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Abstract The stability properties of simple element choices for the mixed formula-
tion of the Laplacian are investigated numerically. The element choices studied use
vector Lagrange elements, i.e., the space of continuous piecewise polynomial vector
fields of degree at most r , for the vector variable, and the divergence of this space,
which consists of discontinuous piecewise polynomials of one degree lower, for the
scalar variable. For polynomial degrees r equal 2 or 3, this pair of spaces was found to
be stable for all mesh families tested. In particular, it is stable on diagonal mesh fami-
lies, in contrast to its behavior for the Stokes equations. For degree r equal 1, stability
holds for some meshes, but not for others. Additionally, convergence was observed
precisely for the methods that were observed to be stable. However, it seems that op-
timal order L2 estimates for the vector variable, known to hold for r > 3, do not hold
for lower degrees.
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1 Introduction

In this note, we consider approximations of the mixed Laplace equations with Dirich-
let boundary conditions: Given a source g, find the velocity u and the pressure p such
that

u − gradp = 0, divu = g in �, p = 0 on ∂�,

for a domain � ⊂ R
2 with boundary ∂�. The equations offer the classical weak

formulation: Find a square integrable vector field with square integrable divergence
u ∈ H(div,�) and a square integrable function p ∈ L2(�) such that

∫
�

u · v + q divu + p divv =
∫

�

g q (1.1)

for all v ∈ H(div,�) and q ∈ L2(�). The above formulation can be discretized using
a pair of finite dimensional spaces Vh ⊂ H(div,�), Qh ⊂ L2(�), yielding discrete
approximations uh ∈ Vh and ph ∈ Qh satisfying (1.1) for all v ∈ Vh and q ∈ Qh.

As is well-known, the spaces Vh and Qh must satisfy certain stability, or compat-
ibility, conditions for the discretization to be well-behaved [7]. More precisely, there
must exist positive constants α and β such that for any h,

0 < α ≤ αh = inf
u∈Zh

sup
v∈Zh

〈u,v〉
‖u‖div‖v‖div

, (1.2a)

0 < β < βdiv
h = inf

q∈Qh

sup
v∈Vh

〈divv, q〉
‖v‖div‖q‖0

. (1.2b)

Here, ‖·‖div and ‖·‖0 denote the norms on H(div,�) and L2(�), 〈 · , · 〉 is the L2(�)

inner product and

Zh = {v ∈ Vh | 〈divv, q〉 = 0 ∀q ∈ Qh}. (1.3)

The two conditions will be referred to as the Brezzi coercivity and the Brezzi inf-sup
condition for the mixed Laplacian. The classical conforming discretizations of (1.1)
rely on the finite element families of Raviart and Thomas [18] or Brezzi, Douglas and
Marini [8] for the space Vh ⊂ H(div) in order to satisfy these conditions.

In this note, we shall consider the Lagrange vector element spaces, that is, con-
tinuous piecewise polynomial vector fields defined relative to a triangulation Th, for
the space Vh. This is motivated by the following reasons. First, these spaces are fairly
inexpensive, simple to implement and post-process and in frequent use for other pur-
poses. Second, such pairs would allow continuous approximations of the velocity
variable, or when viewed in connection with linear elasticity, lay the ground for con-
tinuous approximations of the stress tensor. Moreover, in the recent years, there has
been an interest in mixed finite element discretizations that are both stable for (1.1)
and for the Stokes equations:

∫
�

gradu : gradv + q divu + p divv =
∫

�

f v (1.4)
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for all v ∈ H 1(�;V) such that
∫
�

v = 0 and all q ∈ L2(�). The search for conform-
ing such discretizations is complicated by the fact that the existing, stable discretiza-
tions of (1.1) are such that Vh 	⊂ H 1(�;V). On the other hand, the existing stable
discretizations of (1.4) are typically unstable for (1.1) [14]. The existence of stable
discretizations Vh ×Qh of (1.1) such that Vh ⊂ H 1(�;V) becomes a natural separate
question. Unfortunately, there are no known such finite element discretizations that
are stable for any admissible triangulation family {Th}. In this note, we aim to nu-
merically examine cases where a reduced stability property may be identified. In this
sense, the investigations here are in the spirit of the work of Chapelle and Bathe [10]
and Qin [17].

