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Abstract: We present a simple yet general and efficient approach to representation
of computational meshes. Meshes are represented as sets of mesh entities of differ-
ent topological dimensions and their incidence relations. We discuss a straightforward
and efficient storage scheme for such mesh representations and efficient algorithms for
computation of arbitrary incidence relations from a given initial and minimal set of inci-
dence relations. The general representation may harbor a wide range of computational
meshes, and may also be specialized to provide simple user interfaces for particular
meshes, including simplicial meshes in one, two and three space dimensions where the
mesh entities correspond to vertices, edges, faces and cells. It is elaborated on how
the proposed concepts and data structures may be used for assembly of variational
forms in parallel over distributed finite element meshes. Benchmarks are presented to
demonstrate efficiency in terms of CPU time and memory usage.
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1 Introduction

The computational mesh is a central component of any
software framework for the (mesh-based) solution of partial
differential equations. To reduce run-time and enable the
solution of large problems, it is therefore important that
the computational mesh may be represented efficiently,
both in terms of the speed of operations on the mesh or
access of mesh data, and in terms of the memory usage for
storing any given mesh in memory.

It is furthermore important that the data structure for
the representation of the mesh is general enough to har-
bor a wide range of computational meshes. This generality
must also be reflected in the programming interface to the
mesh representation, to allow the implementation of gen-
eral algorithms on the computational mesh. Many algo-
rithms, such as the assembly of a linear system from a finite
element variational problem may be implemented similarly
for simplicial, quadrilateral and hexahedral meshes if the
programming interface to the mesh representation does not
enforce a specific interface limited to a specific mesh type.
For example, if the entities on the boundary of a mesh (the
facets) may be accessed in a similar way independently of
the mesh dimension and not as edges in two space dimen-
sions and faces in three space dimensions, one may use the

same code to apply boundary conditions in 2D and 3D.

In Karpeev and Knepley (2005), a very general and flex-
ible representation of computational meshes is presented.
The mesh is represented as a sieve, which is in general
a directed acyclic graph with the mesh entities as points
and directed edges describing how the mesh entities are
connected. In this paper, we take a slightly less general
approach but build on some of the concepts from Karpeev
and Knepley (2005). In particular, we will represent the
mesh as a set of mesh entities (corresponding to the points

of the sieve) and their incidence relations. We also ac-
knowledge the works Berti (2002, 2006), where similar con-
cepts are defined and where the importance of mesh iter-

ators for expressing generic algorithms on computational
meshes is advocated.

The data structures and algorithms discussed in this pa-
per have been implemented as a C++ library and is dis-
tributed as part of DOLFIN, see Hoffman et al. (2006).
DOLFIN is a problem-solving environment for ordinary
and partial differential equations and is developed as part
of the FEniCS project for the automation of computational
mathematical modeling, see FEniCS (2008); Dupont et al.
(2003). Interfaces to DOLFIN are available in the form of
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a C++ and a Python class library.

1.1 Design Goals

When designing the mesh library, we had the following de-
sign goals in mind for the mesh representation and its in-
terface. The mesh representation should be simple, mean-
ing that the data is represented in terms of basic C++
arrays unsigned int* and double*; it should be generic,
meaning that it should not be specialized to say simpli-
cial meshes in one, two and three space dimensions; and it
should be efficient, meaning that operations on the mesh or
access of mesh data should be fast and the storage should
require minimal memory usage for any given mesh. Fur-
thermore, the programming interface to the mesh represen-
tation should be intuitive, meaning that suitable abstrac-
tions (classes) should be available, including specialized
interfaces for specific types of meshes as well as generic in-
terfaces that enable dimension-independent programming;
and it should be efficient, meaning that the overhead of
the object-oriented interface should be minimized.

1.2 Outline

In the following section, we present the basic concepts that
define the mesh representation and its interface. We then
discuss the data structures of the C++ implementation of
the mesh representation in DOLFIN, followed by a discus-
sion of the algorithms used in DOLFIN to compute any
given incidence relation from a given minimal set of inci-
dence relations. Next, we demonstrate the programming
interface to the mesh library. This is followed by a discus-
sion of distributed (parallel) mesh data structures. Finally,
we present a series of benchmarks to demonstrate the effi-
ciency of the mesh representation and its implementation
followed by some concluding remarks.

2 Concepts

The mesh representation is based on the following ba-
sic concepts: mesh, mesh topology, mesh geometry, mesh

entity and mesh connectivity. Each of these concepts is
mapped directly to the corresponding component (class)
of the implementation.

A mesh is defined by its topology and its geometry. The
mesh topology defines how the mesh is composed of its
parts (the mesh entities) and the mesh geometry describes
how the mesh is embedded in some metric space, typi-
cally R

n for n = 1, 2, 3. A mesh topology (Figure 1) may
be specified as a set of mesh entities (the vertices, edges
etc.) and their connectivity (incidence relations). Differ-
ent embeddings (geometries) may be imposed on any given
mesh topology to create different meshes, e.g., when mov-
ing the vertices of a mesh in an ALE computation. Below,
we discuss the two basic concepts mesh entity and mesh
connectivity in some detail and also introduce the concept
mesh function.

Figure 1: A mesh topology is a set of mesh entities (ver-
tices, edges, etc.) and their connectivity (incidence rela-
tions), that is, which entities are connected (incident) to
which entities.

2.1 Mesh Entities

A mesh entity is a pair (d, i), where d is the topological
dimension of the mesh entity and where i is a unique in-
dex for the mesh entity within its topological dimension,
ranging from 0 to Nd − 1 with Nd the number of entities
of topological dimension d. We let D denote the maximal
topological dimension over the mesh entities and set the
topological dimension of the mesh equal to D. This is il-
lustrated in Figure 2, where each mesh entity is labeled by
its topological dimension and index (d, i).

