV. Condition numbers for the preconditioned Maxwell system.

The coefficient M is uniformly positive definite on €, with k(M) < 4. Again, the condition
numbers k(B Aprp) of the preconditioned system appear to be bounded independently of h,
in complete agreement with the theoretical predictions. O

Finally, we return to the three parameter—dependent problems studied in Section 4, i.e., the
time dependent Stokes problem, the Reissner—Mindlin plate model, and the optimal control
problem (4.6)—(4.7). For all three examples we identify stable discretizations, and therefore
derive preconditioners which are uniform both with respect to the model parameters and
the discretization parameter. Furthermore, these theoretical results will also be verified by
numerical experiments.

Example 7.5. The time dependent Stokes problem.
Recall that we considered the time dependent Stokes problem in Example 4.2, with the

following coefficient operator
I—e A —grad
A = ( div 0 ) . (7.8)

As we discussed above, the operator A, is an isomorphism mapping Y, = (L?>Ne H)" x (H*N
L3) + e 1 L) into its L?>-dual Y, with bounds on A, in £(Y;,Y*) and A in L£(Y*,Y?)
independent of e. We briefly review some of the results in [66]. As above we use the Taylor—
Hood space, Vj, x Qp, for the discretization. This leads to a uniformly stable discretization in
the norm of Y,. Therefore, the canonical discrete preconditioner is of the form

(T =Nt 0
Be’h - ( 0 €2 Ih_l + (—Ah)_l ’

In our computations we replace “the inverse mass matrix” I, 1. Q; — Qpn by an operator
Jy, obtained from a simple symmetric Gauss-Seidel iteration, and the operator (—Aj,)~! :
Qr — Qp by a multigrid operator N, computed with one symmetric Gauss-Seidel sweep as
smoother. The operator (I — €2 A),:l : Vi, — Vj, is replaced by the corresponding multigrid
operator M. on Vj,.

In Tables V and VI we report the proper condition numbers for the building blocks of the
full preconditioner, while the condition numbers x(B¢ nAc ) are given for different values of e
and h in Table VII. In agreement with the theory above, these condition numbers seem to be
uniformly bounded with respect to both € and h.

In [66] similar results were also reported for various other finite element discretizations,
like the Mini-element, the P> — Py element, and Crouzeix-Raviart elements. For the two latter
elements, the auxiliary space method [98] was used to define preconditioners for the suitable
nonconforming Laplacian on the space of discontinuous piecewise constants, cf. Remark 7.1. For
other studies of preconditioners for problems motivated from time dependent Stokes problems
we refer to [23, 29, 38, 36, 37, 58, 59, 66, 71, 91]. O
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h 222322272027
K(Nu(—AR)) |[ 171 | 1.50 | 1.47 | 147 | 1.47 | 1.47
~(Inlp) 1.66 | 1.62 | 1.61 | 1.60 | 1.60 | 1.60

Table V. Condition numbers for the operators Ny (—Ay) and JiIn

h\ € 0 0.001 | 0.01 | 0.1 0.5 1.0
273 [ 111 ] 1.11 | 1.03 | 1.14 | 1.22 | 1.22

° | 1.11 | 1.09 | 1.03 | 1.23 | 1.24 | 1.24
277 111 ] 1.02 [ 120 [ 1.24 | 1.24 | 1.24

Table VI. Condition numbers for the operators M. (I — € Ay,

h\ € 0 0.001 | 0.01 0.1 0.5 1.0

27311 6.03] 6.05 | 692 | 13.42 | 15.25 | 15.32
275 [16.07 | 6.23 [ 10.62 | 15.14 | 15.59 | 15.61
271 6.08] 7.81 | 14.18 | 15.55 | 15.64 | 15.65

Table VII. k(B¢ pAe,in) for the Taylor-Hood element

Remark 7.2. Following the continuous theory in Example 4.2 we should also be able to find
a uniform preconditioner for the discrete versions of the operator A, given by 7.8, of the form

_ o 2 A1
B, = (I —graddiv—e*A), " 0 .
’ 0 Iy,

In fact, from the discussion given in Section 5 we know that such preconditioners can be found,
if the corresponding finite element discretization is uniformly stable in the norm of X, =
(Ho(div) Ne HY) x L3. However, the Taylor-Hood element, like most other Stokes elements, is
not uniformly stable in X, cf. [65]. Nonconforming finite elements, which are uniformly stable,
have been constructed in [65] in the two dimensional case, and in [89] in three dimensions.
Uniform preconditioners for discrete versions of the operator (I —graddiv —e? A)~! have been
developed in [81]

Example 7.6. The Reissner—Mindlin plate model.
We recall from Example 4.3 that the continuous model is a linear system of partial differential
equations, on a domain 2 C R?, with a coefficient operator given by

—divCE€ 0 -1
A = 0 0 —div ],
—I grad —t2]
where t > 0 is the thickness parameter. Furthermore, the operator A; is an isomorphism
mapping X; to X}, where

X, = (HH)? x HY x (H7Y(div)nt-(L*)?) and X; = (H ')? x H™ x (Ho(rot) +t' - (L*)?),

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Wb 23 [27[2° 2027
0 | 817 ] 10.7 | 11.1 | 10.6 | 9.62
0.01 || 815 | 10.7 | 11.2 | 11.1 | 9.68
0.1 || 864|108 | 11.1 | 11.2 | 11.1
1 | 175|184 ] 19.0 | 19.0 | 189

Table VIII. Condition numbers for the preconditioned Reissner-Mindlin operators By nA¢n

with t-independent bounds on A; in £(X¢, X;) and A; ' in £(X}, X;). As a consequence, the
canonical uniform preconditioner in the continuous case takes the form

(—A)1 0 0
Bi=| 0o  (=a) o |,
0 0 Dy

where

Dy =1+ (1 —t*curl(l —t*A) ' rot.