For a family of conforming discretizations {Vh × Qh}h of (1.1) such that divVh ⊆
Qh for each h, the condition (1.2a) is trivial. The stability conditions thus reduce to
the condition (1.2b), namely the question of bounded Brezzi inf-sup constant βdiv

h .
On the other hand, recall that for the Stokes formulation (1.4), the corresponding
Brezzi coercivity condition is trivial by the Poincaré inequality. Hence, for any family
of conforming discretizations, the stability conditions for Stokes reduce to that of a
uniform bound for the Brezzi inf-sup constant β1

h . Here,

β1
h = inf

q∈Qh

sup
v∈Vh

〈divv, q〉
‖v‖1‖q‖0

(1.5)

when Vh ⊂ H 1(�;V), Qh ⊂ L2(�) and ‖ · ‖1 denotes the norm on H 1(�). Fur-
ther, such a bound immediately gives (1.2b) since β1

h ≤ βdiv
h by definition. Hence, if

divVh ⊆ Qh, stability for Stokes immediately gives stability for the mixed Laplacian.
The conditions divVh ⊆ Qh and Vh ⊂ H 1(�;V) are clearly satisfied by the el-

ement pairs consisting of continuous piecewise polynomial vector fields of degree
less than or equal to r and discontinuous piecewise polynomials of degree r − 1,
for r = 1,2, . . . . This family could be viewed as an attractive family of elements for
both the Stokes equations and the mixed Laplacian. However, the Brezzi inf-sup con-
stant(s) will not be bounded for all r . For r ≥ 4, Scott and Vogelius demonstrated that
these finite element spaces will be stable for the Stokes equations on triangulations
that have no nearly singular vertices, that is, triangulations that are not singular in the
appropriate sense [19]. The lower order cases, 1 ≤ r ≤ 3, were studied carefully by
Qin, concluding that the elements are not stable in general [17]. However, they are
stable for some specific families of triangulations, and can be stabilized by removal
of spurious pressure modes on some other classes of triangulations. (The space Nh

of spurious pressure modes is defined in (2.10) below.) In general, the stability of
finite element spaces for the Stokes equations has been extensively investigated. In
addition to the previous references, surveys are presented in [3, 9]. However, to our
knowledge, a careful study of the lower order cases has not been conducted for the
mixed Laplacian.

As the stability for the mixed Laplacian is a weaker requirement when divVh ⊆
Qh, there may be a greater class of triangulations for which the elements form a stable
discretization. In fact, this is known to be true. One example is provided by the pairing
of continuous piecewise linear vector fields Vh and the subspace of discontinuous
piecewise constants Qh such that Qh = divVh on crisscross triangulations of the unit
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square. Qin proved that there does not exist a β > 0 such that β1
h > β for any h [17,

Lemma 7.3.2]. On the other hand, Boffi et al. proved that such a bound does exists
for βdiv

h [4]. We shall present numerical evidence suggesting that there is a range of
triangulations for which this phenomenon occurs. The main results are summarized
below.

Spurious modes: For r = 2,3 and for all triangulations tested, the dimension of the
space Nh of spurious modes is equal to the number of interior singular vertices σ .
However, for r = 1 and one of the triangulation families studied (“Flipped”, which
is defined in Fig. 1), dim Nh is strictly greater than σ .

Stability: For all triangulations we have tested, the method seems at least reduced
stable (i.e., stable after removal of spurious modes, if any), for r = 2,3. This is in
contrast to the situation for the Stokes equations, where for some triangulations,
such as the diagonal triangulation, the method is not reduced stable for r = 2,3,
while for other triangulations, it is. For r = 1, reduced stability holds for some tri-
angulations, but fails for others, including the diagonal triangulation.

Convergence: We also studied convergence of the method on diagonal triangulations.
For such meshes, the method was observed to be stable for r > 1, but unstable for
r = 1. Theory predicts optimal convergence of p in L2(�) and u in H(div,�) for
a stable method and this is in fact what was observed. Such optimal convergence
holds for r = 2,3,4, but not in the apparently unstable case r = 1. In the case r ≥ 4,
it is known that u converges at one order higher in L2(�) than in H(div,�). No
such increase of order was observed for r < 4.

The note is organized as follows. We introduce further notation and summarize
some key points of the theory of mixed finite element methods in Sect. 2. Further, we
derive some eigenvalue problems associated with the stability conditions and give
a characterization of the Brezzi inf-sup constant for the mixed Laplacian βdiv

h in
Sect. 3. These eigenvalue problems applied to the Stokes equations were also stated
by Malkus [13] and (in part) by Qin [17] and provide a foundation for numerical in-
vestigations of the Brezzi stability conditions. Based on these general results, Sect. 4
is devoted to the study of continuous piecewise polynomials in two dimensions for
the velocity and discontinuous piecewise polynomials for the pressure.

2 Notation and preliminaries

The notion of reduced stability of families of mixed finite element spaces is a key
point in this note. In order to make this notion precise, this preliminary section aims
to introduce notation and summarize the stability notions for finite element discretiza-
tions of abstract saddle point problems.

If V is an inner product space, we denote the dual space by V ∗, the inner product
on V by 〈 · , · 〉V and the induced norm by ‖ · ‖V . Let � be an open and bounded do-
main in R

d with boundary ∂�. We let Hm(�), for m = 0,1, . . . , denote the standard
Sobolev spaces of square integrable functions with m weak derivatives and denote
their norm by ‖ · ‖m. Accordingly, H 0(�) = L2(�). The space of polynomials of
degree r on � is denoted Pr (�). The space of vectors in R

d is denoted V and in
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general, X(�;V) denotes the space of vector fields on � for which each compo-
nent is in X(�). For brevity however, the space of vector fields in L2(�;V) with
square integrable divergence is written H(div,�) with norm ‖ · ‖div and semi-norm
| · |div = ‖div · ‖0. The subscripts and the reference to the domain � will be omitted
when considered superfluous.