Figure 2: Each mesh entity of a mesh is identified with a
pair (d, i), where d is the topological dimension of the mesh
entity and where i is a unique index for the mesh entity
within its topological dimension, ranging from 0 to Nd − 1
with Nd the number of entities of topological dimension d.

For convenience, we also name common entities of low
topological dimension or codimension. We refer to entities
of topological dimension 0 as vertices, entities of dimen-
sion 1 as edges, entities of dimension 2 as faces, entities of
codimension 1 (dimension D − 1) as facets and entities of
codimension 0 (dimension D) as cells. Thus, for a trian-
gular mesh, the edges are also facets and the faces are also
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cells, and for a tetrahedral mesh, the faces are also facets.
This is summarized in Table 1.

Entity Dimension Codimension

Vertex 0 D
Edge 1 D − 1
Face 2 D − 2
Facet D − 1 1
Cell D 0

Table 1: Named entities of low topological dimension or
codimension.

2.2 Mesh Connectivity

We refer to the set of incidence relations on a set of mesh
entities as the connectivity of the mesh. For a mesh of
topological dimension D, there are (D+1)2 different classes
of incidence relations (connectivities) to consider. Each
such class is denoted here by d → d′ for 0 ≤ d, d′ ≤ D. For
any given mesh entity (d, i), its connectivity (d → d′)i is
given by the set of incident mesh entities of dimension d′.

Thus, for a triangular mesh (of topological dimension
D = 2), there are nine different incidence relations of in-
terest between the entities of the mesh. These are in turn
0 → 0 (the vertices incident to each vertex), 0 → 1 (the
edges incident to each vertex), . . . , D → D (the cells inci-
dent to each cell).

For d > d′, the definition of incidence is evident. Mesh
entity (d′, i′) is incident to mesh entity (d, i) if (d′, i′) is
contained in (d, i). Thus, the three vertices of a triangular
cell form the set of incident vertices and the three edges
form the set of incident edges. For d < d′, we define mesh
entity (d′, i′) as incident to mesh entity (d, i) if (d, i) is
incident to (d′, i′). It thus remains to define incidence for
d = d′. For d, d′ > 0, we say that mesh entity (d′, i′)
is incident to mesh entity (d, i) if both are incident to a
common vertex, that is, a mesh entity of dimension zero,
while for d = d′ = 0, we say that (d′, i′) is incident to (d, i)
if both are incident to a common cell, that is, a mesh entity
of dimension D.

Together, the set of mesh entities and the connectivity
(incidence relations) define the topology of the mesh. Note
that the complete set of incidence relations d → d′ for
0 ≤ d, d′ ≤ D may be determined from the single class
of incidence relations D → 0, that is, the vertices of each
cell in the mesh. We return to this below when we present
an algorithm for computing any given class of incidence
relations from the minimal set of incidence relations D →
0.

2.3 Mesh Functions

We define a mesh function as a discrete function that takes
a value on the set of mesh entities of a given fixed di-
mension 0 ≤ d ≤ D. Mesh functions are simple objects
but very useful. A real-valued mesh function may for

example be used to describe material parameters on the
cells of a mesh. A boolean-valued mesh function may be
used to set markers on cells or edges for adaptive refine-
ment. Integer-valued mesh functions may be used to ex-
press inter-connectivity between two separate meshes. A
typical use is when a boundary mesh is extracted from a
given mesh (by identifying the set of facets that are inci-
dent to exactly one cell). One may then use a mesh func-
tion to describe the mapping from the cells in the extracted
boundary mesh (which has topological dimension D − 1)
to the corresponding facets in the original mesh (which
has topological dimension D). Note that mesh functions
are discrete and are not meant to represent for example a
piecewise polynomial finite element function on the mesh.

3 Data Structures

The mesh representation as described in the previous sec-
tion has been implemented as a small C++ class library
and is available freely as part of the DOLFIN C++ finite
element library, version 0.6.3 or higher. Each of the basic
concepts mesh, mesh topology, mesh geometry, mesh en-

tity, mesh connectivity and mesh function is realized by the
corresponding class Mesh, MeshTopology, MeshGeometry,
MeshEntity, MeshConnectivity and MeshFunction. All
basic data structures are stored as static arrays of un-
signed integers (unsigned int*) or floating point values
(double*), which minimizes the cost of storing the mesh
data and allows for quick access of mesh data. We discuss
each of these classes/data structures in detail below.

3.1 The Class Mesh

The class Mesh stores a MeshTopology and a
MeshGeometry that together define the mesh. The
MeshTopology and MeshGeometry are independent of each
other and of the Mesh. Although it is possible to work
with the MeshTopology and MeshGeometry separately,
they are most conveniently accessed through a Mesh class
that holds a pair of a matching topology and geometry.

3.2 The Class MeshTopology

The class MeshTopology stores the topology of a mesh
as a set of mesh entities and connectivities. For each
pair of topological dimensions (d, d′), 0 ≤ d, d′ ≤ D, the
class MeshTopology stores a MeshConnectivity represent-
ing the set of incidence relations d → d′. The mesh entities
themselves need not be stored explicitly; they are stored
implicitly for each topological dimension d as the set of
pairs (d, i) for 0 ≤ i < Nd, where Nd is the number of
mesh entities of topological dimension d. Thus, for each
topological dimension, the class MeshTopology stores an
(unsigned) integer Nd, from which the set of mesh entities
{(d, 0), (d, 1), . . . , (d, Nd − 1)} may be generated.
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3.3 The Class MeshGeometry

The class MeshGeometry stores the geometry of a mesh.
Currently, only the simplest possible representation has
been implemented, where only the coordinates of each ver-
tex are stored. These coordinates are stored in a contigu-
ous array coordinates of size nN0, where n is the geo-
metric dimension and N0 is the number of vertices.

