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Abstract

Several proposals have been made to handle kriging in fields where
the anisotropy is not constant but varies from location to location in
the field in question. This note proposes an alternative approach for
dealing with this problem. The basic idea is to apply so-called piecewise
kriging along shortest paths between the locations where the function
to be estimated are known and the location where the function is to be
estimated. The proposed approach avoids the problem of establishing
positive definite covariance matrices in the whole field.

1 Introduction

Several proposals have been made to handle kriging in fields where the
anisotropy is not constant but varies from location to location in the field
in question. See for example [1] and the references cited there. This note
proposes an alternative approach for dealing with this problem. The basic
idea is to apply so-called piecewise kriging along shortest paths between the
locations where the function to be estimated are known and the location
where the function is to be estimated. Our approach avoids the problem of
establishing positive definite covariance matrices in the whole field.

2 Piecewise simple kriging under the assumption of
isotropy

This section is included in order to motivate the proposed procedure for the
anisotropic case. The following notation is used:



Figure 1: Observed values and sought value (two dimensions)

u: Vector of spatial coordinates in a finite-dimensional space
Z(u): Random field value to be sought

E(U) . Estimate of Z(u)

z(u;) : Observation of Z(u) at z(u;)

h: Vector between two spatial locations

The situation is illustrated in Figure 1 in the two-dimensional case. We
shall make the standard simple kriging assumptions which imply that the
expected value and variance of Z(u) are independent of v and known. Thus
we can normalize the observations and assume that Z(u) has expected value
0 and variance 1.

The covariance (and correlation coefficient) p(h) between Z(u) and Z(u+h)
is given as:

p(h) = E[Z(u)(Z(u+ h)] (1)

If we assume isotropy, p(h) depends on h through the Euclidean metric |h|
only, so that we can operate with p(|h|).

The variogram at the point u is:
1
V(1) = SE(Z(u+h) = Z(w)]* =1 = p(|h]). (2)

Assume that we have only one observation z(u;). Then the simple kriging
estimate of Z(u) becomes

Z(u) = pl|jur — ul)z(uy). (3)

Now we put an intermediate point v1; somewhere on the chord between u;
and u. Then, as above we get

Z(v11) = pljur — vn1])z(us). (4)



Let us for a moment assume that Z(vy;) is actually the true value of Z(v11),
and that we want to estimate the the value of Z(u) based solely on Z(v11).
We would then get

Z(U) :p("l)ll —U‘)Z(’Ull) - (5)
p(lvrr — ul)p(lur — via])z(ua).

We see that Z(u) is still (unconditionally) unbiased. If p(|h1| + |ho|) =
p(|hi])p(|h2|) we would be back to simple kriging. This condition holds,
however, only if the corresponding variogram is exponential, i.e. if p(|h|) is
of the form exp(—alh|/r). So, in general, the kriging variance will be greater
than in simple kriging.

We can continue this reasoning by placing a new intermediate point vio
between vi; and u. As above we assume that 2(1}11) is the true value of
Z(v11). First we estimate Z(v12) based solely on Z(v1). As in (5) we get

Z(v12) = p(lv11 — v12]) Z(v11). (6)

Again we assume that 2(1}12) is the true value of Z(v12), and that we want
to estimate Z(u) based solely on Z(vi2). We then get

~

Z(u) = p(lviz — ul) Z(v12) =

p(Jviz — ul)p(jorr — viz])Z(vi1) = (7)
p(lviz — ul)p(|vir — via])p(Jur — v11])z(u1).
So again, if p(|h|) = exp(—alh|/r) we would be back to simple kriging.

In general, if we place m; intermediate points vi1,--- ,v1m, on the chord
between u; and w, the form of the modified estimate Z(u) becomes

mi—1
Z(u) = p(lur —vnDLIT pllor; = vrgeaDlp(vim, —ul)z(ur). (8)
j=1
Now the question arises, how much does this differ from the simple kriging
estimate when the distance between uq and w is small compared to minimum
of the ranges of the variograms that we used on the pieces of the path
between w1 and u? In other words, how much does p(3_7"; [h;]) differ from
[152, p(lhj]) when the |hj|-s are small? It is well known (see e.g.[2] p. 62)
that for valid variograms

p(Ihl) =1 —alh|/r+o(|n*/r?) (9)

where r is the range of the corresponding variogram. Then, if we set
h= 2252 [hil,
p(Ihl) =1 = alh|/r +o(|h]*/7?) (10)



and

[ e(niD) =TT — alhyl/r + o(lnsl /r)] =
=1 N i=1 ()
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so that

(Y Iks1) = TT p(Irs)] = o(h?/r?). (12)
j=1 j=1

This means that if |u; —u/ is small compared to the range 7, our modification
does not deviate too much from simple kriging.

3 Piecewise simple kriging, varying anisotropy

We now assume that the m; intermediate points vi1,- -+ ,v1m, do not nec-
essarily lie on the chord between u; and u, and that we have established m;
relevant, in general not equal, variograms, together with corresponding, in
general non-Euclidean, metrics for the estimation of Z(v11) from z(u1) and
for the estimation of Z(vy j41) from Z(vy;) for j =1,--- ,m; — 1. We still
propose to use the procedure described in section 2 on page 1 for estimating
Z(Ulml ) .