Let Th denote an admissible simplicial tessellation of �, h measuring the mesh
size of the tessellation. We shall frequently refer to spaces of piecewise polynomi-
als defined relative to such, and label the spaces of continuous, and discontinuous,
piecewise polynomials of degree less than or equal to r as follows.

P c
r = P c

r (Th) = {p ∈ H 1(�) | p|K ∈ Pr (K) ∀K ∈ Th}, r = 1,2, . . . ,

Pr = Pr (Th) = {p ∈ L2(�) | p|K ∈ Pr (K) ∀K ∈ Th}, r = 0,1, . . . .

The classical abstract saddle point problem reads as follows [7, 9]: for given
Hilbert spaces V and Q and data (f, g) ∈ V ∗ × Q∗, find (u,p) ∈ V × Q satisfy-
ing

a(u, v) + b(v,p) + b(u, q) = 〈f, v〉 + 〈g,q〉 ∀(v, q) ∈ V × Q, (2.1)

where a and b are assumed to be continuous, bilinear forms on V × V and V × Q,
respectively. We shall assume here and throughout that a is symmetric. Following [2],
there exists a unique solution (u,p) of (2.1), if and only if the continuous Babuška
inf-sup constant

γ = inf
0	=(u,p)

sup
0	=(v,q)

a(u, v) + b(v,p) + b(u, q)

‖(u,p)‖V ×Q‖(v, q)‖V ×Q

(2.2)

is positive. By [7], this holds if and only if the continuous Brezzi coercivity and
Brezzi inf-sup constants are positive. These are defined as

α = inf
0	=u∈Z

sup
0	=v∈Z

a(u, v)

‖u‖V ‖v‖V

, (2.3)

β = inf
0	=q∈Q

sup
0	=v∈V

b(v, q)

‖v‖V ‖q‖Q

, (2.4)

respectively, where Z = {v ∈ V | b(v, q) = 0 ∀q ∈ Q}.
Given finite dimensional spaces Vh ⊂ V and Qh ⊂ Q, defined relative to a tessel-

lation Th of �, the Galerkin discretization of (2.1) takes the form: Find (uh,ph) ∈
Vh × Qh satisfying

a(uh, v) + b(v,ph) + b(uh, q) = 〈f, v〉 + 〈g,q〉 ∀(v, q) ∈ Vh × Qh. (2.5)

On the discrete level, the Babuška inf-sup, Brezzi coercivity and Brezzi inf-sup con-
stants are defined as

γh := inf
0	=(u,p)∈Vh×Qh

sup
0	=(v,q)∈Vh×Qh

a(u, v) + b(v,p) + b(u, q)

‖(u,p)‖V ×Q‖(v, q)‖V ×Q

, (2.6)
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αh := inf
0	=u∈Zh

sup
0	=v∈Zh

a(u, v)

‖u‖V ‖v‖V

, (2.7)

βh := inf
0	=q∈Qh

sup
0	=v∈Vh

b(v, q)

‖v‖V ‖q‖Q

, (2.8)

where

Zh = {v ∈ Vh | b(v, q) = 0 ∀q ∈ Qh}. (2.9)

For given Vh × Qh, there exists a unique solution of (2.5) if and only if αh and βh

(or equivalently γh) are positive. Furthermore, for a family of discretization spaces
Vh × Qh parameterized by h, if αh and βh are uniformly bounded from below, then
one obtains the quasi-optimal approximation estimate [7]:

‖u − uh‖V + ‖p − ph‖Q ≤ C

(
inf

v∈Vh

‖u − v‖V + inf
q∈Qh

‖p − q‖Q

)
,

with C depending only on the bounds for αh and βh and bounds on the bilinear forms
a and b. The uniform boundedness condition motivates the notion of stability for
pairs of finite element spaces.

Definition 2.1 (Stable discretization) A family of finite element discretizations {Vh ×
Qh}h is stable in V × Q if the Brezzi coercivity and inf-sup constants αh and βh (or
equivalently the Babuška inf-sup constant γh) are bounded from below by a positive
constant independent of h.

In accordance with standard terminology, we say that {Vh × Qh}h satisfies the
Brezzi coercivity or inf-sup conditions if αh or βh, respectively, are uniformly
bounded from below.

There are families of discretizations that are not stable in the sense defined above,
but have a reduced stability property. More precisely, for a pair Vh ×Qh consider the
space of spurious modes Nh ⊆ Qh:

Nh = {q ∈ Qh | b(v, q) = 0 ∀v ∈ Vh}. (2.10)

For a stable discretization, Nh contains only the zero element. Indeed, βh = 0 if and
only if Nh contains non-zero elements. If Nh is non-trivial, it is natural to consider
the reduced space N ⊥

h , the orthogonal complement of Nh in Qh, in place of Qh.
This motivates the definition of the reduced Brezzi inf-sup constant, relating to the
stability of Vh × N ⊥

h :

β̃h = inf
0	=q∈N ⊥

h

sup
0	=v∈Vh

b(v, q)

‖v‖V ‖q‖Q

, (2.11)

and the following definition of reduced stable. By definition, β̃h 	= 0.

