Stabilized reduced basis approximation of the Navier-Stokes equations in deformed domains

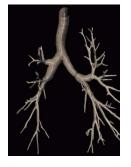
Emil Løvgren*, Simone Deparis†

*Center for Biomedical Computing Simula Research Laboratory, Norway

[†]Modelling and Scientific Computing Ecole Polytechnique Fédérale de Lausanne

MoRePaS 09

Motivation

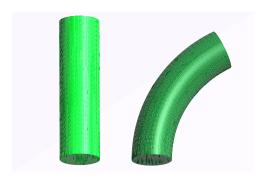


Outline

- Motivation
- Geometry as a parameter in Navier-Stokes
- Stabilized $P_1 P_1$ finite elements
- Reduced basis procedure
- LifeV implementation
- Results

For some parameter $\mu \in \mathbb{R}^P$, we define a map

$$\Phi(\mu): \widehat{\Omega} \to \Omega_{\mu}.$$



On Ω_{μ} we define the operators

$$\begin{split} & a(\mathbf{v},\mathbf{w};\boldsymbol{\mu}) = \nu \int_{\Omega_{\boldsymbol{\mu}}} \nabla \mathbf{v} \cdot \nabla \mathbf{w} d\Omega_{\boldsymbol{\mu}}, \\ & b(\mathbf{v},q;\boldsymbol{\mu}) = -\int_{\Omega_{\boldsymbol{\mu}}} q \nabla \cdot \mathbf{v} d\Omega_{\boldsymbol{\mu}}, \\ & c(\mathbf{u},\mathbf{v},\mathbf{w};\boldsymbol{\mu}) = \int_{\Omega_{\boldsymbol{\mu}}} (\mathbf{u} \cdot \nabla) \mathbf{v} \, \mathbf{w} d\Omega_{\boldsymbol{\mu}}, \end{split}$$

where ${\bf u},{\bf v},$ and ${\bf w}$ are velocity fields, q is a scalar pressure field, and ν is the viscosity.

To identify the geometry as a parameter we write the viscous operator on the reference domain:

$$a(\mathbf{u}, \mathbf{v}; \boldsymbol{\mu}) = \nu \int_{\widehat{\Omega}} \mathcal{J}^{-T} \widehat{\nabla} (\mathbf{u} \circ \Phi) \cdot \mathcal{J}^{-T} \widehat{\nabla} (\mathbf{v} \circ \Phi) |J| d\widehat{\Omega},$$

where ${\cal J}$ is the Jacobian of the map.

The weak form of the Navier-Stokes equations on Ω_{μ} then reads: find $(\mathbf{u},p)\in V(\Omega_{\mu})$ such that

$$\begin{split} & a(\mathbf{u},\mathbf{v};\boldsymbol{\mu}) + b(\mathbf{v},\boldsymbol{p};\boldsymbol{\mu}) + c(\mathbf{u},\mathbf{u},\mathbf{v};\boldsymbol{\mu}) &= l(\mathbf{v};\boldsymbol{\mu}) \\ & b(\mathbf{u},q;\boldsymbol{\mu}) &= 0 \end{split} \right\} \forall (\mathbf{v},q) \in V(\Omega_{\boldsymbol{\mu}}), \\ & \text{where } V(\Omega_{\boldsymbol{\mu}}) = \{\mathbf{v} \in (H^1(\Omega_{\boldsymbol{\mu}}))^3 : \mathbf{v}|_{\Gamma^D} = 0\} \times \{q \in L^2(\Omega_{\boldsymbol{\mu}})\} = X \times M. \end{split}$$

The inf-sup condition for the Navier-Stokes equations

$$0 < \beta \leq \inf_{q \in M} \sup_{\mathbf{v} \in X} \frac{b(\mathbf{v}, q; \boldsymbol{\mu})}{\|q\|_{L^2} \|\mathbf{v}\|_{H^1}}$$

Stabilized $P_1 - P_1$ finite elements

We define the space

$$V_h(\Omega_{\boldsymbol{\mu}}) = \left\{ (\mathbf{v}_h, p_h) \in V(\Omega_{\boldsymbol{\mu}}) : \mathbf{v}|_K \in P_1 \text{ and } p|_K \in P_1 \ \forall K \in \mathcal{T}_h \right\},$$

where P_1 represents first order polynomials, and the stabilization term

$$j_h(p,q;\boldsymbol{\mu},\mathbf{z}) = \int_{\Gamma_{I,\boldsymbol{\mu}}} \gamma \frac{h_f^3}{\max\{h_f|\mathbf{z}|,\nu\}} \llbracket \nabla p \rrbracket_f \cdot \llbracket \nabla q \rrbracket_f ds.$$

[Burman, Fernández, Hansbo , 2006.]