3.4 The Class MeshEntity

The class MeshEntity provides a view of a given mesh en-
tity (d, i). The mesh entities themselves are not stored, but
a MeshEntity may be generated from a given pair (d, i).
The class MeshEntity provides a convenient interface for
accessing mesh data, in particular in combination with the
concept of mesh iterators, as will be discussed in more
detail below. Thus, one may for any given MeshEntity

access its topological dimension d, its index i and its set of
incidence relations (connected mesh entities) of any given
topological dimension d′. Specialized interfaces are pro-
vided for the named mesh entities of Table 1 in the form
of the following sub classes of MeshEntity: Vertex, Edge,
Face, Facet and Cell.

3.5 The Class MeshConnectivity

The class MeshConnectivity stores the set of incidence
relations d → d′ for a fixed pair of topological dimen-
sions (d, d′). The set of incidence relations is stored as
a contiguous unsigned int array indices of entity in-
dices for dimension d′ entities, together with an auxiliary
unsigned int array offsets that specifies the offset into
the first array for each entity of dimension d.1 The size
of the first array indices is equal to the total number of
incident entities of dimension d′ and the size of the second
array offsets is equal to the total number of entities of
dimension d plus one.

As an example, consider the storage of the set of inci-
dence relations 2 → 0, that is the vertices of each cell, for
the triangular mesh in Figure 3. The mesh has two en-
tities of dimension d = 2 and four entities of dimension
d′ = 0. Furthermore, each entity of dimension d = 2 is
incident to three entities of dimension d′ = 0. The array
entities is then given by [0, 1, 3, 1, 2, 3] and the
array offsets is given by [0, 3, 6].

3.6 The Class MeshFunction

The class MeshFunction stores a single array of Nd

values on the mesh entities of a given fixed dimen-
sion d, and is templated over the value type. Typi-
cal uses include MeshFunction<double> for material pa-
rameters that take a constant value on each cell of a

1The storage is similar to the standard compressed row storage
(CRS) format for sparse matrices, except that only the column in-
dices need to be stored, not the values. Also note that the two
arrays indices and offsets are private data structures of the class
MeshConnectivity. The user is presented with a more intuitive in-
terface, as will be demonstrated below.

Figure 3: The mesh connectivity 2 → 0 (the vertices of
each cell) for this triangular mesh with two cells and four
vertices is stored as two arrays indices = [0, 1, 3, 1,

2, 3] and offsets = [0, 3, 6].

mesh, MeshFunction<bool> for cell markers that indicate
cells that should be refined, and MeshFunction<unsigned

int> to store inter-mesh connectivity or sub domain mark-
ers.

3.7 Minimal Storage

The mesh data structures described above are summa-
rized in Table 2. We note that the classes Mesh and
MeshTopology function as “aggregate classes” that collect
mesh data stored elsewhere, and that no data is stored
in the class MeshEntity. All data is thus stored in the
class MeshConnectivity (in the two arrays indices and
offsets) and in the class MeshGeometry (in the array
coordinates). Note that one MeshConnectivity object
is stored for each pair of topological dimensions (d, d′) for
which the mesh connectivity has been initialized.

Data structure Principal data

Mesh MeshTopology topology

MeshGeometry geometry

MeshTopology MeshConnectivity**

connectivities

MeshGeometry double* coordinates

MeshEntity –
MeshConnectivity unsigned int* indices

unsigned int* offsets

Principal data Size

MeshTopology topology –
MeshGeometry geometry –
MeshConnectivity** connectivities –
double* coordinates nN0

unsigned int* indices O(Nd)
unsigned int* offsets Nd + 1

Table 2: Summary of mesh data structures.
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As an illustration, consider the storage of a tetrahedral
mesh with N0 vertices and N3 cells (tetrahedra) embed-
ded in R

3 where we only store the set of incidence rela-
tions D → 0. Each cell has four vertices, so the class
MeshConnectivity stores 4N3 + N3 + 1 ∼ 5N3 values of
type unsigned int. Furthermore, the class MeshGeometry
stores 3N0 values of type double. Thus, if an unsigned

int is four bytes and a double is eight bytes, then the to-
tal size of the mesh is 20N3 + 24N0 bytes. For a standard
uniform tetrahedral mesh of the unit square, the number
of cells is approximately six times the number of vertices,
so the total size of the mesh is

(20N3 + 24N0) b = (20N3 + 24N3/6) b = 24N3 b. (1)

Thus, a mesh with 1, 000, 000 cells may be stored in just
24 Mb. Note that if additional mesh connectivity is com-
puted, like the edges or facets of the tetrahedra, more mem-
ory will be required to store the mesh.

4 Algorithms

In this section, we present the algorithms used by the
DOLFIN mesh library to compute the mesh connectivity
d → d′ for any given 0 ≤ d, d′ ≤ D. We assume that we
are given an initial set of incidence relations D → 0, that
is, we know the vertices of each cell in the mesh.

The key to computing the mesh connectivities of a mesh
is to compute the connectivities in a particular order. For
example, if the vertices are known for each edge in the
mesh (1 → 0), then it is straightforward to compute the
edges incident to each vertex (0 → 1) as will be explained
below. The computation is based on three algorithms that
are used successively in a particular order to compute the
desired connectivity. As a consequence, the computation
of a certain connectivity d → d′ might require the com-
putation of one or more other connectivities. We describe
these algorithms in detail below. An overview is given in
Figure 4

4.1 Build

Algorithm 1 (Build) computes the connectivities D → d
and d → 0 from D → 0 and D → D for 0 < d < D. In
other words, given the vertices and incident cells of each
cell in the mesh, Algorithm 1 computes the entities of di-
mension d of each cell and for each such entity the vertices
of that entity. Thus, if d = 1, then the edges of each cell
and the vertices of each edge are computed.