Definition 2.2 (Reduced stable discretization) A family of discretizations {Vh ×
Qh}h is reduced stable in V ×Q if the Brezzi coercivity constant αh and the reduced
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Brezzi inf-sup constant β̃h, defined by (2.7) and (2.11), are bounded from below by
a positive constant independent of h.

3 Eigenvalue problems related to the Babuška-Brezzi constants

For a given set of discrete spaces, the Babuška and Brezzi constants defined by (2.6)–
(2.8) can be computed by means of eigenvalue problems. The form and properties
of the eigenvalue problem associated with the Brezzi inf-sup constant for the Stokes
equations were discussed by Qin in [17]. Since also the Brezzi coercivity constant
plays a role for the mixed Laplacian, we begin this section by deriving how the Brezzi
coercivity constant can be computed by similar eigenvalue problems. Actually, in our
application in Sect. 4, the Brezzi coercivity condition will be automatic, however, we
discuss it here in the abstract case, for the sake of completeness. These eigenvalue
problems were also stated, and carefully analysed from an algebraic view-point, by
Malkus [13] in connection with the displacement-pressure formulation of the linear
elasticity equations. We continue by observing that the continuous Brezzi inf-sup
constant can be naturally associated with the smallest eigenvalue of the Laplacian
itself.

3.1 Eigenvalue problems for the discrete Babuška-Brezzi constants

Let Vh ⊂ V and Qh ⊂ Q be given finite dimensional spaces as before. It follows eas-
ily from the definition that the Babuška inf-sup constant γh = |λmin| when λmin is the
smallest (in modulus) eigenvalue of the following generalized eigenvalue problem:
Find λ ∈ R, 0 	= (u,p) ∈ Vh × Qh satisfying

a(u, v) + b(v,p) + b(u, q) = λ
(〈u,v〉V + 〈p,q〉Q

) ∀(v, q) ∈ Vh × Qh. (3.1)

The following lemma identifies an eigenvalue problem associated with the Brezzi
inf-sup constant.

Lemma 3.1 (Qin [17, Lemma 5.1.1–5.1.2]) Let λmin be the smallest eigenvalue of
the following generalized eigenvalue problem: Find λ ∈ R, 0 	= (u,p) ∈ Vh × Qh

satisfying

〈u,v〉V + b(v,p) + b(u, q) = −λ〈p,q〉Q ∀(v, q) ∈ Vh × Qh. (3.2)

Then, λ ≥ 0 and for βh defined by (2.8), βh = √
λmin.

It can also be shown that the reduced Brezzi inf-sup constant β̃h equals the square-
root of the smallest non-zero eigenvalue of (3.2) [17, Theorem 5.1.1].

The Babuška and Brezzi inf-sup constants are thus easily computed, given bases
for the spaces Vh and Qh. As for (3.1), it is easily seen that the Brezzi coercivity con-
stant αh = |λmin| where λmin is the smallest (in modulus) eigenvalue of the eigenvalue
problem: Find λ ∈ R and 0 	= u ∈ Zh such that

a(u, v) = λ〈u,v〉V ∀v ∈ Zh. (3.3)
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However, a basis for Zh is usually not readily available, thus hindering the actual
computation of the eigenvalues of (3.3). Instead, the above eigenvalue problem over
Zh can be extended to a generalized eigenvalue problem over Vh × Qh: Find λ ∈ R

and 0 	= (u,p) ∈ Vh × Qh such that

a(u, v) + b(v,p) + b(u, q) = λ〈u,v〉V ∀(v, q) ∈ Vh × Qh. (3.4)

The following lemma establishes the equivalence between (3.3) and (3.4).

Lemma 3.2 If (λ,u) is an eigenpair of (3.3), there exists a p ∈ Qh such that
(λ, (u,p)) is an eigenpair of (3.4). Conversely, if (λ, (u,p)) is an eigenpair of (3.4)
and u 	= 0, then u ∈ Zh and (λ,u) is an eigenpair of (3.3). For 0 	= p ∈ Nh and
any scalar λ, (λ, (0,p)) is an eigenpair of (3.4), and these are the only eigenpairs
of (3.4) with u = 0.

Proof Let (λ,u) be an eigenpair of (3.3). Define Bh : Vh →Qh such that 〈Bhv, q〉Q =
b(v, q) for all q ∈ Qh. Since Bh : Z ⊥

h → Bh(Vh) is an isomorphism, p ∈ Bh(Vh) ⊂
Qh is well-defined by

〈p,q〉Q = λ〈u,B−1
h q〉V − a(u,B−1

h q) ∀q ∈ Bh(Vh).

