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Simulating the evolution of marine basins is challenging tluthe complex interplay between ero-
sion, deposition and mass flows of sediment. Uncertaintighe transportation modes and flow
properties also require a large number of trial computatimsing different model settings and coeffi-
cients, see e.g. [3]. Parallel computing is thus not onlysipeinsable for achieving high spatial and
temporal resolution, but also of great importance for hagdhe repeated computations.

The present study is a preliminary investigation about h@ieability of parallel computing to this
subject, including the choice of suitable numerical sgee and their parallel implementation and
execution on multicore-based clusters.

Mathematical Model

We consider here a dual-lithology (i.e., sand and silt) meditation scenario. If diffusion is consid-
ered to be the driving force, the following two nonlineartgdifferential equations apply:
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where the unknowns(x, y,t) andh(z, y,t) denote, respectively, the fractional quantity of sand an
the the height of bathymetry of the basin. In additi6h(z, y) andC),(z,y) are the concentrations,
a(z,y) andF(x, y) are the diffusion coefficients, of sand and silt, respebtiequations (1)-(2) are
solved with given initial conditions, and the boundary ctiods are normal derivatives gfandh.
Fig. 1 and Fig.2 show the evolution of the basin with an areofx 120km? over 4000,000 years.
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Figure 1. An initial condition forh (s is initially assumed to be constant everywhere)
h (basin bathymetry)
3D view

2D contour plot

s (fractional quantity of sand)
3D view 2D contour plot

Figure 2. Simulated ands solutions after 4 million years

Numerical Methods

Temporal discretization of (1)-(2) can be done as follows:
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ht ands* = s’. No need to solve linear systems.
= httl ands* = st*1. Solve two separate linear systems per time step.

Fully explicit scheme: h* =
Semi-implicit scheme: 1*

Due to strict stability requirement akt = O(Az?), the explicit scheme is not applicable to case
where high spatial resolution is desired. The semi-implicit sa&hesithough having to solve two
linear systems per time step, will be the method of choice.

Both the explicit scheme and the semi-implicit scheme are imelded. Parallelism arises from
dividing the spatial solution domain into subdomains, while letting oneé pMBcess to handle one

subdomain. The solutionsandh are both distributed among processors, and so are the linear sys-

tems distributed when the semi-implicit method is used. We havetusetrilinos software package
[2] for parallel solution of the involved linear systems.
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Figure 3. The flow chart and distributed data structure of the semiampbde

Performance

The following two tests were done on stallo.uit.no[1].

Small test case
Spatial problem sizet00 x 400. Time length: 40,000,000 years

Compute nodeslotal coresExplicit Method (Speeduplemi-implicit Method (Speedup)
1 1 357.47 180.51
1 2 183.13 (1.95) 121.24 (1.49)
1 4 05.11 (3.76) 83.42 (2.16)
1 8 50.33 (7.10) 20.77 (8.69)
2 16 33.5(10.67) 14.4 (12.54)

Table 1. Comparison between explicit and semi-implicit schemes. Tirmpesste is 2,010 years for
the explicit scheme, 62,5000 years for the semi-implicit scheme.

Huge test case
Spatial problem sizet0, 000 x 10, 000. Time length: 2,400,000 years

Compute nodeslotal coresWhole running time (Speedup)
30 240 1420.19
60 480 927.17 (1.53)
90 720 591.78 (2.40)
120 960 581.69 (2.44)

Table 2. Scalability of the semi-implicit code. Time step size: 1000s/ea

Discussion and Work in Progress

We found the scalability is mainly affected by inter-domain commurmoatwhich in the present
code Is not stable. Work for figuring out possible reasons is in progress. In thetapxthe more
complex model of three-lithology will be adopted. Concentrations paraméteend C),, will be
allowed to vary over both time and space as well.
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