The notation of Algorithm 1 requires some explanation.
As before, we let (d → d′)i denote the set of entities of
dimension d′ incident to entity (d, i):

(d → d′)i = {(d′, j) : (d′, j) incident to (d, i)}. (2)

Algorithm 1 also uses the operation

d
local(D,i)
−−−−−−→ 0, (3)

Figure 4: The three basic algorithms for computing con-
nectivity. From the top: Build (computing connectivity
D → d and d → 0 from D → 0 and D → D), Transpose
(computing connectivity d → d′ from d′ → d) and Inter-
section (computing connectivity d → d′ from d → d′′ and
d′′ → d′).
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which denotes the set of vertex sets incident to the mesh
entities of topological dimension d of a given cell (D, i). To
make this concrete, consider a triangular mesh (for which

D = 2) and take d = 1. If Vi = d
local(D,i)
−−−−−−→ 0, then

Vi denotes the set of vertex sets incident to the edges of
triangle number i. The set Vi consists of three sets of
vertices (one for each edge) and each set vi ∈ Vi contains
two vertices. In addition, Algorithm 1 uses the operation

index((D, j), d, vi), (4)

which denotes the index of the entity of dimension d in the
cell (D, j) which is incident to the vertices vi.

We may now summarize Algorithm 1 as follows. For
each cell (D, i), we create a set of candidate entities of di-
mension d, represented by their incident vertices in the set
Vi. This operation is local on each cell and must be per-
formed differently for each different type of mesh. We then
iterate over each cell incident to the cell (D, i) and check
for each candidate entity vi ∈ Vi if it has already been
created by any of the previously visited cells, making sure
that two incident cells agree on the index of any common
incident entity.

Algorithm 1 Build(d), computing D → d and d → 0 from
D → 0 and D → D for 0 < d < D

k = 0
for each (D, i)

Vi = d
local(D,i)
−−−−−−→ 0

for each (D, j) ∈ (D → D)i such that j < i

Vj = d
local(D,j)
−−−−−−→ 0

for each vi ∈ Vi

if vi ∈ Vj

l = index((D, j), d, vi)
(D → d)i = (D → d)i ∪ (d, l)

else

(D → d)i = (D → d)i ∪ (d, k)
(d → 0)k = vi

k = k + 1

4.2 Transpose

Algorithm 2 (Transpose) computes the connectivity d →
d′ from the connectivity d′ → d for d < d′. For each
entity of dimension d′, we iterate over the incident entities
of dimension d and add the entities of dimension d′ as
incident entities to the entities of dimension d. We may
thus compute for example the incident cells of each vertex
(the cells to which the vertex belongs) by iterating over the
cells of the mesh and for each cell over its incident vertices.

4.3 Intersection

Algorithm 3 (Intersection) computes the connectivity d →
d′ from d → d′′ and d′′ → d′ for d ≥ d′. For each entity
(d, i) of dimension d, we iterate over each incident entity

Algorithm 2 Transpose(d, d′), computing d → d′ from
d′ → d for d < d′

for each (d′, j)
for each (d, i) ∈ (d′ → d)j

(d → d′)i = (d → d′)i ∪ (d′, j)

(d′′, k) of dimension d′′ and for each such entity we iterate
over each incident entity (d′, j) of dimension d′. We then
check if either (d, i) and (d′, j) are entities of the same
topological dimension or if (d′, j) is completely contained
in (d, i) by checking that each vertex incident to (d′, j) is
also incident to (d, i), in which case (d′, j′) is added as an
incident entity of entity (d, i).

Here, d′′ must be chosen according to the definition of
incidence given above. For example, we may take d′′ = 0
to compute the connectivity D → D (the incident cells of
each cell) by iterating over the vertices of each cell and for
each such vertex iterate over the incident cells.

Algorithm 3 Intersection(d, d′, d′′), computing d → d′

from d → d′′ and d′′ → d′ for d ≥ d′

for each (d, i)
for each (d′′, k) ∈ (d → d′′)i

for each (d′, j) ∈ (d′′ → d′)k

if (d = d′ and i 6= j) or

(d > d′ and (d′ → 0)j ⊆ (d → 0)i)
(d → d′)i = (d → d′)i ∪ (d′, j)

4.4 Successive Application of Build, Transpose

and Intersection

Any given connectivity d → d′ for 0 ≤ d, d′ ≤ D may be
computed by a successive application of Algorithms 1–3 in
a suitable order. In Algorithm 4, we present the basic logic
for a successive and recursive application of the three basic
algorithms Build, Transpose and Intersection to compute
any given connectivity.

We illustrate this in Figure 5 for computation of the
connectivity 2 → 2, the incident faces of each face, for a
tetrahedral mesh. From the given connectivity D → 0, we
first compute the connectivity 0 → D by an application
of Transpose. This allows us to compute D → D by an
application of Intersection. The connectivity 2 → 0 (and
D → 2) may then be computed by an application of Build.
We then apply Transpose to compute 0 → 2 and finally
Intersection to compute 2 → 2.

4.5 Memory Handling

For each of Algorithms 1–3, memory usage may be con-
served by running each algorithm twice; first one round
to count the number of incident entities, which allows the
static data structures discussed above to be preallocated,
and then another round to set the values of the incident
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Figure 5: Computing connectivity 2 → 2 (the faces inci-
dent to any given face) by successive application of Trans-
pose, Intersection, Build, Transpose and Intersection.