Then, for any v ∈ Z ⊥
h , p satisfies

b(v,p) = 〈Bhv,p〉Q = λ〈u,v〉V − a(u, v).

Further, by definition b(v,p) = 0 for any v ∈ Zh. Hence, by the assumption that
(λ,u) is an eigenpair of (3.3), (λ, (u,p)) satisfies (3.4). The converse statement is
obvious. Finally, letting u = 0 in (3.4), we see that (λ, (0,p)) satisfies (3.4) if and
only if p ∈ Nh, but for any λ ∈ R. �

Note that, as a consequence of the last observation in Lemma 3.2, if Nh is non-
trivial, the generalized eigenvalue problem (3.4) is computationally not well-posed
since any scalar λ is an eigenvalue.

In the subsequent section, we shall numerically investigate the stability of families
of finite element discretizations Vh × Qh such that divVh ⊆ Qh for the mixed Lapla-
cian, using the eigenvalue problem (3.2) in terms of standard bases for the spaces Vh

and Qh. The eigenvalue problem (3.4) does not enter, but would, were we to investi-
gate discretizations where divVh 	⊆ Qh.

3.2 A characterization of the mixed Laplacian Brezzi inf-sup constant

We now turn from the general setting to consider the H(div) × L2 formulation of
the mixed Laplacian (1.1). In Lemma 3.3 below, we show that the Brezzi inf-sup
constant can be identified with the smallest eigenvalue of the negative Laplacian.
Consequently, if a discretization family {Vh × Qh}h guarantees eigenvalue conver-
gence for the mixed Laplace eigenvalue problem and is such that divVh ⊆ Qh, the
Brezzi inf-sup constant of the discretization will converge to the continuous Brezzi
inf-sup constant.
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Lemma 3.3 Let V ⊆ H(div,�) and Q ⊆ L2(�) be such that divV ⊆ Q. Consider
the Brezzi inf-sup eigenvalue problem (3.2) applied to (1.1):

〈u,v〉div + 〈divv,p〉 + 〈divu,q〉 = −λ〈p,q〉 ∀(v, q) ∈ V × Q. (3.5)

Consider also the mixed Laplace eigenvalue problem:

〈û, v〉 + 〈divv, p̂〉 + 〈div û, q〉 = −λ̂〈p̂, q〉 ∀(v, q) ∈ V × Q. (3.6)

Then, (λ, (u,p)) is an eigenpair of (3.5) if and only if (λ̂, (û, p̂)) is an eigenpair
of (3.6) where λ̂ = λ(1 − λ)−1, û = u and p̂ = (1 − λ)p. Moreover, in this case,
0 ≤ λ < 1 and λ̂ ≥ 0. Also, p 	= 0, p̂ 	= 0.

Proof Assume that (λ, (u,p)) is an eigenpair of (3.5). First, note that λ 	= 1. Letting
λ = 1, v = u and q = −divu in (3.5), implies that u = 0. Further, v = 0 and q = p

gives that p = 0. Hence, λ = 1 is only associated with the zero solution, which by
definition, cannot form an eigenpair. Next, note that p 	= 0, since otherwise implies
that u = 0, which again is impossible. By the assumption divV ⊆ Q,

〈divu,divv〉 = −λ〈p,divv〉 ∀v ∈ V. (3.7)

Taking v = u in (3.7) and letting v = u and q = (λ − 1)p in (3.5) show that ‖u‖2 =
λ(1 − λ)‖p‖2. So, 0 ≤ λ < 1. The combination of (3.7) and (3.5) gives

〈u,v〉 + 〈divu,q〉 + (1 − λ)〈divv,p〉 = −λ〈p,q〉.
Finally, letting û = u, p̂ = (1 − λ)p and λ̂ = λ(1 − λ)−1, gives that (λ̂, (û, p̂))

solves (3.6). The converse holds by similar arguments. �

The equivalence demonstrated in the lemma above affords a simple characteriza-
tion of the Brezzi inf-sup constant for the mixed Laplacian. The eigenvalue prob-
lem (3.5) with V = H(div,�) and Q = L2(�) is the eigenvalue problem associated
with the continuous Brezzi inf-sup constant βdiv, cf. Lemma 3.1. Hence, βdiv is the
square-root of the smallest eigenvalue of (3.5). On the other hand, the eigenvalue
problem (3.6) is a mixed weak formulation of the standard eigenvalue problem for
the negative Laplacian with Dirichlet boundary conditions, given in strong form be-
low:

−	p̂ = λ̂p̂ in �, p̂ = 0 on ∂�. (3.8)

Thus, if μ is the smallest eigenvalue of (3.8), βdiv = √
μ(1 + μ)−1.

Remark An alternative eigenvalue problem arises from noting that, under the as-
sumption divV ⊆ Q, (3.6) with v = 0 implies that λ̂ p̂ = −div û. Hence, if (λ̂, (û, p̂))

solves (3.6), then either λ̂ = 0, û = 0 and p̂ ⊥ divV , or λ̂ > 0, û 	= 0, and (λ̂, û) will
be an eigenpair of the problem:

〈divu,divv〉 = λ̂〈u,v〉 ∀v ∈ V.