Now we generalize to the case where we possess observations z(u;) for
a set of points wuq,---,u,, and where we for each ¢ have found a path
(wi, Vi1, -+ 5 Vim,, w) between u; and v with valid local variograms for each of
the chords (u;, vi1), (vit, vi2), - -, (Viimy_1 s Vim, )s (Vim,, w). We assume further
that we have chosen the points v;,,, so close to u that we can use the same
variogram for all the chords (vip,,u),7 = 1,--- ,n. Based on the estimates
/Z\<'Uz‘mi),i = 1,--- ,n we then use simple or ordinary kriging to estimate
Z(u).

4 Selection of the path from u; to u

We want the path from u; to u to be short. First we partition the u-space
into rectangular cells such that we can establish an in general anisotropic,
multidimensional variogram for each cell. Then we put nodes on the edges of
the cells as illustrated for two dimensions in Figure 2 on the following page.
The extension to higher dimensions is obvious.

Every node on an edge of one cell is connected with a straight line to every
other node on an edge of the same cell. In addition, the starting point wu;



Figure 2: Hlustration of the shortest path calculation in the two-dimensional
case

and the ending point u are connected to every edge node in their own cells
by straight lines. A cell’s local metric is established in the usual way by a
local change of coordinates. This metric is used to calculate the lengths of
the lines in the cells. Then Dijksra’s algorithm is used to establish a shortest
path from w to all the u;-s in one pass. The number of nodes along the edges
is determined by the accuracy required. Of course, the number of lines in
the network increases rapidly with the dimension of the u-space.

5 Extension to the case where EZ(u) is unknown
but still independent of

This is an assumption used in ordinary kriging. Using the ordinary
kriging equations to estimate Z(wv;1) based on z(u;) gives only the trivial
estimate Z (vi1) = Z(u;) which is not very helpful. We propose instead to
continue with simple kriging by normalizing Z(u) around the empirical mean
>y z(u;)/n in lieu of around a known EZ(u), and then use simple kriging
as above to establish Z (Vim,;)

Once we have established Z\(Uzml),l = 1,---,n we use simple or ordinary
kriging to estimate Z(u) based on these values.

6 A two-dimensional illustrative example

We have four observations z(uj) = 3, z(u2) = —1, z(uz) = =2, z(uq) =5 of
the variable Z defined on the field shown in Figure 3 on the next page. We
assume that the observations have been normalized so that EZ = y = 0 and
varZ = 1, and that the anisotropy is constant in each of the cells (1,1), -- -,
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Figure 3: The illustrative example

(3,3). The derivation of the distance function from the local anisotropies in
the cells is omitted, see e.g. [1]. The distance functions have been calculated
to be:

dua(ha, ha) = /B3 — 2hahy + 413

do1(h1, ha) = \/h3 + 4h3

dz1(h1, he) = \/h% + 2h1hy + 4h3

dua(hy, h2) = \/ 2 — 2hihy + 313

doa(hy, he) = /h? + 3h3 (13)

daa(hn, ha) = /B3 + 2hahs + 313

dus(hy, h2) = \/ 2 — 2hihy + 213

daz(h1, ha) =/ h3 + 2h3

d33(h1, h2> = \/h% + 2h1hg + Qh%.

The shortest paths are shown in Figure 3. Their lengths are:

Between v and uy: 2.2990
Between u and ug: 2.3229
Between u and uz: 1.5150
Between u and ug: 2.0308.

We choose for all cells the Gaussian variogram with generic form:

Y(Jh|) = s[1 — exp(—3|h|>/r?)?] with r = 3 and s = 1. (14)



This gives
p(lh]) = exp(~[n|*/3)° (15)

where |h| is to be replaced by the values of the distance function in each
individual cell. This gives

Z(v11) = pld(uy, v11))z(uy) = 2.511

Z(va1) = pld(uz, va1))z(ug) = —0.820

Z(v31) = pld(us, vs1)]z(us) = —2.000 (16)
Z(v32) = pld(vs1,v32)]2(v31) = —2.000

Z(va1) = pld(ug, v41))2(ug) = 4.783

Finally, to obtain 2@) we use simple kriging in cell (2,2) based on Z(v11),
Z(’Ugl), Z(Ugg), and Z(’U41):

Z(u) = MZ(v11) + Ao Z(va1) + A3 Z(v32) + M Z (va1) (17)
where the A-s satisfy

A1+ p(vi1, v21) A2 + p(vit, v32) A3 + p(v11, va1)Aa = p(v11, w)
p(va1, v11) A1 + A2 + p(v21,v32) A3 + p(v21, va1) A = p(v21, )
p(v32,v11) A1 + p(vs2, v21) A2 + A3 + p(vs2, v41)Ag = p(v32, 1)

u)

p(va1,v11) A1 + p(va1, v21) A2 + p(va1, v32) A3 + Ay = p(var,

(18)

“This gives A\ = —0.071, Ay = 0.0721, A3 = 0.3659, Ay = 0.3610, and
Z(u) = 0.2238.
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