Algorithm 4 Connectivity(d, d′), computing d → d′ by
application of Algorithms 1–3

if Nd = 0
Build(d)

if Nd′ = 0
Build(d′)

if d → d′ 6= ∅
return

if d < d′

Connectivity(d′, d)
Transpose(d, d′)

else

if d = 0 and d′ = 0
d′′ = D

else

d′′ = 0
Connectivity(d, d′′)
Connectivity(d′′, d′)
Intersection(d, d′, d′′)

entities. Furthermore, memory usage may be conserved by
clearing incidence relations that get computed as byprod-
ucts of Algorithms 1–3 when they are no longer needed.

5 Interfaces

In this section, we briefly describe the user interface of the
DOLFIN mesh library. We only describe the C++ inter-
face, but note that an (almost) identical Python interface
is also available.

5.1 Creating a Mesh

A mesh may be created in one of three ways, as illustrated
in Figure 6. Either, the mesh is defined by a data file in
the DOLFIN XML format2, or the mesh is defined vertex
by vertex and cell by cell using the DOLFIN mesh edi-
tor, or the mesh is defined as one of the DOLFIN built-in
meshes. Currently provided built-in meshes include trian-
gular meshes of the unit square and tetrahedral meshes of
the unit cube.

// Read mesh from file

Mesh mesh0("mesh.xml");

// Build mesh using the mesh editor

Mesh mesh1;

MeshEditor editor;

editor.open(mesh1, "triangle", 2, 2);

editor.initVertices(4);

editor.addVertex(0, 0.0, 0.0);

editor.addVertex(1, 1.0, 0.0);

editor.addVertex(2, 1.0, 1.0);

editor.addVertex(3, 0.0, 1.0);

editor.initCells(2);

editor.addCell(0, 0, 1, 2);

editor.addCell(1, 0, 2, 3);

editor.close();

// Create simple mesh of the unit cube

UnitCube mesh2(16, 16, 16);

Figure 6: A DOLFIN mesh may be defined either by an
XML data file, or explicitly using the DOLFIN mesh ed-
itor, or as a built-in predefined mesh. The last two ar-
guments in the call to MeshEditor::open() specify the
topological and geometric dimensions of the mesh respec-
tively.

5.2 Mesh Iterators

Mesh data may be accessed directly from the mesh, but
is most conveniently accessed through the mesh iterator
interface. Algorithms operating on a mesh (including Al-
gorithms 1–3) may often be expressed in terms of itera-

tors. Mesh iterators can be used to iterate either over the
global set of mesh entities of a given topological dimen-
sion, or over the locally incident entities of any given mesh
entity. Two alternative interfaces are provided; the gen-
eral interface MeshEntityIterator for iteration over en-
tities of some given topological dimension d, and the spe-

2A conversion script dolfin-convert is provided for conversion
from other popular mesh formats (including Gmsh and Medit) to
DOLFIN XML format.
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cialized mesh iterators VertexIterator, EdgeIterator,
FaceIterator, FacetIterator and CellIterator for it-
eration over named entities. Iteration over mesh entities
may be nested at arbitrary depth and the connectivity (in-
cidence relations) required for any given iteration is auto-
matically computed (at the first occurrence) by the algo-
rithms presented in the previous section.

A MeshEntityIterator (it) may be dereferenced
(*it) to create a MeshEntity, and any member func-
tion MeshEntity::foo() may be accessed by it->foo().
A MeshEntityIterator may thus be thought of as a
pointer to a MeshEntity. Similarly, the named mesh
entity iterators may be dereferenced to create the cor-
responding named mesh entities. Thus, dereferencing a
VertexIterator gives a Vertex which provides an in-
terface to access vertex data. For example, if it is a
VertexIterator, then it->point() returns the coordi-
nates of the vertex.

The use of mesh iterators is demonstrated in Figure 7 for
iteration over all cells in the mesh and for each cell all its
vertices as illustrated in Figure 8. For each cell and each
vertex, we print its mesh entity index. We also demon-
strate the use of named mesh entity iterators to print the
coordinates of each vertex.

// Iteration over all vertices of all cells

unsigned int D = mesh.topology().dim();

for (MeshEntityIterator c(mesh, D); !c.end(); ++c)

{

cout << "cell index = " << cell->index() << endl;

for (MeshEntityIterator v(*c, 0); !v.end(); ++v)

{

cout << "vertex index = " << v->index() << endl;

}

}

// Iteration over all vertices of all cells

for (CellIterator c(mesh); !c.end(); ++c)

{

cout << "cell index = " << c->index() << endl;

for (VertexIterator v(*c); !v.end(); ++v)

{

cout << "vertex index = " << v->index() << endl;

cout << "vertex coordinates = " << v->point() << endl;

}

}

Figure 7: Iteration over all vertices of all cells in a mesh,
using the general iterator interface MeshEntityIterator

and the specialized iterators CellIterator and
VertexIterator.

5.3 Direct Access to Mesh Data

In addition to the iterator interface, all mesh data may
be accessed directly. Thus, one may obtain an array of
the vertices of all cells in the mesh directly from the mesh
topology, and one may obtain the vertex coordinates of the
mesh directly from the mesh geometry. This illustrated in

Figure 8: Iteration over all vertices of all cells in a mesh.
The order of iteration is decided by the definition of the
mesh, or alternatively, the UFC ordering convention Al-
næs et al. (2007a) if the mesh is ordered. Meshes may be
ordered by a call to Mesh::order().

Figure 9 where the same iteration as in Figure 7 is per-
formed without mesh iterators.