This eigenproblem was studied in [5].
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Now, consider a stable discretization family Vh × Qh of (1.1) such that divVh ⊆
Qh, with Brezzi inf-sup constants βdiv

h . Let μh denote the smallest eigenvalue ap-
proximation of (3.6) by Vh × Qh. As a consequence of the preceding considerations,
if μh → μ, then βdiv

h → βdiv. In other words, if the discretization family is stable,
satisfies divVh ⊆ Qh, and gives eigenvalue convergence, then the Brezzi inf-sup con-
stant will converge to the continuous Brezzi inf-sup constant. Note however, that the
discrete stability conditions are not sufficient to ensure the convergence of approxi-
mations to the eigenvalue problem (3.6) [1, 4].

Mixed finite element discretizations of (1.1) based on the Raviart-Thomas [18]
and Brezzi-Douglas-Marini [8] families of H(div) conforming elements are known to
give eigenvalue convergence, and hence βdiv

h → βdiv. Some cases where βdiv
h seems

to be uniformly bounded in h, but βdiv
h 	→ βdiv are exemplified in the subsequent

section. Finally, note that if � is the unit square: � = (0,1)2, the smallest eigenvalue
of (3.8) is 2π2 and so

βdiv =
√

2π2

1 + 2π2
≈ 0.975593. (3.9)

4 Lower order Lagrange elements for the mixed Laplacian

From here on, we restrict our attention to finite element discretizations of the mixed
Laplacian (1.1) on a polygonal domain � ⊂ R

2. The primary aim is to examine the
stability, or reduced stability, and convergence properties of Lagrange elements, that
is, continuous piecewise polynomials for the vector variable and discontinuous piece-
wise polynomials for the scalar variable:

Vh × Qh = P c
r (Th;V) × Pr−1(Th), (4.1)

for r = 1,2, . . . . Although the Brezzi conditions are in general not satisfied for these
discretizations, stability or reduced stability may be identified on families of struc-
tured triangulations. The pair (4.1) is clearly such that divVh ⊆ Qh. Therefore, the
stability of the discretization relies on a uniform bound for the Brezzi inf-sup con-
stant only. Further, a uniform lower bound on the Brezzi inf-sup constant for the
Stokes equations induces the corresponding bound for the mixed Laplacian. Hence,
the results on the reduced stability of this element pair for the Stokes equations can
be directly applied to the mixed Laplacian. In the following, new numerical evidence
is presented and compared to the known results.

The stability of the P c
r (V) × Pr−1 family of elements, for both the Stokes equa-

tions and the mixed Laplacian, depends on the polynomial degree r and the structure
of the triangulation Th. For triangulations that have interior singular vertices, the
space of spurious modes Nh, defined by (2.10) applied to (1.1), will be non-trivial.
Here, an interior vertex is labeled singular if the edges meeting at that vertex fall on
two straight lines. Let x denote an interior singular vertex and let ωx be the star of x.
For any r ≥ 1, there exists a p ∈ Nh such that p is supported in ωx [15, 16]. Conse-
quently, letting σ denote the number of interior singular vertices of a triangulation,
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dim Nh ≥ σ . Scott and Vogelius showed, for r ≥ 4 that if there are no interior singu-
lar vertices, then dim Nh = 0 and so βdiv

h ≥ β1
h > 0. Moreover, they proved that for a

family of meshes without interior singular vertices, β1
h remains bounded above zero

as long as the meshes do not tend to singularity as h → 0. For the precise statement
and more details, see [19] or [6, Sect. 12.6].

As we shall see below, for r < 4, the space of spurious modes may be non-trivial
even when there are no singular vertices. Further, for the Stokes equations, more
restrictive conditions than the above must be placed on the triangulations in order
to obtain a uniform bound for the Stokes Brezzi inf-sup constant [17]. The stability
properties of these lower order discretizations for the mixed Laplacian is the main
question of interest in the following.

Remark We shall not consider the pairing P c
r (V) × Ps except for s = r − 1. This

choice is easily motivated. First, a dimension count shows that the pairing of con-
tinuous piecewise polynomial vector fields with discontinuous piecewise polynomi-
als of the same or higher degree must have a non-trivial space of spurious modes.
Second, although the Brezzi inf-sup constant is uniformly bounded for the pairs
P c

r (V) × Pr−2, r = 2,3, . . . , the Brezzi coercivity constant for the mixed Laplacian
is not uniformly bounded, and thus stability fails.

4.1 Stability

In the spirit of [17, Sect. 5], we aim to numerically investigate the stability of
P c

r (V) × Pr−1 for r = 1,2,3 on certain families of structured triangulations of the
unit square. The triangulation patterns considered are illustrated and labeled in Fig. 1.