Stabilized $P_1 - P_1$ finite elements

Finite element problem: find (\mathbf{u}_h, p_h) in $V_h(\Omega_{\mu})$ such that

$$A_h[(\mathbf{u}_h, p_h), (\mathbf{v}_h, q_h), \mathbf{u}_h; \boldsymbol{\mu}] = I_h(\mathbf{v}_h; \boldsymbol{\mu}) \quad \forall (\mathbf{v}_h, q_h) \in V_h(\Omega_{\boldsymbol{\mu}}),$$

where subscript h on the operators means integration by some appropriate quadrature rule, and

$$\begin{split} \mathcal{A}_h[(\mathbf{u}_h,p_h),(\mathbf{v}_h,q_h),\mathbf{u}_h;\boldsymbol{\mu}] &= a_h(\mathbf{u}_h,\mathbf{v}_h;\boldsymbol{\mu}) + b_h(\mathbf{v}_h,p_h;\boldsymbol{\mu}) - b_h(\mathbf{u}_h,q_h;\boldsymbol{\mu}) \\ &+ c_h(\mathbf{u}_h,\mathbf{u}_h,\mathbf{v}_h;\boldsymbol{\mu}) + j_h(p_h,q_h;\boldsymbol{\mu},\mathbf{u}_h). \end{split}$$

Stabilized $P_1 - P_1$ finite elements

The non-linear system is solved by a pseudo time advancing scheme until a steady solution is reached. We introduce a time step Δt and the bi-linear form

$$m(\mathbf{u}, \mathbf{v}; \boldsymbol{\mu}) = \frac{1}{\Delta t} \int_{\Omega_{\mu}} \mathbf{u} \cdot \mathbf{v} d\Omega_{\mu}.$$

Starting from an initial guess $(\mathbf{u}_h^0, \rho_h^0)$, find $(\mathbf{u}_h^{n+1}, \rho_h^{n+1})$ in $V_h(\Omega_\mu)$ such that

$$m_h(\mathbf{u}_h^{n+1}, \mathbf{v}_h; \boldsymbol{\mu}) + \mathcal{A}_h[(\mathbf{u}_h^{n+1}, \boldsymbol{\rho}_h^{n+1}), (\mathbf{v}_h, q_h), \mathbf{u}_h^n; \boldsymbol{\mu}]$$

$$= I_h(\mathbf{v}_h; \boldsymbol{\mu}) + m_h(\mathbf{u}_h^n, \mathbf{v}_h; \boldsymbol{\mu}) \qquad \forall (\mathbf{v}_h, q_h) \in V_h(\Omega_{\boldsymbol{\mu}}).$$

Reduced basis: offline procedure

Compute the basis functions

For a parameter set $S_N = \{\mu^i\}_{i=1}^N$, each μ^i defines a map $\Phi^i: \widehat{\Omega} \to \Omega_{\mu^i}$. On each Ω_{μ^i} we find $(\mathbf{u}_h^i, p_h^i) \in V_h(\Omega_{\mu^i})$ such that

$$\mathcal{A}_h[(\mathbf{u}_h^i, p_h^i), (\mathbf{v}_h, q_h), \mathbf{u}_h^i; \boldsymbol{\mu}^i] = I_h(\mathbf{v}_h; \boldsymbol{\mu}^i) \quad \forall (\mathbf{v}_h, q_h) \in V_h(\Omega_{\boldsymbol{\mu}^i}).$$

Map the basis functions to $\widehat{\Omega}$

The Piola transformation of \mathbf{u}^i from $\Omega_{\boldsymbol{\mu}^i}$ to $\widehat{\Omega}$

$$\hat{\mathbf{u}}^i = \Psi^i(\mathbf{u}^i) = (\mathcal{J}^i)^{-1}(\mathbf{u}^i \circ \Phi^i)|\mathcal{J}^i|.$$

The pressure is mapped through $\hat{p}^i = p^i \circ \Phi^i$.