MeshTopology& topology = mesh.topology();

MeshGeometry& geometry = mesh.geometry();

unsigned int D = topology.dim();

MeshConnectivity& connectivity = topology(D, 0);

for (unsigned int c = 0; c < topology.size(D); ++c)

{

cout << "cell index = " << c << endl;

unsigned int* vertices = connectivity(c);

for (unsigned int i = 0; i < connectivity.size(c); ++i)

{

unsigned int vertex = vertices[i];

cout << "vertex index = " << vertex << endl;

cout << "vertex coordinates = "

<< geometry.point(vertex) << endl;

}

}

Figure 9: Iteration over all vertices of all cells in a mesh and
direct access of mesh data corresponding to the iteration
of Figure 7 and Figure 8.

5.4 Mesh Algorithms

In addition to the computation of mesh connectivity as
discussed previously, the DOLFIN mesh library provides a
number of other useful mesh algorithms, including bound-
ary extraction, uniform mesh refinement, adaptive mesh
refinement (in preparation), mesh smoothing, and reorder-
ing of mesh entities.

Figure 10 demonstrates uniform refinement and bound-
ary mesh extraction. When extracting a boundary mesh,
it may be desirable to also generate a mapping from the
entities of the boundary mesh to the corresponding entities
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of the original mesh. This is the case for example when as-
sembling the contribution from boundary integrals during
assembly of a linear system arising from a finite element
variational formulation of a PDE. One then needs to map
each cell of the boundary mesh to the corresponding facet
of the original mesh. (Note that the cells of the bound-
ary mesh are facets of the original mesh.) In Figure 11,
we demonstrate how to extract a boundary and generate
the mapping from the boundary mesh to the original mesh.
The mapping is expressed as two MeshFunctions, one from
the vertices of the boundary mesh to the corresponding
vertex indices of the original mesh and one from the cells
of the boundary mesh to the corresponding facet indices
of the original mesh.

// Refine mesh uniformly twice

mesh.refine();

mesh.refine();

// Extract boundary mesh

BoundaryMesh boundary(mesh);

// Refine boundary mesh uniformly

boundary.refine();

// Save boundary mesh to file

File file("boundary.xml");

file << boundary;

Figure 10: Uniform refinement, boundary extraction
and uniform refinement of the boundary mesh using the
DOLFIN mesh library. Note that the extracted boundary
mesh is itself a mesh and may thus for example be refined.

MeshFunction<unsigned int> vertex_map;

MeshFunction<unsigned int> cell_map;

BoundaryMesh boundary(mesh, vertex_map, cell_map);

Figure 11: Extraction of a boundary mesh and generation
of a pair of mappings from the vertices of the boundary
mesh to the indices of the corresponding vertices of the
original mesh and from the cells of the boundary mesh to
the indices of the corresponding facets of the original mesh.

6 Parallel Considerations

We discuss here how the concepts and data structures dis-
cussed above can be used to assemble a global sparse fi-
nite element operator (typically matrix) over a mesh dis-
tributed over several processors. It is demonstrated below
that we may reuse the concepts introduced above to dis-
tribute the mesh. In particular, each processor owns a
separate piece of the global mesh, which can be stored as
a regular Mesh. Furthermore, each processor knows which

facets of the local mesh are incident with which facets on
other processors and this information can be stored as a
pair of MeshFunctions.

6.1 Simple Distribution of Mesh Data

Let a mesh T be given and assume that the mesh has been
partitioned into n disjoint meshes {T }n−1

i=0 that together
cover the computational domain Ω ⊂ R

n. Such a partition
can be computed using for example SCOTCH, see Pelle-
grini (2004), or Metis, see Karypis and Kumar (1998a,b).
On each processor pi, i = 0, 2, . . . , n − 1, we store its part
of the global mesh as a regular mesh and in addition two
mesh functions Si and Fi over the facets of Ti.

We thus propose to store a distributed mesh T on a set
of processors as the set of tuples {(Ti,Si,Fi)}

n−1
i=0 where

one tuple (Ti,Si,Fi) is stored on each processor pi for i =
0, 1, . . . , n − 1.

The mesh function Si maps each facet f to an integer
j = Si(f) which indicates which (other) subdomain/mesh
Tj that the facet f is (physically) incident with,

Si : (D − 1, [0, 1, . . . , N i
D−1 − 1]) → [0, 1, . . . , n − 1]. (5)

Here, (D−1, [0, 1, . . . , N i
D−1−1]) indicates that the domain

of Si is the set of tuples {(D − 1, k)} where 0 ≤ k ≤
N i

D−1 − 1 and N i
D−1 is the number of facets of Ti. Thus,

if j = Si(f) for some j 6= i, then the facet f is shared with
the mesh Tj . If the facet f is only incident with Ti itself,
then we set Si(f) = i.

The mesh function Fi maps each facet entity f to an in-
teger Fi(f) which indicates which facet f ′ = (D−1,Fi(f))
of Tj for j = Si(f) that the facet f is incident (identical)
to. If Si(f) = i, then f is not shared with another mesh
and we set Fi(f) = 0. We illustrate the meaning of the
two mesh functions Si and Fi in Figure 12.