Fig. 1 Structured 2 × 2 triangulations of the unit square
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Table 1 The number of interior singular vertices σ and the dimension of the space of spurious modes,
dim Nh, for labeled families of n × n triangulations of the unit square, cf. Fig. 1. For the flipped, zigzag
and Union Jack meshes, dim Nh is conjectural

Diagonal Flipped Zigzag Crisscross Union Jack

σ 0 0 0 n2 n(n − 2)/2

dim Nh 0

{
(n/2 − 1)2 r = 1

0 r = 2,3
0 n2 n(n − 2)/2

For n even, an n × n triangulation of each family is constructed by first partitioning
the domain into n×n squares, and subsequently dividing each block of 2×2 squares
into triangles by the respective patterns. For instance, an n × n diagonal triangula-
tion is formed by dividing the unit square into n × n subsquares, and dividing each
subsquare into triangles by the positive diagonal. Throughout, we identify h = 1/n

and assume that n > 2. Observe that the diagonal, flipped, and zigzag triangulations
contain no interior singular vertices, while the crisscross and the Union Jack trian-
gulation contain n2 and n(n − 2)/2 interior singular vertices, respectively. This is
summarized in the first row of Table 1.

Recall that dim Nh ≥ σ for r ≥ 1 and equality holds for r ≥ 4. Qin proved that
equality holds for 1 ≤ r ≤ 3 in the case of the diagonal and the crisscross meshes
and numerically observed equality for the flipped mesh for r = 2 [17]. Our own
experiments show that equality holds for the zigzag and Union Jack meshes for 1 ≤
r ≤ 3. Equality also holds for the flipped mesh when r = 2,3, but not for r = 1. These
results are summarized in the second row of Table 1.

We continue by studying the behavior of the Brezzi inf-sup constants on the above
triangulations. The cases r = 2,3 are considered first, but we will return to the case
r = 1 below. For the Stokes equations, it is known that the diagonal and crisscross
triangulation families exhibit very different behavior for r = 2,3 [17]. Namely, al-
though there are non-trivial spurious modes on the crisscross triangulation family, the
reduced Brezzi inf-sup constant is uniformly bounded. In contrast, for the diagonal
family, the Brezzi inf-sup constant decays as approximately O(h). As the discretiza-
tion is reduced stable for the Stokes equations on crisscross triangulations, it is also
reduced stable for the mixed Laplacian. A natural question becomes whether the lack
of stability on diagonal triangulations for the Stokes equations is also present for the
mixed Laplacian.

In view of Lemma 3.1, we shall make an attempt at answering this question
through a set of numerical experiments. For a given r and a given Th, the small-
est, and smallest non-zero, eigenvalue of (3.5) for V = P c

r (Th,V), Q = Pr−1(Th)

give the Brezzi inf-sup and reduced Brezzi inf-sup constant. These eigenvalues for
the triangulation families considered, computed using LAPACK, SLEPc [11] and
DOLFIN [12], are given for r = 1,2,3 in Tables 2, 3 and 4. For the purpose of iden-
tifying spurious modes, eigenvalues below a threshold of 10−4 have been tabulated
to zero.1

1Had a smaller threshold been chosen, some of the zero eigenvalues associated to interior singular vertices
would have been missed for r = 2 on the Union Jack mesh of size n = 6.
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Table 2 The mixed Laplacian
(reduced) Brezzi inf-sup
constant for
P c

1 (Th;V) × P0(Th) on labeled
structured families of
triangulations Th. The
dimension of the space of
spurious modes in parenthesis if
non-trivial

n βdiv
h

β̃div
h

(dim Nh)

Diagonal Zigzag Flipped Union Jack

4 0.847171 0.791967 0.945496 (1) 0.976985 (4)

6 0.716677 0.626865 0.945619 (4) 0.976271 (12)

8 0.605576 0.505968 0.947850 (9) 0.975985 (24)

10 0.517707 0.420180 0.946138 (16) 0.975847 (40)

12 0.449060 0.357720 0.944833 (25) 0.975770 (60)

14 0.394963 0.310731 0.943880 (36) 0.975724 (84)

16 0.351684 0.274303 0.943142 (49) 0.975693 (112)

Table 3 The mixed Laplacian
(reduced) Brezzi inf-sup
constant for
P c

2 (Th;V) × P1(Th) on labeled
structured families of
triangulations Th. The
dimension of the space of
spurious modes in parenthesis if
non-trivial

n βdiv
h

β̃div
h

(dim Nh)

Diagonal Zigzag Flipped Union Jack

4 0.975627 0.955956 0.943790 0.975628 (4)

6 0.975600 0.952460 0.940480 0.975603 (12)

8 0.975595 0.951384 0.938717 0.975595 (24)

10 0.975594 0.950906 0.937684 0.975594 (40)

12 0.975594 0.950638 0.936992 0.975593 (60)

14 0.975593 0.950458

Table 4 The mixed Laplacian
(reduced) Brezzi inf-sup
constant for
P c

3 (Th;V) × P2(Th) on labeled
structured families of
triangulations Th. The
dimension of the space of
spurious modes in parenthesis if
non-trivial

n βdiv
h

β̃div
h

(dim Nh)