Orthonormalize

Pressure basis wrt the L^2 inner product, velocity wrt $a_h(\mathbf{v},\mathbf{w};\mu^0)$

Reduced basis: online procedure

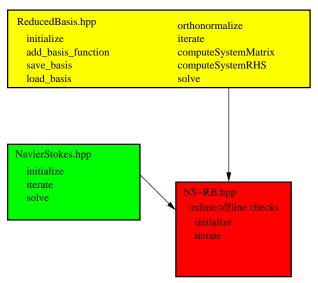
Map the basis functions to Ω

$$\tilde{\mathbf{u}}^i = \Psi^{-1}(\hat{\mathbf{u}}^i)$$
 and $\tilde{p}^i = \hat{p}^i \circ \Phi^{-1}(\mu), \quad i = 1, \dots, N.$

Start with $(\mathbf{u}_N^0, p_N^0) = (\mathbf{0}, \mathbf{0})$ and repeat for each time-step

- ullet Compute the system matrix for (\mathbf{u}_N^n, p_N^n)
- ullet Solve the resulting linear system for α_i^{n+1} and β_i^{n+1}
- Assemble $\mathbf{u}_N^{n+1} = \sum_{i=1}^N \alpha_i^{n+1} \tilde{\mathbf{u}}^i$ and $p_N^{n+1} = \sum_{i=1}^N \beta_i^{n+1} \tilde{p}^i$.
- $\bullet \ \ \mathsf{Stop} \ \ \mathsf{when} \ \| \big(\mathbf{u}_N^{n+1}, p_N^{n+1} \big) \big(\mathbf{u}_N^n, p_N^n \big) \|_{H^1 \times L^2} < \epsilon.$

Implementation in LifeV



Implementation in LifeV

On a straight reference pipe, we impose deformation controlled by two parameters μ_1 and μ_2 . First

$$r(I) = r_0 + \frac{\mu_1}{2}(\cos(\frac{2\pi I}{L}) - 1)$$

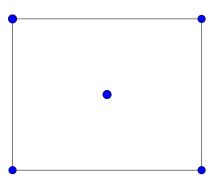
defines the change in cross-section radius along the length of the pipe.

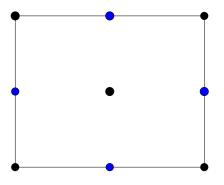
Implementation in LifeV

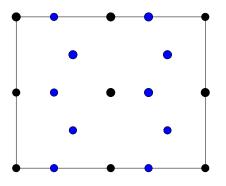
Assuming the center axis is aligned with the z-axis, the center axis is rotated around the point $(\frac{1}{\mu_2},0,0)$. For a point (x_0,y_0,z_0) the second deformation gives

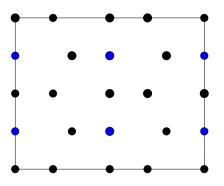
$$x = \frac{1}{\mu_2}(1 - \cos(\theta)) + x_0 \cos(\theta)$$

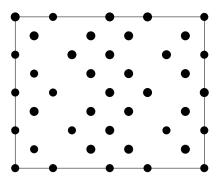
 $y = y_0$
 $z = \frac{1}{\mu_2}\sin(\theta) - x_0 \sin(\theta)$,



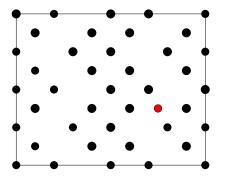








As a test case we choose $\mu=(0.15,0.75)$



Ν	$\ p - p_N\ _{L^2}$	$\ \mathbf{u} - \mathbf{u}_N\ _{H^1}$
/ V	117 7 11 2	
5	$1.78 \cdot 10^{-1}$	$2.53 \cdot 10^{-4}$
10	$2.55 \cdot 10^{-2}$	$1.69 \cdot 10^{-4}$
15	$1.51 \cdot 10^{-2}$	$1.21 \cdot 10^{-4}$
20	$5.31 \cdot 10^{-3}$	$7.44 \cdot 10^{-5}$
25	$4.83 \cdot 10^{-3}$	$6.99 \cdot 10^{-5}$
30	$4.46 \cdot 10^{-3}$	$6.66 \cdot 10^{-5}$
35	$3.57 \cdot 10^{-3}$	$5.95 \cdot 10^{-5}$
40	$3.12 \cdot 10^{-3}$	$5.61 \cdot 10^{-5}$

The convergence of the reduced basis approximation with respect to the number of basis functions.

Final comments - future work

- Stabilization works
- No enrichment necessary
- Offline/online decomposition
- Error estimation
- Greedy algorithm