6.2 Parallel Assembly

The standard algorithm for computing a global sparse op-
erator (tensor) from a finite element variational form is
known as assembly, see Zienkiewicz et al. (1967); Hughes
(1987); Langtangen (1999). By this algorithm, the global
sparse operator may be computed by assembling (sum-
ming) the contributions from the local entities of a finite
element mesh. On each cell of the mesh, one computes
a small cell tensor (often referred to as the “element stiff-
ness matrix”) and add the entries of that tensor to a global
sparse tensor (often referred to as the “global stiffness ma-
trix”). We shall not discuss the assembly algorithm in
detail here and refer instead to Alnæs et al. (2008); Logg
(2007); Alnæs et al. (2007b), but note that to add the
entries from the local cell tensor to the global sparse ten-
sor, we need to compute a so-called local-to-global mapping
on each cell. This maps the local degrees of freedom on
a cell (numbering the rows and columns of the cell ten-
sor) to global degrees of freedom (numbering the rows and
columns of the global tensor).
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Figure 12: A global mesh T partitioned into n = 3 meshes
{Ti}

n−1
i=0 . The mesh functions Si and Fi indicate which

facets of Ti are shared with other meshes. In this example,
we have S0((1, 3)) = S0((1, 4)) = 1, indicating that facets
(1, 3) and (1, 4) in T0 are shared with T1. Furthermore, we
may evaluate F0 at these two facets to find that the facet
(1, 3) in T0 is incident to facet (1, 4) = F0((1, 3)) in T1 and
facet (1, 4) in T0 is incident to facet (1, 5) = F0((1, 4)) in
T1.

The assembly algorithm may be trivially parallelized by
letting each processor pi compute and insert the cell ten-
sors on the local mesh Ti into the global tensor. When the
global tensor is a sparse matrix, linear algebra libraries
like PETSc, see Balay et al. (2004, 1997), may be used
to store the global tensor in parallel. PETSc handles the
communication of matrix data between processors and we
need only make sure that each processor knows how to in-
sert entries into the global sparse matrix according to the
local-to-global mapping of the global mesh. We demon-
strate below that on each processor pi, we may (with a
small amount of communication with neighboring proces-
sors) compute the part of the local-to-global mapping of
the global mesh T relevant to each local mesh Ti in parallel
on each processor pi, which thus allows us to assemble the
global sparse matrix in parallel.

6.3 Mapping Degrees of Freedom in Parallel

In Algorithm 5, we describe how the mapping of de-
grees of freedom may be computed on a distributed mesh
{(Ti,Si,Fi)}

n−1
i=0 .

To express this algorithm in compact form, we need to
introduce some further notation. For each cell c in a local
finite element mesh Ti, we assume that we can compute a
local-to-global mapping ιic, which maps each local degree
of freedom on the cell c to a global degree of freedom (for a
numbering scheme valid on the local mesh Ti). For exam-
ple, when computing with standard piecewise linear finite
elements on triangles, the local-to-global mapping ιic may
map a local vertex number 0, 1 or 2 on c to the correspond-
ing global number vertex number on the mesh Ti. Thus,
the domain of ιic is here {0, 1, 2} and the range is [0, N i

0−1],
where N i

0 is the number of vertices of the mesh Ti. We em-

phasize that the local-to-global mapping ιic is not aware of
the global mesh T of which the local mesh Ti is a part. In-
stead, it is the task of Algorithm 5 to compute (in parallel)
a local-to-global mapping valid on the global mesh T from
a given local-to-global mapping on each local mesh Ti.

We let Mi denote the parallel local-to-global mapping
to be computed on each part Ti of the global mesh. For
ease of notation, we express Mi as a set of tuples Mi =
{((c, i), I)}, where c is a cell (number), i is the local number
of a degree of freedom on c and I is the corresponding
global number. The mapping Mi should be thought of as a
function that maps a cell and a local degree of freedom (c, i)
to the corresponding global degree of freedom I. In the
case of standard piecewise linear elements on triangles, the
domain of Mi is [0, N i

D − 1] × {0, 1, 2}, where N i
D is the

number of cells of the mesh Ti, and the range of Mi is
[0, N0 − 1], where N0 is the total number of vertices of the
partitioned global mesh T . We note here that the mapping
Mi may be stored as a fixed-size array.

To compute the parallel local-to-global mapping Mi on
each processor, we need to iterate over the entities of the
mesh Ti and renumber the degrees of freedom. To do this,
we introduce an auxiliary temporary mapping Ni on each
processor that maps degrees of freedom as given by the
local-to-global mapping ιic on each cell c (which is only
aware of how to map degrees of freedom internally on Ti) to
degrees of freedom as given by the parallel local-to-global
mapping Mi (which is aware of how to map degrees of
freedom globally on the distributed mesh). In the case
of standard piecewise linear elements on triangles, the do-
main of Ni is [0, N i

0 − 1] and the range of Ni is [0, N0 − 1].
Just as for Mi, we may think of Ni as a function but
write it as a set of tuples (pairs) in Algorithm 5 for ease
of notation. In a C++ implementation, Ni may be stored
in the form of an STL map (std::map<unsigned int,

unsigned int>).
Finally, we let N i denote the number of degrees of free-

dom on Ti not shared with a mesh Tj for j < i. This
number can be computed on each mesh Ti from the mesh
function Si.

In Algorithm 5, we first let each processor pi compute
N i (in parallel). These numbers are then communicated
successively from pi−1 to pi to compute an offset for the
numbering of degrees of freedom on each mesh Ti. We
then let each processor pi number the degrees of freedom
(in parallel) on cells which are incident with the boundary
of Ti and are shared with a mesh Tj for j > i. After the de-
grees of freedom on mesh boundaries have been numbered
on each processor, those numbering schemes are commu-
nicated successively from pi to pj for all i < j such that
Ti and Tj share degrees of freedom on a common facet.
Finally, each processor pi may number the N i “internal
degrees of freedom” on Ti.