Diagonal Zigzag Flipped Union Jack

4 0.972244 0.975594 0.975594 0.975594 (4)

6 0.967304 0.975593 0.975593 0.975593 (12)

8 0.964845 0.975593 0.975593 0.975593 (24)

10 0.963412

12 0.962484

For the diagonal meshes, the numerical experiments indicate that in contrast to
Stokes, the mixed Laplacian Brezzi inf-sup constants are bounded from below for
both r = 2,3. For the flipped and zigzag meshes, experiments give similar results.
Neither exhibits any spurious modes. Moreover, while the Brezzi inf-sup constant
decays approximately as O(h) for the Stokes equations [17], it appears to be uni-
formly bounded for the mixed Laplacian. For the Union Jack family, the same ex-
periment gives n(n − 2)/2 spurious modes, but the reduced Brezzi inf-sup constant
again seems to be uniformly bounded. In summary for r = 2,3, the P c

r (V) × Pr−1
elements appear to be at least reduced stable for all the families considered.

With the discussion in Sect. 3.2 in mind, we also note that the Brezzi inf-sup
constant converges to the exact value, given by (3.9), for some, but not all, of these
meshes. For r = 2, the Brezzi inf-sup constant seems to converge to the exact value
on the diagonal meshes, but not on the flipped or the zigzag meshes. The situation is
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the opposite for r = 3. There, the Brezzi inf-sup constant seems to converge to the
exact value on the zigzag and flipped meshes, but not for the diagonal meshes.

The situation is different and more diverse in the lowest-order case: r = 1. Boffi
et al. proved that P c

1(V) × P0 is in fact reduced stable for the mixed Laplacian on
crisscross meshes [4]. It is not reduced stable for Stokes [17]. However, the element
pair does not seem to be stable on diagonal meshes. The values in the first column of
Table 2 indicate that the Brezzi inf-sup constant decays approximately as O(h). The
same is the case for the zigzag meshes. For the Union Jack meshes, the situation is
similar to the crisscross case. That is, the number of singular modes match the number
of interior singular vertices and the reduced Brezzi inf-sup constant appears to be
bounded from below. Finally, the flipped meshes display a surprising behavior. There
seem to be (n/2 − 1)2 spurious modes, even though there are no singular vertices.
This is the only case where we have observed dim Nh > σ . However, the reduced
Brezzi inf-sup constant appears to be uniformly bounded.

4.2 Convergence

In the previous subsections, we have investigated the stability of the P c
r (V) × Pr−1

elements. Now, we proceed to examine the convergence properties of these elements
on the diagonal meshes. Conjecturing that P c

r (V)× Pr−1 is stable on this mesh family
for r ≥ 2, in accordance with the numerical evidence presented above, the standard
theory gives the error estimate

‖u − uh‖div + ‖p − ph‖0 ≤ Chr (‖u‖r+1 + ‖p‖r ) . (4.2)

For r ≥ 4, the L2 error estimate for the velocity can be improved [6, Theorem 12.4.9],
thus yielding:

‖u − uh‖0 ≤ Chr+1‖u‖r+1. (4.3)

In order to verify (4.2) and to see whether (4.3) appears to be attained for r = 2,3,
we consider a standard smooth exact solution to the Laplacian with pure Dirichlet
boundary conditions:

p(x, y) = sin(2πx) sin(2πy), u = gradp, g = divu. (4.4)

The errors of the P c
r (V) × Pr−1 approximations for 1 ≤ r ≤ 4 on diagonal meshes

can be examined in Fig. 2. To compute the errors, both the source function g and
the exact solutions u,p have been represented by sixth order piecewise polynomial
interpolants �hg and �hu,�hp, whereupon the errors have been calculated exactly
(up to numerical precision).

For r = 1, we observed the discretization to be unstable on diagonal meshes. As
expected in this case, neither the pressure nor the velocity approximation seems to
converge in the L2 norm. This indicates that the estimates for the approximation error,
based on the standard estimates and the decaying Brezzi inf-sup constant, cannot be
improved. On the other hand, for r > 1, we observed the method to be stable. For
r = 2,3,4, the orders of convergence in the H(div) norm of the velocity and the L2

norm of the pressure approximations are indeed optimal, as predicted by (4.2).
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Fig. 2 The errors of
P c

r (V) × Pr−1 approximations
for r = 1,2,3,4 on diagonal
meshes versus mesh number n.
The errors have been
normalized, that is, multiplied
by the inverse of the error at the
smallest mesh n = 4

The situation seems different for the convergence of the velocity approximation in
the L2 norm. For r ≥ 4, a convergence rate of order r + 1 is predicted by (4.3). This
is also observed for r = 4 in Fig. 2(c). On the other hand, for r = 2 and 3 the rate of
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convergence appears to be of order r , and thus one order suboptimal, indicating that
the estimate (4.3) does not hold for r < 4.
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