A number of uniformly stable finite element discretizations have been proposed for the
Reissner—Mindlin plate model, cf. for example the survey paper [40] and references given there.
One of the simplest methods in this class is the Arnold-Falk method. Here the finite element
approximation of the space X; is of the form X; , =V}, x W), x I'},, where V}, consists of the
span of all continuous piecewise linear vector fields and cubic bubble functions on each triangle
of 7;. Furthermore, the scalar space W}, is the nonconforming Crouzeix—Raviart space, i.e.,
piecewise linear functions with mean value continuity on each edge, and the space I'y, is the
space of piecewise constant vector fields. Note that X;j §Z X; since W), ;{ H'. Hence, this
method is a nonconforming finite element approximation of the Reissner—Mindlin plate model,
cf Remark 5.2. To approximate the operator Dy = I + (1 —t?) curl({ —t2A)~! rot on the space
I'}, we use duality to introduce an operator rot;, mapping I'; into the dual space of continuous
piecewise linears. We refer to [2] for details.
The discrete preconditioner B, j, is of the form

L, 0 0
Bupn=|0 M 0 |, (7.9)
0 0 Dy

Here Lj, and M), are standard V—cycle multigrid preconditioners for the discrete Laplacian on
the spaces V}, and Wj,. The operator Dy p, : I'j, — I'y, takes the form

Dy = I + (1 — t*) curl Ny j, roty,

where Ny j, is a standard V-cycle multigrid preconditioner on the space of continuous piecewise
linears. The condition numbers k(B pArp), for different values of ¢ and h, are given in
Table VIII. These results are taken from [2]. We observe that x(B; A ) varies with ¢ and h,
but in agreement with the theory, the results appear to be uniformly bounded with respect to
both parameters. O
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Remark 7.3. For several of the suggested finite element discretizations of the Reissner—
Mindlin plate model discussed above, the discrete spaces are of the form X, = V), x Wp, x I'y,,
where the space I'j, is a subspace of Hy(rot). This may appear attractive, since in contrast to the
situation for the Arnold-Falk element discussed above, the operator rot is now a well-defined
operator mapping I';, onto the corresponding space of piecewise constants. For simplicity,
consider the case t = 0. To define the preconditioner (7.9) we need to evaluate a discrete
version of the differential operator Dy = I + curlrot. This operator has a natural discretization
Dy, : Ty, — T'}, defined from the H(rot) inner product, given by

<<7 77>H(rot) = <<7 77> + <I‘Ot Cv rot 77>7

where the inner products on the right-hand side are in L?. Furthermore, the corresponding
matrix, uhDoth;I, is a sparse matrix, reflecting the fact that the differential operator Dy is a
local operator. Here 7, and py, are the representation operators for the space I'y,, corresponding
to the primal and dual representation, cf. Section 6 above. Hence, it appears that this block of
the preconditioner is a simple sparse matrix, which can be cheaply evaluated. However, if the
operator Dy, is to be used as a building block for the preconditioner, then we need to evaluate
the matrix whDoyhu,:l, and not uhDothgl, and the matrix ﬁhDo_’h,u,:l is not sparse, due to
the continuity requirements on the space I'j,. Discussions on how to overcome this problem is
given in [2, Section 7]. O

Example 7.7. An optimal control problem.
Finally, we recall the optimal control problem in Example 4.4, where the coefficient operator
is given by
1 0 I-A
Aen = 0 1 I |, (7.10)
I-A —I 0

*
€

mapping X, to X*, and with corresponding operator norms bounded uniformly with respect

to €. Here,
X, = (L2(Q)NeY2-HYQ)) x e L2(Q) x (e L -L2 Q) ne V2. HY(Q))

and X is the corresponding dual space defined by extending the L? inner product. Hence, the
canonical preconditioner in the continuous case is given by

(I —eA)™? 0 0
B = 0 eI 0 . (7.11)
0 0 E(I—-eA)!

In Table IX we show condition numbers k(B pA. ) for various values of € and on different
refinements of the unit square in two dimensions using continuous piecewise linear elements
for all variables. Similar experiments, using the minimum residual method combined with
an algebraic multigrid method show that the norm of the preconditioned residual (Bry,ry) is
reduced by a factor 10 in less than 30 iterations independently of € and k. Similar results were
obtained in [80]. Algorithms for other optimal control problems with elliptic PDE constraints
are discussed in, e.g., [20, 68, 70, 80]. O
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1 0.1 | 0.01 | 0.001
2.39 | 2.67 | 3.04 | 2.82
241 | 2.73 | 3.04 | 3.05
242 | 274 | 3.04 | 3.06
242 | 2.74 | 3.04 | 3.06
242 | 275 | 3.04 | 3.06

>
Il

l\Dl\Dl\?l\Dl\D
ol R W N e

Table IX. The condition number &(Be,nAe ) for the optimal control problem.
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