The key point of this algorithm is to always let pi number
degrees of freedom common with pj for i < j. This num-
bering of shared degrees of freedom is then communicated
over shared facets, from f ′ to f in stage 2 of Algorithm 5.
Since it is known a priori which facets are shared between
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two meshes Ti and Tj , one may communicate the common
numbering for all shared degrees of freedom from pi to pj

in one batch.
Note that it is important that the communication of

shared degrees of freedom in stage 2 of Algorithm 5 is
performed sequentially, starting with processor p1 receiv-
ing the common numbering from p0, then p2 receiving the
common numbering from p0 and/or p1 etc. This guaran-
tees that common degrees of freedom are communicated
from pi to all pj with i < j such that Ti and Tj share com-
mon degrees of freedom, even if Ti and Tj don’t share a
common facet. For this to work, we make the assumption
that if any two meshes Ti and Tj share a common degree
of freedom on the two cells c ∈ Ti and c′ ∈ Tj , then each
of Ti and Tj must share that degree of freedom with some
other mesh Ti′ or Tj′ respectively. In Figure 13, we illus-
trate this assumption (for i′ = j′) and give an example of
a partition for which Algorithm 5 fails to correctly number
all shared degrees of freedom. It is a mild assumption to
disallow such partitions (and meshes).

Algorithm 5 is currently not implemented in DOLFIN.
Instead, a simple (but suboptimal) strategy where the
computational mesh is broadcast to all processors has been
implemented. Each processor owns a copy of the entire
mesh and knows which part of that mesh to assemble. For
a further discussion of the current implementation of par-
allel assembly in DOLFIN (available with DOLFIN 0.7.2),
see Vikstrøm (2008).

Figure 13: Two partitions of a mesh. In the partition on
the left, two of the meshes share only a common vertex and
may thus share a single degree of freedom at that vertex.
The communication of a common numbering of that degree
of freedom is propagated over the facets incident with the
common vertex to the neighboring mesh. In the partition
on the right, it is not possible to propagate the numbering
over facets (since there are no shared facets) and so Algo-
rithm 5 will fail to compute a correct numbering scheme
for this partition.

7 Benchmark Results

In this section, we present a series of benchmarks to il-
lustrate the efficiency of the mesh representation and its
implementation. The new mesh library (which is available

Algorithm 5 {Mi} = ComputeMapping({(Ti,Si,Fi)}),
computing the local-to-global mapping in parallel for a
mesh distributed over n processors pi, i = 0, 1, . . . , n − 1.

— Stage 0: Compute offsets

on each processor pi

compute N i

on processor p0

offset0 = 0
for i = 1, 2, . . . , n − 1

on processor pi

Receive (offseti−1, N i−1) from pi−1

offseti = offseti−1 + N i−1

— Stage 1: Compute mapping on shared facets

on each processor pi

Mi = ∅
Ni = ∅
ki = N i

for each facet f ∈ Ti

j = Si(f)
if j > i

Let c ∈ Ti be the cell incident with f
for each local degree of freedom l on c

if (ιic(l), L) ∈ Ni for some L
Mi = Mi ∪ ((c, l), L)

else

Mi = Mi ∪ ((c, l), ki)
Ni = Ni ∪ (ιic(l), ki)
ki = ki + 1

— Stage 2: Communicate mapping on shared facets

for j = 1, 2, . . . , n − 1
for each facet f ∈ Tj

i = Sj(f)
if i < j

f ′ = Fj(f)
Receive degrees of freedom on f ′ from pi

Update Nj for shared degrees of freedom
— Stage 3: Compute mapping for interior degrees of freedom

on each processor pi

for each cell c ∈ Ti

for each local degree of freedom l on c
if (ιic(l), L) ∈ Ni for some L

Mi = Mi ∪ ((c, l), L)
else

Mi = Mi ∪ ((c, l), ki)
Ni = Ni ∪ (ιic(l), ki)
ki = ki + 1

as part of DOLFIN since version 0.6.3) is compared to the
old DOLFIN mesh library which is a fairly efficient C++
implementation, but which suffers from object-oriented
overhead; all mesh entities are there stored as arrays of
objects, which store their data locally in each object (in-
cluding mesh incidence relations and vertex coordinates).
The benchmark results were obtained on a 2.66 GHz 64-
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bit Intel processor (Q6700) running Ubuntu GNU/Linux
for DOLFIN version 0.6.2-1 and DOLFIN version 0.7.1 re-
spectively.

The five test cases that are examined are the following:
(i) CPU time and (ii) memory usage for creation of a uni-
form tetrahedral mesh of the unit cube, (iii) CPU time for
iteration over all vertices of the mesh, (iv) CPU time for
accessing the coordinates of all vertices of the mesh, and
(iv) uniform refinement of the mesh.

In summary, the speedup was in all cases a factor 10–
1000 and memory usage was reduced by a factor of 50
(comparing slopes of lines in Figure 15). The speedup and
decreased memory usage is the result of more efficient algo-
rithms and data structures, where all data is stored in large
static arrays and objects are only provided as part of the
interface for simple access to the underlying data represen-
tation, not to store data themselves. Another contributing
factor is that the old DOLFIN mesh library precomputes
certain connectivities (including the edges and faces of each
cell) at startup, whereas this computation is carried out
only when requested in the new DOLFIN mesh library, ei-
ther as part of the iterator interface or by an explicit call
to Mesh::init(). We also note that from Figure 15, it is
evident that DOLFIN can be further improved in terms of
its minimal memory footprint.
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Figure 14: Benchmarking the CPU time for creation of
a uniform tetrahedral mesh of the unit cube for the new
mesh library vs. the old DOLFIN mesh library.

8 Conclusions

We have presented a simple yet general and efficient rep-
resentation of computational meshes and demonstrated a
straightforward implementation of this representation as a
set of C++ classes that correspond to the basic concepts of
the mesh representation. The implementation is available
freely as part of DOLFIN Hoffman et al. (2006).
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Figure 15: Benchmarking the memory usage for creation
of a uniform tetrahedral mesh of the unit cube for the new
mesh library vs. the old DOLFIN mesh library.
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Figure 16: Benchmarking the CPU time for iteration over
the vertices of each cell for the new mesh library vs. the
old DOLFIN mesh library.
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